search



Corporate Information

 
Press Release (Jan 19,2012)
Plant Status of Fukushima Daiichi Nuclear Power Station (as of 3:00 pm, January 19)
*The updates are underlined
All 6 units of Fukushima Daiichi Nuclear Power Station have been shut down.
Unit 1 (Shut down) 
- Explosive sound and white smoke were confirmed after the big quake
  occurred at 3:36 pm on March 12, 2011. It was assumed to be hydrogen
  explosion.
- At 3:37 pm on March 25, 2011, we started injecting freshwater to the
  reactor and are now injecting fresh water by a motor driven pump powered
  by the off-site transmission line. 
- At 10:11 am on December 10, 2011, in addition to water injection from
  water feeding system, we started water injection from piping of core
  spray system to the reactor.
  The Current water injection volume is approx. 4.5 m3/h from the reactor
  feed water system and approx. 2.0 m3/h from the core spray system.
- At 1:31 am on April 7, 2011, we commenced injection of nitrogen gas into
  Primary Containment Vessel.
- At 11:22 am on August 10, 2011, we started cyclic cooling for the water
  in the spent fuel pool by an alternative cooling equipment of the Fuel
  Pool Cooling and Filtering System. 
- On October 28, 2011, we completed installation of the cover for the
  Reactor Building in order to contain dispersion of radioactive
  substances.
- At 4:04 pm on November 30, 2011, we started operation to inject nitrogen
  into the reactor pressure vessel.
- At 6:00 pm on December 19, 2011, a full-scale operation of the PCV gas
  management system started.
Unit 2 (Shut down) 
- At approximately 6:00 am on March 15, 2011, an abnormal noise began
  emanating from nearby Pressure Suppression Chamber and the pressure
  within the chamber decreased. 
- At 10:10 am on March 26, 2011, we started injecting freshwater to the
  reactor and are now injecting fresh water by a motor driven pump powered
  by the off-site transmission line. 
- At 2:59 pm on September 14, 2011, in addition to water injection from
  water feeding system, we started water injection from piping of core
  spray system to the reactor.
  At 10:45 am on January 19, 2012, in order to switch injection piping of 
  reactor injection pump on the hill, gradual adjustment of the amount of 
  water injection to the reactor has been made. Injection amount from the 
  reactor feed water system is adjusted from approx. 2.8 m3/h to approx. 
  4.0 m3/h. Also, injection amount from the core spray system is adjusted 
  from approx. 7.0 m3/h to approx. 6.0 m3/h. 
  The Current water injection volume is approx. 4.0 m3/h from the reactor
  feed water system and approx. 6.0 m3/h from the core spray system.
- At 5:21 pm on May 31, 2011, we started cyclic cooling for the water in
  the spent fuel pool by an alternative cooling equipment of the Fuel Pool
  Cooling and Filtering System. 
- At 8:06 pm on June 28, 2011, we started injecting nitrogen gas into the
  Primary Containment Vessel.
- At 6:00 pm on October 28, 2011, a full-scale operation of the PCV gas
  management system started.
  On January 18, 2012, we conducted sampling of gas at the Primary 
  Containment Vessel gas administration system. As a result of the 
  analysis, we confirmed that the density of Xenon 135 at the entrance of 
  the system was below the detection limit (1.1x10-1 Bq/cm3), below the 
  recriticality determination threshold, 1 Bq/cm3. 
- At 10:46 am on December 1, 2011, we started the nitrogen injection to
  the Reactor Pressure Vessel.
- At 11:50 am on January 19, 2012, we started the operation of the spent 
  fuel pool desalting facility.
Unit 3 (Shut down) 
- Explosive sound and white smoke were confirmed at approximately 11:01 am
  on March 14, 2011. It was assumed to be hydrogen explosion.
- At 6:02 pm on March 25, 2011, we started injecting fresh water to the
  reactor and are now injecting fresh water by a motor driven pump powered
  by the off-site transmission line.
- At 2:58 pm on September 1, 2011, we started water injection by core
  spray system in addition to water injection by the reactor feed water
  system piping arrangement.
  At 10:20 am on January 19, 2012, in order to switch injection piping of 
  reactor injection pump on the hill, gradual adjustment of the amount of 
  water injection to the reactor has been made. Injection amount from the 
  reactor feed water system is adjusted from approx. 3.0 m3/h to approx. 
  4.0 m3/h. Also, injection amount from the core spray system is adjusted 
  from approx. 6.0 m3/h to approx. 5.0 m3/h. 
  The Current water injection volume is approx 4.0 m3/h from the reactor
  feed water system and approx. 5.0 m3/h from the core spray system. 
- At 7:47 pm on June 30, 2011, we started cyclic cooling for the water in
  the spent fuel pool by an alternative cooling equipment of the Fuel Pool
  Cooling and Filtering System.
- At 8:01 pm on July 14, 2011, injection of nitrogen gas into the Primary
  Containment Vessel started. 
- At 4:26 pm on November 30, 2011, we started operation to inject nitrogen
  into the reactor pressure vessel.
- At 3:18 pm on January 14, we started operation of the radioactive
  material removal instrument for the spent fuel pool in Unit 3
Unit 4 (Outage due to regular inspection) 
- At around 6 am on March 15, 2011, we confirmed the explosive sound and
  the sustained damage around the 5th floor rooftop area of Reactor
  Building.
- At 12:44 pm on July 31, 2011, we started cyclic cooling for the water in
  the spent fuel pool by an alternative cooling equipment of the Fuel Pool
  Cooling and Filtering System (from 1:30 pm to 3:14 pm on January 12,
  2012, we injected hydrazine [corrosion inhibitor] in conjunction with
  the cyclic cooling).
- At 10:58 am on November 29, 2011, in order to decrease more salinity, we
  installed Ion exchange equipment and started the operation of such
  equipment.
- At this moment, we don't think there is any reactor coolant leakage
  inside the primary containment vessel.
Unit 5 (Outage due to regular inspection) 
- Sufficient level of reactor coolant to ensure safety is maintained.
- At 5:00 am on March 19, 2011, we started the Residual Heat Removal
  System Pump in order to cool the spent fuel pool.
- At 2:45 pm on July 15, 2011, we started the operation of the original
  Residual Heat Removal System (System B) by its original seawater pump.
- At 10:11 am on December 22, 2011, since we finished the recovery work of
  seawater pump (System B) of equipment water cooling system, we made a
  trial run. At 11:25 am on the same day, we confirmed no abnormalities
  and restarted the operation.
- At this moment, we don't think there is any reactor coolant leakage
  inside the primary containment vessel.
Unit 6 (Outage due to regular inspection) 
- Sufficient level of reactor coolant to ensure safety is maintained.
- At 10:14 pm on March 19, 2011, we started the Residual Heat Removal
  System Pump of Unit 6 to cool down Spent Fuel Pool.
- At 2:33 pm on September 15, 2011, we started separately cooling the
  reactor through the Residual Heat Removal System and the spent fuel pool
  through Equipment Cooling Water System and Fuel Pool Cooling System.
- At this moment, we do not think there is any reactor coolant leakage
  inside PCV.
Others 
- At around 10:00 am on June 13, 2011, we started the operation of the
  circulating seawater purification facility installed at the screen area
  of Unit 2 and 3.
- At 8:00 pm on June 17, 2011, we started operation of Water Treatment
  Facility against the accumulated water. At 6:00 pm on July 2, we started
  the circulating injection cooling to inject the water, which was treated
  by the accumulated water treatment system, to the reactors through the
  buffer tank.
- At 7:41 pm on August 19, 2011, we started treatment of accumulated water
  by parallel operation of one line from the cesium adsorption instrument
  to the decontamination instrument and the other treatment line of the
  cesium adsorption instrument No.2.
- At 2:06 pm on October 7, 2011, we started to spray purified accumulated
  water brought from Unit 5 and 6 continually in order to prevent dust
  scattering and potential fire outbreaks from the cut down trees.
- On October 28, 2011, we started installation of the water proof wall at
  the sea side, in front of the existing shore protection, Units 1-4, in
  order to contain marine pollution by underground water.
- At 12:25 pm on December 13, 2011, we started the re-circulating
  operation of desalination facility (reverse osmosis membrane type) for
  the purpose of suppression of condensed water after desalination
  treatment.
- As finding of accumulated water containing radioactive materials at the
  trench between the Process Main Building and the Miscellaneous Solid
  Waste Volume Reduction Treatment Building [High Temperature Incinerator
  Building] (December 18, 2011), we started the inspection of other
  trenches at the site on January 11. 
  On January 19, accumulated water was confirmed at circulating water pump 
  discharge valve pit in water pump room of Unit 2 and 3 during the 
  inspection. As a result of nuclide analysis, we found out that 
  relatively high concentration of radioactive material is included in the 
  water. However, the possibility of the outflow to the sea is extremely 
  low since there has been no significant change in the sampling result 
  conducted daily basis at Unit 2 and Unit 3 (Inside and outside of dust 
  inhibitor). 
  The nuclide analysis results (preliminary results) are as follows: 
  -Unit 2 water pump room, circulating water pump discharge valve pit 
    I-131:Not detected, Cs-134:7.1x103Bq/cm3,Cs-137:9.1x103Bq/cm3 
  -Unit 3 water pump room, circulating water pump discharge valve pit 
    I-131:Not detected, Cs-134:3.8x102Bq/cm3,Cs-137:4.8x102Bq/cm3 
- At 9:42 on January 19, we started injecting water to unit 3 condensate
  storage tank. 
back to page top


to TOP