search


Top > Releases ・ Announcements > Press Releases > Status of TEPCO's Nuclear Power Stations after theTohoku-Chihou-Taiheiyou-Oki Earthquake > 2013 > Status of TEPCO's Nuclear Power Stations after the Tohoku-Chihou-Taiheiyou-Oki Earthquake (Daily Report as of 3:00 PM on July 30)

Status of TEPCO's Nuclear Power Stations after the Tohoku-Chihou-Taiheiyou-Oki Earthquake (Daily Report as of 3:00 PM on July 30)

Due to the Tohoku-Chihou-Taiheiyou-Oki Earthquake which occurred on March 11, 2011, TEPCO's facilities including our nuclear power stations have been severely damaged. We deeply apologize for the anxiety and inconvenience caused.
With regard to the accident at Fukushima Daiichi Nuclear Power Station, on April 17, 2011, we have compiled the roadmap towards restoration from the accident and on July 19 we accomplished the Step1 target "Radiation dose is in steady decline". Then on December 16 we confirmed the accomplishment of the Step 2 target "Release of radioactive materials is under control and radiation doses are being significantly held down".
In addition, on December 21, 2011, we have compiled the "Mid-to-long-Term Roadmap toward the Decommissioning of Fukushima Daiichi Nuclear Power Units 1-4, TEPCO".
In addition to the maintenance of the plant's stable condition, we will implement Mid-to-Long Term countermeasures towards the decommissioning of Fukushima Daiichi Nuclear Power Units 1-4 to enable evacuees to return to their homes as soon as possible and reduce the anxiety of the people in Fukushima and the whole nation as soon as possible.

Below is the status of TEPCO's Fukushima Daiichi Nuclear Power Station.

* The updates are underlined.

[Fukushima Daiichi Nuclear Power Station]
・ Unit 1 to 4: Abolishment (April 19, 2012)
・ Unit 5 to 6: Outage due to regular inspections before the earthquake

- Contaminated water transfer from the underground reservoirs was all completed as of July 1. However, we are continuing to take measures to prevent the expansion of contaminated water, and to conduct sampling activities.

<Measures to prevent the expansion of contaminated water>
On June 19, since the decrease of all-β radioactivity density in the leakage detection hole (northeast) at the underground reservoirs No.1 has been slow, an operation to dilute the underground reservoir No.1 by transferring desalination-system (RO) treated water (the all-β radioactivity density: approx. 1×101Bq/cm3) or filtered water into the reservoir was started (the all-β radioactivity density of residual water in the underground reservoir No.1: 6.6×104Bq/cm3).
[Recent dilution operation] On July 29, approx. 64m3 of water was transferred to a temporary tank.

On June 27, since the decrease of all-β radioactivity density in the leakage detection hole (northeast) at the underground reservoirs No.2 has been slow, an operation to dilute the underground reservoir No.2 by transferring filtered water or desalination-system (RO) treated water (the all-β radioactivity density: approx. 1×101Bq/cm3) into the reservoir was started.
[Recent dilution operation] On July 29, approx. 60m3 of filtered water was injected.

On July 24, since the decrease of all-β radioactivity density in the leakage detection hole (southwest) at the underground reservoirs No.3 has been slow, an operation to dilute the underground reservoir No.3 by transferring filtered water or desalination-system (RO) treated water (the all-β radioactivity density: approx. 1×101Bq/cm3) into the reservoir was started.
[Recent dilution operation] On July 27, approx. 60m3 of filtered water was injected.

On July 29, leaked water in the leakage detection holes at the underground reservoirs No.1-No.3 was transferred to the temporary aboveground tank, and leaked water in the drain holes at the underground reservoirs No.1 and No.2 was transferred into these underground reservoirs.

<Sampling>
On July 29, sampling was performed in the drain holes of the underground reservoirs No.1-No.7 (14 locations), the leakage detection holes of the underground reservoirs No.1-No.4 and No.6 (sample could not be collected at 2 out of 10 locations), the observation holes of the underground reservoirs (22 locations), and the observation holes on the sea side (5)-(8). As a result of the analysis, no significant change was found compared to the analysis results from the sampling performed previously (on July 22 in the observation holes on the sea side (5)-(8) and on July 28 in the other locations).

- At 6:40 AM on July 30, cooling of the Unit 4 spent fuel pool was suspended due to inspection on instruments of the Unit 4 spent fuel pool alternative cooling system. The suspension period is planned to be about 34 hours. When the cooling was suspended, the pool water temperature was 31℃, and the estimated rate of increase of the pool water temperature was 0.331℃/h. Therefore, the pool water temperature is expected to increase by approx. 12℃ over the suspension period and stay sufficiently low compared with the operational limit value of 65℃, and no problem is expected in controlling the water temperature of the spent fuel pool.

- We installed observation holes east of the Unit 1-4 Turbine Buildings, and have been conducting sampling and analysis of groundwater from the observation holes. On June 19, we announced that tritium and strontium were detected at high densities in the observation hole located between Units 1 and 2. Therefore, we have been conducting intensified monitoring.

* Revised past progress

The aforementioned attachments are only available in Japanese.
We apologize for any inconvenience this may cause.

In Order to view the PDF documents, you will need a software product called Adobe® Acrobat® Reader installed on your computer. You can download this software product for free from Adobe's Web site by clicking the left button:


to TOP