search


Top > Releases ・ Announcements > Press Releases > Status of TEPCO's Nuclear Power Stations after theTohoku-Chihou-Taiheiyou-Oki Earthquake > 2013 > Status of TEPCO's Nuclear Power Stations after the Tohoku-Chihou-Taiheiyou-Oki Earthquake (Daily Report as of 3:00 PM on July 2)

Status of TEPCO's Nuclear Power Stations after the Tohoku-Chihou-Taiheiyou-Oki Earthquake (Daily Report as of 3:00 PM on July 2)

Due to the Tohoku-Chihou-Taiheiyou-Oki Earthquake which occurred on March 11, 2011, TEPCO's facilities including our nuclear power stations have been severely damaged. We deeply apologize for the anxiety and inconvenience caused.
With regard to the accident at Fukushima Daiichi Nuclear Power Station, on April 17, 2011, we have compiled the roadmap towards restoration from the accident and on July 19 we accomplished the Step1 target "Radiation dose is in steady decline". Then on December 16 we confirmed the accomplishment of the Step 2 target "Release of radioactive materials is under control and radiation doses are being significantly held down".
In addition, on December 21, 2011, we have compiled the "Mid-to-long-Term Roadmap toward the Decommissioning of Fukushima Daiichi Nuclear Power Units 1-4, TEPCO".
In addition to the maintenance of the plant's stable condition, we will implement Mid-to-Long Term countermeasures towards the decommissioning of Fukushima Daiichi Nuclear Power Units 1-4 to enable evacuees to return to their homes as soon as possible and reduce the anxiety of the people in Fukushima and the whole nation as soon as possible.

Below is the status of TEPCO's Fukushima Daiichi Nuclear Power Station.

* The updates are underlined.

[Fukushima Daiichi Nuclear Power Station]
·Unit 1 to 4: Abolishment (April 19, 2012)
·Unit 5 to 6: Outage due to regular inspections before the earthquake

-As for the underground reservoir No.2 installed within the power station site, 101Bq/cm3 level of radiation was detected as a result of analyzing the water accumulated between the sheet on the outside (bentonite sheet) and the ground (the underground reservoir is made of three layers of impermeable sheets) on April 3. On April 5, radiation was detected in the water between the sheet on the outside (bentonite sheet) and the sheet on the inside (double-layered permeable sheet) as a result of analysis. The radioactivity density of all β detected was approx. 5.9×103Bq/cm3. Considering that there is no drain ditch in the surrounding area, it is considered that there is no possibility of the leaked water flowing into the sea. At 5:10 AM on April 6, the incident was judged to be a leakage which is subject to the application of Article 19-17, Item 10 of the Rule for the Installation, Operation, etc. of Commercial Nuclear Power Reactors (Rule for Commercial Nuclear Power Reactors). The amount of leaked water is approx. 120m3, all γ radioactivity density is approx. 1.5×100Bq/cm3 and all β radioactivity density is approx. 5.9×103Bq/cm3, the γ ray radiation dose leaked is estimated to be approx. 1.8×108Bq and the β radiation dose is estimated to be approx. 7.1×1011Bq. Details are currently being investigated.
While enhancing the monitoring of the water level of the underground reservoir No.3, on April 7, sampling was performed on the water in the drain hole (southwest) and the leakage detection hole (southwest) of the underground reservoir No.3 for the purpose of investigating the leakage location.
Considering that all β nuclides were detected in the water in the leakage detection hole and the drain hole of the underground reservoir No.3 as a result of sampling, it was judged at 8:53 AM on the same day that there may be a small amount of leakage from the impermeable sheet on the outside (bentonite sheet) of the reservoir to the outside.
The samples collected in the morning of April 9 in the drain hole (at 2 locations) and the leakage detection hole (at 2 locations) of the underground reservoir No.1 have been analyzed. As a result, the chloride concentration of the water in the leakage detection hole (northeast) has increased from 4ppm (on the previous day) to 910ppm. At 12:47 PM, water transfer from the underground reservoir No.2 to No.1 utilizing temporary pumps was suspended. Considering that all β nuclides were detected as a result of sampling performed in the leakage detection hole of the underground reservoir No.1 for the purpose of investigating the leakage location, it was judged that there may be a small amount of leakage from the sheet on the inside (double -layer impermeable sheet) to the impermeable sheet on the outside (bentonite sheet) of the reservoir although the water level of the underground reservoir No.1 has not decreased and the analysis results of the drain hole water of the underground No.1 have not yet been confirmed.
On April 10, the soil covering the leakage detection hole (northeast) penetration of the underground reservoir No.2 was removed to perform a visual inspection of the penetration. The removal of the impermeable sheet, gravels, etc. will be continued. Furthermore, drilling work was started for the boring investigation to confirm the contamination condition of the surrounding area of the underground reservoirs and contamination expansion to the sea side. The work will be continued. Though water transfer from the underground reservoir No.3 to No.6 was started at 2:00 PM on the same day, the transfer pump was stopped at 2:03 PM as water leakage from the connection part (flange) of the transfer pump outlet pipe was found. The pipe flange was disassembled for cause investigation. As a result, the cause was identified to be the problem with the flange connection part (inhomogeneous amount of gap on the surfaces). The flange was recovered after replacing the gasket. Since no problem was found as a result of measuring the gaps on other flanges and checking the tightening condition of the flange bolts, the water transfer was started at 9:56 PM on April 12. As for the removal of the soil covering the upper part of the reservoir (embankment) where the leaked water is assumed to have been absorbed, further drilling was performed (a total of the drilling depth: 30-60cm) and the radioactivity density on the ground surface has been reduced down to 0.05mSv/h (β+γ) (max.). At 3:06 PM on April 14, the water transfer from the underground reservoir No.3 to No.6 was suspended as the transfer of the planned water amount had completed.
On April 12, sampling was performed in the drain holes of the underground reservoirs No.1-7 (at 14 locations) and the leakage detection holes of the underground reservoirs No.1-4 and 6 (sample could not be collected at 2 out of 10 locations). As a result, the all β density in the drain hole (northeast) of the underground reservoir No.1 was found to have increased during the period from April 10 to 12. Thus, it was judged that there has been a small amount of leakage from the sheet on the outside (bentonite sheet) to the outside. Since there is no drainage in the surrounding area, there is no possibility that the leaked water has flowed out to the sea.
On April 19, the filtrate water tank No.1 was detached from the transfer line between the buffer tank and the filtrate water tanks No.1/No.2 in order to prepare for the water transfer from the underground reservoir No.1 to the filtrate water tank.

<Measures to prevent the expansion of contaminated water>
On July 1, leaked water in the leakage detection holes at the underground reservoirs No.1-No.3 was transferred to the notch tank, and leaked water in the drain holes at the underground reservoir No.2 was transferred into this underground reservoir.
Meanwhile, on June 19, since the decrease of all-β radioactivity density in the leakage detection hole (northeast) at the underground reservoirs No.1 has been slow, an operation to dilute the underground reservoir No.1 by transferring desalination-system (RO) treated water (the all-β radioactivity density: approx. 1×101Bq/cm3) into the reservoir was started (the all-β radioactivity density of residual water in the underground reservoir No.1: 6.6×104Bq/cm3).
[Dilution operation records] The volumes of injected desalination-system (RO) treated water were approx. 24m3 on June 19 and approx. 16m3 on June 20. On June 21, approx. 40m3 of the water was transferred to a temporary tank. On June 26, approx. 40m3 of desalination-system (RO) treated water was injected. On June 27, approx. 33m3 of the water was transferred to the temporary tank. On June 28, approx. 40m3 of desalination-system (RO) treated water was injected.
On June 27, since the decrease of all-β radioactivity density in the leakage detection hole (northeast) at the underground reservoirs No.2 has been slow, an operation to dilute the underground reservoir No.2 by transferring filtered water into the reservoir was started.
[Dilution operation records] On June 27, approx. 40m3 of filtered water was injected.

<Sampling>
On June 30, sampling was performed in the drain holes of the underground reservoirs No.1-No.7 (14 locations), the leakage detection holes of the underground reservoirs No.1-No.4 and No.6 (sample could not be collected at 2 out of 10 locations), the observation holes of the underground reservoirs (22 locations), and the observation holes on the sea side (5)-(8). As a result of the analysis, no significant change was found compared to the analysis results from the sampling performed previously (on June 24 in the observation holes on the sea side (5)-(8) and June 30 in the other locations).

-At 9:37 AM on July 2, cooling of the Unit 4 spent fuel pool was suspended due to work to add antifreeze solution into circulated water of the secondary system of the Unit 4 spent fuel pool. The suspension period is planned to be approx. 7 hours. The pool water temperature was 31℃ when the cooling was suspended. The increase rate of the pool water temperature was estimated at 0.338℃/h when the cooling was suspended. The pool water temperature is expected to increase by approx. 3℃. The pool water temperature will be kept sufficiently low compared to the operational limit value of 65℃ with this increase, and no problem is expected in controlling the water temperature of the spent fuel pool.

-At 10:00 AM on July 2, accumulated water transfer from the Unit 6 Turbine Building basement to the temporary tank was started. At 3:00 PM on the same day, the transfer was stopped.

-At 10:08 AM on July 2, accumulated water transfer from the Unit 2 Turbine Building basement to the Unit 3 Turbine Building basement was started.

-Construction for installing condensate storage tank (CST) reactor water injection systems was carried out as a measure to improve reliability of the reactor water injection systems of Units 1 to 3. System tests were completed. On July 2 to 4, we are scheduled to sequentially start, from Unit 1, replacement of the upland water injection systems with the CST reactor water injection systems and actual reactor water injection using the CST reactor water injection systems.
The CST reactor water injection systems are included in reactor water injection systems that become subject to Article 138 (reactor water injection systems) of the technical specification after we announce the start of operation. For this reason, during an observation period regarding actual reactor water injection and during the replacement of the upland water injection systems with the CST reactor water injection systems, we apply Article 136, Section 1 (intentional transition out of the scope of operational requirement for maintenance work) of the technical specification to the CST reactor water injection systems.
At 10:07 AM on July 2, we started observation of actual reactor water injection in Unit 1 using the CST reactor water injection system. We have been applying Article 136, Section 1 of the technical specification (in Units 1 to 3). We will continue observation until we will observe actual reactor water injection in Unit 3 on July 4, when the entire series of work will be completed.

-On July 1, sampling was performed at the charcoal filter and the particulate filter of the Unit 1 PCV gas control system.

-On July 1, dust sampling was performed in the upper part of Unit 1 Reactor Building using the exhaust gas filtering facilities of the Unit 1 Reactor Building cover.

-On July 2, sampling was performed at the charcoal filter and the particulate filter of the Unit 2 PCV gas control system.

-On July 2, dust sampling was performed at the ventilation facility in Unit 2 Reactor Building.

-At around 11:00 PM on June 15, during dew condensation check, a TEPCO employee found a trace of discolored (brown) water in the leaked water receiving pan under the batch treatment tank (2A) of the multi-nuclide removal equipment system A (currently in trial operation utilizing waste liquid treated at a water treatment facility). On June 18, after water was removed from the tank, a liquid penetrant inspection was performed in the surface investigation on the lower part of the tank. As a result, two very narrow holes (pinholes) were found in the welding line where discoloration was found. Later, the detailed investigation was conducted from the interior. As a result, we found out that these holes were caused by flaws in a stainless net, which are attributable to local corrosion of the stainless net due to the crevice environment. We consider that the crevice corrosion had developed to a degree that penetrating holes were generated. Repair will be made on these locations.

-Around 0:48 PM on July 2, near the common incineration facility in the station premises, a corporate company worker found temporarily placed cardboard on fire. While this worker performed initial fire-distinguishing work, we reported the fire to the fire department at 0:54 PM. The in-house fire fighting team started fire distinguishing work at 1:23 PM, and the fire department confirmed at 1:37 PM that the fire was extinguished. According to site investigation, burned in the fire were cardboard and other items that had been temporarily placed. The burnt area is approx. 4m × approx. 2m, and the fire reached approx. 1m in height. There have been no abnormality on the plant data (reactor injected-water amount, spent fuel pool water temperature, etc.), no significant change in the monitoring post data, and no injury.

* Revised past progress

The aforementioned attachments are only available in Japanese.
We apologize for any inconvenience this may cause.

In Order to view the PDF documents, you will need a software product called Adobe® Acrobat® Reader installed on your computer. You can download this software product for free from Adobe's Web site by clicking the left button:


to TOP