- 2.35 サブドレン他水処理施設
- 2.35.1 基本設計
- 2.35.1.1 設置の目的

サブドレン他水処理施設は、1~4号機タービン建屋等の周辺に設置されたサブドレンピットから地下水を汲み上げること(サブドレン集水設備)、海側遮水壁と既設護岸の間に設置される地下水ドレンポンドから地下水を汲み上げること(地下水ドレン集水設備)、汲み上げた水に含まれている放射性核種(トリチウムを除く)を十分低い濃度になるまで除去すること(サブドレン他浄化設備)及び浄化された水を排水すること(サブドレン他移送設備)を目的とする。(以下、「本格運転」という。)

2.35.1.2 要求される機能

- (1) サブドレン集水設備は、1~4号機タービン建屋等の周辺に設置されたサブドレンピットから地下水を集水タンクに移送できること。
- (2) 地下水ドレン集水設備は、地下水ドレンポンドから地下水を汲み上げ、集水タンクに移送できること。
- (3) サブドレン他浄化設備は、サブドレン集水設備及び地下水ドレン集水設備で集水した地下水の処理、貯留、管理等を行い、放射性物質の濃度を適切な値に低減する能力を有すること。
- (4) サブドレン他浄化設備は、設備内で発生する気体状及び固体状の放射性物質及び可燃性ガスの管理が適切に行える機能を有すること。
- (5) サブドレン他移送設備は、サブドレン他浄化設備にて浄化された水を排水できること。
- (6) サブドレン他水処理施設は、漏えい防止機能を有すること。

2.35.1.3 設計方針

2.35.1.3.1 サブドレン集水設備の設計方針

(1) 処理能力

サブドレン集水設備は、1~4号機タービン建屋等の周辺に設置されたサブドレンピットから地下水を汲み上げ、集水タンクに移送できる処理容量とする。

(2) 材料

サブドレン集水設備は、処理対象水の性状を考慮し、適切な材料を用いた設計とする。

(3) 放射性物質の漏えい防止及び管理されない放出の防止

サブドレン集水設備の機器等は,液体状の放射性物質の漏えい防止及び敷地外への管理 されない放出を防止するため,次の各項を考慮した設計とする。

- a. 漏えいの発生を防止するため、機器等には適切な材料を使用するとともに、タンク水 位の検出器を設ける。
- b. 液体状の放射性物質が漏えいした場合は、漏えい液体の除去を行えるようにする。
- c. サブドレンピットの水位、タンク水位等の警報については、免震重要棟集中監視室等 に表示し、異常を確実に運転員に伝え適切な措置をとれるようにし、これを監視できるようにする。

(4) 健全性に対する考慮

サブドレン集水設備は、機器の重要度に応じた有効な保全が可能な設計とする。

(5) 検査可能性に対する設計上の考慮

サブドレン集水設備は、サブドレンピットから地下水を汲み上げ、集水タンクに移送できることを確認するための検査が可能な設計とする。

2.35.1.3.2 サブドレン他浄化設備の設計方針

(1) 放射性物質の濃度の低減

サブドレン他浄化設備は、サブドレン集水設備及び地下水ドレン集水設備で汲み上げた 水を、ろ過、イオン交換等により、周辺環境に対して、放射性物質の濃度を合理的に達成 できる限り低くする設計とする。

(2) 処理能力

サブドレン他浄化設備は,サブドレン集水設備及び地下水ドレン集水設備で想定される 汲み上げ量以上の処理容量とする。

(3) 材料

サブドレン他浄化設備の機器等は,処理対象水の性状を考慮し,適切な材料を用いた設計とする。

(4) 放射性物質の漏えい防止及び管理されない放出の防止

サブドレン他浄化設備の機器等は,液体状の放射性物質の漏えい防止及び敷地外への管理されない放出を防止するため,次の各項を考慮した設計とする。

- a. 漏えいの発生を防止するため、機器等には適切な材料を使用するとともに、タンク水 位の検出器、インターロック回路等を設ける。
- b. 液体状の放射性物質が漏えいした場合は、漏えい液体の除去を行えるようにする。
- c. タンク水位,漏えい検知等の警報については,免震重要棟集中監視室等に表示し,異常を確実に運転員に伝え適切な措置をとれるようにし,これを監視できるようにする。

d. サブドレン他浄化装置の機器等は、周辺に堰を設けた区画内に設け、漏えいの拡大を 防止する。また、排水路から可能な限り離隔するとともに、排水路を跨ぐ箇所はボッ クス鋼内等に配管を敷設する。

(5) 被ばく低減

サブドレン他浄化設備は, 遮へい, 機器の配置等により被ばくの低減を考慮した設計と する。

(6) 可燃性ガスの管理

サブドレン他浄化設備は、水の放射線分解により発生する可燃性ガスの滞留を防止でき、必要に応じて適切に排出できる設計とする。また、可燃性ガスに放射性物質が含まれる可能性がある場合は、適切に除去する設計とする。

(7) 健全性に対する考慮

サブドレン他浄化設備は、機器の重要度に応じた有効な保全が可能な設計とする。

(8) 検査可能性に対する設計上の考慮

サブドレン他浄化設備は、処理量ならびに放射能濃度を低減できることを確認するため の検査が可能な設計とする。

(9) 地下水の貯留

サブドレン他浄化設備は、地下水を浄化してサンプルタンクへ移送することを目的とするが、地下水の水質や処理状況に応じて、地下水を RO 濃縮水貯槽又は Sr 処理水貯槽へ移送することが可能な設計とする。なお、RO 濃縮水貯槽又は Sr 処理水貯槽へ移送した地下水はサブドレン他水処理施設へ移送して処理しない。

2.35.1.3.3 サブドレン他移送設備の設計方針

(1) 処理能力

サブドレン他移送設備は、サブドレン他浄化設備で想定される処理容量以上の処理容量とする。

(2) 材料

サブドレン他移送設備の機器等は,処理対象水の性状を考慮し,適切な材料を用いた設計とする。

(3) 放射性物質の漏えい防止及び管理されない放出の防止

サブドレン他移送設備は浄化した水を取り扱うことから、液体中の放射性物質による影響はほとんど無い。ただし、液体状の放射性物質の漏えい防止及び敷地外への管理されない放出を防止するため、機器等は次の各項を考慮した設計とする。

- a. 漏えいの発生を防止するため、機器等には適切な材料を使用するとともに、インターロック回路等を設ける。
- b. 液体状の放射性物質が漏えいした場合は、漏えい液体の除去を行えるようにする。
- c. 漏えい検知等の警報については、免震重要棟集中監視室等に表示し、異常を確実に運転員に伝え適切な措置をとれるようにし、これを監視できるようにする。
- d. 浄化した水を排水する際には事前に水質分析を行い, 浄化水に含まれる放射性物質濃度が, 告示濃度限度よりも十分に低い排水の基準(詳細は「Ⅲ 2.1.2 放射性液体廃棄物の管理」を参照)を満足することを確認した後に, 排水を行う。また, 運転員の誤操作等により, 水質分析前の水を排水することが無いよう配慮した設計とする。

(4) 健全性に対する考慮

サブドレン他移送設備は、機器の重要度に応じた有効な保全が可能な設計とする。

(5) 検査可能性に対する設計上の考慮

サブドレン他移送設備は、浄化された水を排水できることを確認するための検査が可能な設計とする。

2.35.1.3.4 地下水ドレン集水設備の設計方針

(1) 処理能力

地下水ドレン集水設備は、地下水ドレンポンドから地下水を汲み上げ、集水タンクに 移送できる処理容量とする。

(2) 材料

地下水ドレン集水設備は,処理対象水の性状を考慮し,適切な材料を用いた設計とする。

(3) 放射性物質の漏えい防止及び管理されない放出の防止

地下水ドレン集水設備の機器等は、液体状の放射性物質の漏えい防止及び敷地外への 管理されない放出を防止するため、次の各項を考慮した設計とする。

- a. 漏えいの発生を防止するため、機器等には適切な材料を使用するとともに、タンク水 位の検出器を設ける。
- b. 液体状の放射性物質が漏えいした場合は、漏えい液体の除去を行えるようにする。
- c. 地下水ドレンのタンク水位等の警報については、免震重要棟集中監視室等に表示し、 異常を確実に運転員に伝え適切な措置をとれるようにし、これを監視できるようにす る。

(4) 健全性に対する考慮

地下水ドレン集水設備は、機器の重要度に応じた有効な保全が可能な設計とする。

(5) 検査可能性に対する設計上の考慮

地下水ドレン集水設備は、地下水ドレンポンドで汲み上げた地下水を移送できること を確認するための検査が可能な設計とする。

2.35.1.4 供用期間中に確認する項目

- (1) サブドレン集水設備は、サブドレンピットから地下水を汲み上げ、集水タンクに移送できること。
- (2) サブドレン他浄化設備は、通水でき、放射性核種濃度を低減できること。
- (3) サブドレン他移送設備は、浄化した水を移送先まで移送できること。
- (4) 地下水ドレン集水設備は、地下水ドレンポンドから地下水を汲み上げ、集水タンクまで移送できること。

2.35.1.5 主要な機器

2.35.1.5.1 サブドレン集水設備

サブドレン集水設備は、揚水ポンプ、中継タンク、中継タンク移送ポンプ、集水タンク 及び移送配管で構成する。汲み上げた地下水は集水タンクに集水する。また、共通設備と して、運転監視を行う監視・制御装置、電源を供給する電源設備等で構成する。

サブドレン集水設備は、免震重要棟集中監視室の監視・制御装置により遠隔操作及び運転状況の監視を行う。監視・制御装置は、故障により各設備の誤動作を引き起こさない構成とする。更に、運転員の誤操作、誤判断を防止するようにし、重要な装置の緊急停止操作については、ダブルアクションを要する等の設計とする。

電源は、異なる2系統の所内高圧母線から受電できる構成とする。

また,サブドレンピット内の水位が建屋内の滞留水の水位を下回らないように管理する ため,各サブドレンピット内には水位計を設置し,サブドレンピット内の水位を監視する。

2.35.1.5.2 サブドレン他浄化設備

サブドレン他浄化設備は、集水タンク移送ポンプ、処理装置供給タンク、サブドレン他 浄化装置、サンプルタンクで構成する。サブドレン他浄化装置は、2系列で構成し、1系 列が点検等の場合においても対象水を処理できる設計とする。付帯設備として、運転監視 を行う監視・制御装置、電源を供給する電源設備及び建屋等で構成する。また、放射能濃 度が低減していることを確認するための試料採取が可能な設計とする。なお、サブドレン 他浄化装置は、必要に応じ、2系列同時運転が可能な構成とする。

サブドレン他浄化設備の主要な機器は、免震重要棟集中監視室の監視・制御装置により 遠隔操作及び運転状況の監視を行う。監視・制御装置は、故障により各設備の誤動作を引 き起こさない構成とする。更に、運転員の誤操作、誤判断を防止するようにし、重要な装 置の緊急停止操作については、ダブルアクションを要する等の設計とする。

(1) サブドレン他浄化装置

サブドレン他浄化装置は、1系列あたり、4塔の前処理フィルタ、5塔の吸着塔及び2台のポンプで構成する。

前処理フィルタは、前処理フィルタ1及び2によって浮遊物質を除去し、前処理フィルタ3、4によってそれぞれセシウム、ストロンチウムを粗取りする。吸着塔は、吸着塔1~3によってセシウム及びストロンチウムを除去し、吸着塔4、5によってそれぞれアンチモン、重金属核種(コバルト等)を除去する。また、前処理フィルタ及び吸着塔の吸着材は、除去対象核種に応じて入れ替え可能な設計とする。

前処理フィルタは,一定量処理後,水抜きを行い,交換する。使用済前処理フィルタは, 容器に収納して,固体廃棄物貯蔵庫に一時貯蔵する。吸着塔は,一定量処理後,水抜きを 行い,吸着塔ごと交換する。使用済吸着塔は,使用済セシウム吸着塔一時保管施設に一時 貯蔵する。

(2) 電源設備

電源は、異なる2系統の所内高圧母線から受電できる構成とする。なお、サブドレン 他浄化設備は、電源が喪失した場合に系統が隔離され停止するため、外部への漏えいを 発生させることはない。

(3) サブドレン他浄化装置建屋

サブドレン他浄化装置建屋は,平面が約 46m×約 32m で厚さが約 1.5m の鉄筋コンクリート造のべた基礎を有し、漏えいの拡大を防止するための堰を設置する。

2.35.1.5.3 サブドレン他移送設備

サブドレン他移送設備は、浄化水移送ポンプ、移送配管等で構成する。浄化した水はサンプルタンクに一時貯留し、水質分析後、浄化水移送ポンプにより排水する。浄化した水の再浄化を行う場合は、サブドレン他浄化設備へ移送する。

また、共通設備として、運転監視を行う監視・制御装置、電源を供給する電源設備等で構成する。サブドレン他移送設備は、免震重要棟集中監視室の監視・制御装置により遠隔操作及び運転状況の監視を行う。監視・制御装置は、故障により各設備の誤動作を引き起こさない構成とする。更に、運転員の誤操作、誤判断を防止するようにし、排水等の重要な操作については、ダブルアクションを要する等の設計とする。電源は、異なる2系統の所内高圧母線から受電できる構成とする。

2.35.1.5.4 地下水ドレン集水設備

地下水ドレン集水設備は、地下水ドレンポンド揚水ポンプ、地下水ドレン中継タンク、 地下水ドレン中継タンク移送ポンプ、地下水ドレン前処理装置及び移送配管で構成する。 地下水ドレン集水設備により汲み上げた地下水は集水タンクまたはタービン建屋へ移送する。

また、共通設備として、運転監視を行う監視・制御装置、電源を供給する電源設備等で構成する。地下水ドレン集水設備は、免震重要棟集中監視室の監視・制御装置により遠隔操作及び運転状況の監視を行う。監視・制御装置は、故障により各設備の誤動作を引き起こさない構成とする。更に、運転員の誤操作、誤判断を防止するようにし、重要な装置の緊急停止操作については、ダブルアクションを要する等の設計とする。

電源は、異なる2系統の所内高圧母線から受電できる構成とする。

また,各地下水ドレンポンド内には水位計を設置し,地下水ドレンポンド内の水位を監視する。

2.35.1.6 自然災害対策等

(1) 津波

放射性物質を蓄積するサブドレン他浄化装置は、アウターライズ津波が到達しないと考えられる 0.P.30m 以上の場所に設置する。集水タンクは、0.P.4m に設置することから、アウターライズ津波による波力がタンクに直接作用しないような高さの堰を設ける。また、大津波警報が出た際はサブドレン集水設備及び地下水ドレン集水設備を停止することで、汲み上げた水の流出防止に努める。また、サブドレン他移送設備を停止することで、排水前の水の流出防止に努める。

(2) 台風

放射性物質を蓄積するサブドレン他浄化装置は、台風による設備損傷の可能性が低い鉄 骨造の建屋内に設置する。

(3) 積雪

積雪による設備の損傷を防止するため、建屋は建築基準法施行令及び福島県建築基準法施行細則に基づく積雪荷重に対して設計する。

(4) 落雷

動的機器及び電気設備は、機器接地により落雷による損傷を防止する。

(5) 竜巻

竜巻の発生の可能性が予見される場合は、設備の停止・隔離弁の閉止作業等を行い、サブドレンピット及び地下水ドレンポンドから汲み上げた地下水の漏えい防止を図る。

(6) 火災

火災発生を防止するため、実用上可能な限り不燃性又は難燃性の材料を使用する。火災 検知のため、消防法及び関係法令に従い、建屋内には自動火災報知設備を設置する。集水 移送加圧ポンプについては、巡視点検を実施するとともに、監視カメラを設置し、免震棟 にて確認することで早期検知に努める。また、消火器を設置し、動力消防ポンプ(防火水 槽及びポンプ車)を適切に配置することにより、初期消火の対応を可能とし、消火活動の 円滑化を図る。放射性物質を吸着する前処理フィルタ及び吸着塔は鋼製容器のため、燃 焼・延焼し難く、またこれらの機器付配管は鋼製であり、燃焼しない。

なお、建屋内には建築基準法及び関係法令並びに消防法及び関係法令に基づく安全避難 通路を設定する。

2.35.1.7 構造強度及び耐震性

2.35.1.7.1 サブドレン集水設備

(1) 構造強度

中継タンクは、JIS等に準拠する。集水タンクは、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」に準拠する。配管のうち、ポリエチレン管は ISO 規格、JWWA 規格または JIS に準拠し、鋼管及び伸縮継手は、JIS に準拠する。また、JSME 規格で規定される材料の JIS 年度指定は、技術的妥当性の範囲において材料調達性の観点から考慮しない場合もある。

(2) 耐震性

サブドレン集水設備を構成する主要な機器のうち放射性物質を内包するものは、「発電用原子炉施設に関する耐震設計審査指針」に従い設計する。主要な機器の耐震性を評価するにあたっては、「JEAG4601 原子力発電所耐震設計技術指針」等に準拠する。ポリエチレン配管及び伸縮継手は、材料の可撓性により耐震性を確保する。

2.35.1.7.2 サブドレン他浄化設備

(1) 構造強度

前処理フィルタ及び吸着塔は、「ASME Boiler and Pressure Vessel Code」に準拠する。 前処理フィルタ及び吸着塔廻りの鋼管は、「ASME B31.1 Power Piping」に準拠する。そ の他の主要機器及び配管は、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」等 に準拠し、このうちポリエチレン配管は ISO 規格、JWWA 規格に準拠する。また、JSME 規 格で規定される材料の JIS 年度指定は、技術的妥当性の範囲において材料調達性の観点 から考慮しない場合もある。

(2) 耐震性

サブドレン他浄化設備を構成する主要機器のうち放射性物質を内包するものは,「発電用原子炉施設に関する耐震設計審査指針」に従い設計する。主要な機器及び鋼管の耐震性を評価するにあたっては,「JEAG4601 原子力発電所耐震設計技術指針」等に準拠する。ポリエチレン配管及び伸縮継手は,材料の可撓性により耐震性を確保する。

2.35.1.7.3 サブドレン他移送設備

(1) 構造強度

サブドレン他移送設備のポンプは JIS 規格に準拠する。その他の主要機器及び配管は「JSME S NC-1 発電用原子力設備規格 設計・建設規格」等に準拠し、このうちポリエチレン配管は ISO 規格、JWWA 規格に準拠する。JSME 規格で規定される材料の JIS 年度指定は、技術的妥当性の範囲において材料調達性の観点から考慮しない場合もある。

(2) 耐震性

サブドレン他移送設備を構成する主要機器のうち放射性物質を内包するものは,「発電用原子炉施設に関する耐震設計審査指針」に従い設計する。主要な機器及び鋼管の耐震性を評価するにあたっては,「JEAG4601 原子力発電所耐震設計技術指針」等に準拠する。ポリエチレン配管及び伸縮継手は、材料の可撓性により耐震性を確保する。

2.35.1.7.4 地下水ドレン集水設備

(1) 構造強度

地下水ドレン集水設備を構成するタンクは、JIS 等に準拠する。配管のうち、ポリエチレン管は ISO 規格、JWWA 規格、または、JIS に準拠し、鋼管は、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」等に準拠する。

(2) 耐震性

地下水ドレン集水設備を構成する主要機器のうち放射性物質を内包するものは、「発電用原子炉施設に関する耐震設計審査指針」に従い設計する。主要な機器及び鋼管の耐震性を評価するにあたっては、「JEAG4601 原子力発電所耐震設計技術指針」等に準拠する。ポリエチレン配管は、材料の可撓性により耐震性を確保する。

2.35.1.8 機器の故障への対応

2.35.1.8.1 サブドレン集水設備

(1) 機器の単一故障

サブドレン集水設備は電源について多重化しており、上流の電源系統設備の単一故障については、速やかな集水の再開が可能である。

2.35.1.8.2 サブドレン他浄化設備

(1) 機器の単一故障

サブドレン他浄化設備は、電源について多重化している。そのため、電源系統の単一故障については、電源系統の切替作業等により、速やかな処理の再開が可能である。

2.35.1.8.3 サブドレン他移送設備

(1) 機器の単一故障

サブドレン他移送設備は、動的機器及び電源について多重化している。そのため、動的機器,電源系統の単一故障については、機器の切替作業等により、速やかな処理の再開が可能である。

2.35.1.8.4 地下水ドレン集水設備

(1) 機器の単一故障

地下水ドレン集水設備は、電源について多重化しており、上流の電源系統設備の単一故障については、速やかな集水の再開が可能である。

- 2.35.2 基本仕様
- 2.35.2.1 主要仕様
- 2.35.2.1.1 サブドレン集水設備
- (1) タンク
- a. 中継タンク

		名称		中継タンク
種	Ì	類	_	角形
容	3	量	m³/個	12. 0
最	高使用	圧 力	MPa	静水頭
最	高使用	温度	${\mathbb C}$	40
主	内	寸	mm	2000×4000
要	側板	厚さ	mm	6. 0
寸	底 板	厚さ	mm	9. 0
法	高	さ	mm	1500
材	側	板	_	SS400
料	底	板	_	SS400
個		数	個	5

b. 集水タンク

	2	名 称		集水タンク
種	Ì	類	_	たて置円筒形
容	:	量	m³/個	1235
最	高使用	圧 力	MPa	静水頭
最	高使用	温度	$^{\circ}\!\mathbb{C}$	40
主	胴	为 径	m	11. 0
要	胴 板	厚さ	mm	12. 0
寸	底 板	厚さ	mm	12. 0
法	高	さ	m	13. 0
材	胴	板	_	SM400C
料	底	板	_	SM400C
個]	数	個	7

- (2) その他機器
- a. 揚水ポンプ (完成品)

台 数 42 台

容 量 30 L/min

b. 中継タンク移送ポンプ(完成品)

台 数 5台

容 量 400 L/min

c. 集水移送加圧ポンプ (完成品)

台 数 4 台

容 量 50 m³/h

(3) 配管

主要配管仕様(1/2)

名 称		仕様
サブドレンピット内	呼び径	32A 相当
(ポリエチレン管)	材質	ポリエチレン
	最高使用圧力	0.48 MPa
	最高使用温度	30 ℃
サブドレンピット出口から	呼び径	40A 相当
中継タンク入口まで	材質	ポリエチレン
(ポリエチレン管)	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃
(鋼管)	呼び径/厚さ	32A, 40A/Sch. 40, 200A/Sch. 20S
	材質	STPG370, SUS316LTP
	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃
中継タンク出口から	呼び径/厚さ	65A/Sch. 40
中継タンク移送ポンプ入口まで	材質	STPG370
(鋼管)	最高使用圧力	静水頭
	最高使用温度	40 ℃
(伸縮継手)	呼び径	65A
	材質	SUS316L
	最高使用圧力	静水頭
	最高使用温度	40 °C
中継タンク移送ポンプ出口から	呼び径	80A 相当, 100A 相当, 150A 相当,
集水タンク入口まで		200A 相当
(ポリエチレン管)	材質	ポリエチレン
	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃
(鋼管)	呼び径/厚さ	50A, 80A/Sch. 40
		200A/Sch. 40
		300A/Sch. 40
		350A/Sch. 40
	材質	STPG370
	最高使用圧力	0.98 MPa
	最高使用温度	40 °C
(鋼管)	呼び径/厚さ	200A/Sch. 40
	材質	SUS316LTP
	最高使用圧力	0.49 MPa
	最高使用温度	40 °C
(伸縮継手)	呼び径	50A
	材質	SUS316L
	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃

主要配管仕様(2/2)

名 称		仕 様
集水タンク1~3出口から	呼び径	100A 相当
集水タンク1~3出口部まで	材質	ポリエチレン
(ポリエチレン管)	最高使用圧力	静水頭
	最高使用温度	40 ℃
集水タンク1~3出口部から	呼び径	100A 相当
集水タンク出口側ヘッダーまで	材質	ポリエチレン
(ポリエチレン管)	最高使用圧力	0.98 MPa
	最高使用温度	40 °C
集水タンク4~7出口から	呼び径	100A 相当, 200A 相当
集水移送加圧ポンプ入口まで	材質	ポリエチレン
(ポリエチレン管)	最高使用圧力	0.98 MPa
		(集水タンク連結管は静水頭)
	最高使用温度	40 ℃
(鋼管)	呼び径/厚さ	80A/Sch. 40
		100A/Sch. 40
		200A/Sch. 40
	材質	STPG370
	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃
(伸縮継手)	呼び径	80A 相当,200A 相当
	材質	EPDM 合成ゴム
	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃
集水移送加圧ポンプ出口から	呼び径	100A 相当
集水タンク出口側ヘッダーまで	材質	ポリエチレン
(ポリエチレン管)	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃
(鋼管)	呼び径/厚さ	65A/Sch. 40
		100A/Sch. 40
	材質	STPG370
	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃
(伸縮継手)	呼び径	65A 相当
	材質	EPDM 合成ゴム
	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃

[※] 現場施工状況により、配管仕様(呼び径、厚さ、材質)の一部を使用しない場合がある。

2.35.2.1.2 サブドレン他浄化設備

(1) サブドレン他浄化装置の対象水の種類,処理方式,容量並びに系列数

名 称		仕様
対象水の種類	_	サブドレン
処 理 方 式	_	ろ過+吸着材方式
処 理 容 量	m ³ /h	50
系 列 数	系列	2

(2) 容器

a. 処理装置供給タンク

	名	名 称		処理装置供給タンク
種	Ì	類	_	たて置円筒形
容		量	m³/個	30
最	高使用	圧 力	MPa	静水頭
最	高使用	温 度	$^{\circ}\!\mathbb{C}$	40
主	胴	內 径	mm	3000
要	胴 板	厚さ	mm	9. 0
寸	底 板	厚さ	mm	12. 0
法	平 板	厚さ	mm	6. 0
	高	さ	mm	5006
材	胴	板	_	SUS316L/SM400C
料	底	板		SUS316L/SM400C
個		数	個	2

b. 前処理フィルタ1, 2

	名	称		前処理フィルタ1,2
種	Ì	類	_	たて置円筒形
容	3	量	m³/h/個	50
最	高使用月	E 力	MPa	1.03
最	高使用温	温 度	${\mathbb C}$	40
→	胴 内	径	mm	901. 7
主要	胴 板	厚さ	mm	6. 35
寸	上部平板厚さ		mm	63. 5
法	下部平机	反厚 さ	mm	63. 5
	高	さ	mm	2013
4-4-	胴	板	_	ASME SA 516 Gr. 70
材料	上 部	平 板	_	ASME SA 516 Gr.70
17	下 部	平 板	_	ASME SA 516 Gr.70
個		数	個	2 (1 系列あたり)

c. 前処理フィルタ3, 4

	名		前処理フィルタ3,4
種	類	_	たて置円筒形
容	量	m³/h/個	50
最	:高使用圧力	MPa	1.03
最	: 高使用温度	$^{\circ}\mathbb{C}$	40
主	胴 内 径	mm	901. 7
要	胴 板 厚 さ	mm	6. 35
寸	上部平板厚さ	mm	63. 5
法	下部平板厚さ	mm	63. 5
	高	mm	1800
+-+	胴 板	_	ASME SA 516 Gr. 70
材料	上部平板	_	ASME SA 516 Gr. 70
17	下 部 平 板		ASME SA 516 Gr. 70
個	数	個	2 (1 系列あたり)

d. 吸着塔1, 2, 3, 4, 5

	2	名 称		吸着塔1, 2, 3, 4, 5
種	Ì	類	_	たて置円筒形
容	:	量	m³/h/個	50
最	高使用	圧 力	MPa	1.55
最	高使用	温度	${\mathbb C}$	40
主	胴 厚	为 径	mm	1346. 2
要	胴 板	厚さ	mm	25. 4
寸	鏡板	厚さ	mm	25. 4
法	高	さ	mm	3119
材	胴	板	_	ASME SA 516 Gr. 70
料	鏡	板	_	ASME SA 516 Gr.70
個		数	_	5 (1 系列あたり)

e. サンプルタンク

		名 称		サンプルタンク
種	Ì	類	1	たて置円筒形
容	:	量	m³/個	1235
最	高使用	圧 力	MPa	静水頭
最	高使用	温 度	$^{\circ}\!\mathbb{C}$	40
主	胴	内 径	m	11.0
要	胴 板	厚さ	mm	12. 0
寸法	底 板	厚き	mm	12. 0
14	高	さ	m	13. 0
材	胴	板	_	SM400C
料	底	板	_	SM400C
個		数	個	11

f. RO 濃縮水処理水中継タンク (RO 濃縮水処理設備※から用途変更)

	名称		RO 濃縮水処理水中継タンク
	種類類	_	たて置円筒形
	容量	m³/個	1235
	最高使用圧力	MPa	静水頭
	最高使用温度	$^{\circ}\!\mathbb{C}$	40
主	胴 内 径	mm	11000
要	胴 板 厚 さ	mm	12. 0
寸	底板厚さ	mm	12. 0
法	高さ	mm	13000
材	胴板	_	SM400C
料	底板	_	SM400C
	個 数	個	1

※Ⅱ-2.38 RO 濃縮水処理設備 2.38.2.2 機器仕様 (1) 容器

2 台

(3) その他機器

a. 集水タンク移送ポンプ (完成品)

台 数

容 量 50 m³/h

b. 処理装置供給ポンプ (完成品)

台 数 1 台 (1系列あたり)

容 量 50 m³/h

c. 処理装置加圧ポンプ (完成品)

台 数 1 台 (1系列あたり)

容 量 50 m³/h

d. RO 濃縮水処理水移送ポンプ (完成品) (RO 濃縮水処理設備※から用途変更)

台 数 2台(1台予備)

容 量 21 m³/h

※Ⅱ-2.38 RO 濃縮水処理設備 2.38.2.2 機器仕様 (2) ポンプ

(4) 配管

主要配管仕様(1/3)

名称		仕 様
集水タンク出口側ヘッダーから	呼び径	100A 相当,150A 相当
処理装置供給タンク入口まで	材質	ポリエチレン
(ポリエチレン管)	最高使用圧力	静水頭(集水タンク移送ポンプ
		下流は 0.98 MPa)
	最高使用温度	40 ℃
(鋼管)	呼び径/厚さ	50A/Sch. 80
		100A, 150A/Sch. 40
	材質	STPT410
	最高使用圧力	静水頭(集水タンク移送ポンプ
		下流は 0.98 MPa)
	最高使用温度	40 ℃
処理装置供給タンク出口から	呼び径	100A 相当
処理装置供給ポンプ入口まで	材質	ポリエチレン
(ポリエチレン管)	最高使用圧力	静水頭
	最高使用温度	40 ℃
(鋼管)	呼び径/厚さ	100A/Sch. 40
	材質	STPT410
	最高使用圧力	静水頭
	最高使用温度	40 °C
(鋼管)	呼び径/厚さ	80A/Sch. 40, 100A/Sch. 10
	材質	UNS S32750 (ASME SA 790)
	最高使用圧力	静水頭
	最高使用温度	40 °C
処理装置供給ポンプ出口から	呼び径/厚さ	50A/Sch. 40
処理装置加圧ポンプ入口まで		80A/Sch. 10, Sch. 40
(鋼管)	材質	UNS S32750 (ASME SA 790)
	最高使用圧力	1.03 MPa
(New Arter)	最高使用温度	40 °C
(鋼管)	呼び径/厚さ	80A/Sch. 40
	材質	STPT410
	最高使用圧力	1.03 MPa
	最高使用温度	40 ℃

主要配管仕様(2/3)

名 称	仕 様		
処理装置加圧ポンプ出口から	呼び径/厚さ	50A/Sch. 40	
サブドレン他浄化装置出口		80A/Sch. 10	
(吸着塔5下流)まで	材質	UNS S32750 (ASME SA 790)	
(鋼管)	最高使用圧力	1.55 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	80A/Sch. 40	
	材質	STPT410	
	最高使用圧力	1.55 MPa	
	最高使用温度	40 ℃	
(伸縮継手)	呼び径	80A 相当	
	材質	UNS N04400 (ASME SB 127 / ASTM	
		B 127) , 合成ゴム	
	最高使用圧力	1.55 MPa	
	最高使用温度	40 ℃	
サブドレン他浄化装置出口	呼び径	100A 相当	
(吸着塔5下流)から	材質	ポリエチレン	
サンプルタンクまで	最高使用圧力	0.98 MPa	
(ポリエチレン管)	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	80A, 100A/Sch. 10	
	材質	UNS S32750 (ASME SA 790)	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	80A, 100A/Sch. 40	
	材質	STPT410	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	100A/Sch. 40	
	材質	STPG370	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
処理装置供給タンク入口側	呼び径	100A 相当	
配管分岐部から	材質	ポリエチレン	
RO濃縮水処理水中継タンク	最高使用圧力	0.98 MPa	
入口まで	最高使用温度	40 ℃	
(ポリエチレン管)			

主要配管仕様(3/3)

名 称	仕 様		
吸着塔5下流から	呼び径/厚さ	100A 相当	
RO 濃縮水処理水中継タンク入口まで*	材質	ポリエチレン	
(ポリエチレン管)	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
RO 濃縮水処理水中継タンク出口から	呼び径	100A 相当	
RO 濃縮水処理水移送ポンプ入口まで*	材質	ポリエチレン	
(ポリエチレン管)	最高使用圧力	静水頭	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	100A/Sch. 40	
	材質	STPT410	
	最高使用圧力	静水頭	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	200A/Sch. 40	
		100A/Sch. 40	
	材質	STPG370	
	最高使用圧力	静水頭	
	最高使用温度	40 ℃	
(伸縮継手)	呼び径/厚さ	200A 相当	
	材質	合成ゴム	
	最高使用圧力	静水頭	
	最高使用温度	40 ℃	
RO 濃縮水処理水移送ポンプ出口より	呼び径/厚さ	100A 相当	
RO濃縮水貯槽又はSr処理水貯槽まで*	材質	ポリエチレン管	
(ポリエチレン管)	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	100A/Sch. 40	
		50A/Sch. 80	
	材質	STPT410	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	

[※] 現場施工状況により、配管仕様(呼び径、厚さ、材質)の一部を使用しない場合がある。

^{*} RO 濃縮水処理設備から用途変更(Ⅱ-2.38 RO 濃縮水処理設備 2.38.2.2 機器仕様 (3)配管)

- 2.35.2.1.3 サブドレン他移送設備
 - (1) その他機器
 - a. 浄化水移送ポンプ(完成品)

台 数 2 台

容 量 50 m³/h 以上 (1 台あたり)

b. 攪拌ポンプ(完成品)

台 数 2 台

容量

330 m³/h 以上(1台あたり)

(2) 配管

主要配管仕様(1/3)

名 称	仕 様		
サンプルタンク出口から	呼び径	150A 相当	
浄化水移送ポンプ入口まで		200A 相当	
(ポリエチレン管)	材質	ポリエチレン	
	最高使用圧力	静水頭	
	最高使用温度	40 °C	
(伸縮継手)	呼び径	150A 相当, 200A 相当	
	材質	EPDM 合成ゴム	
	最高使用圧力	静水頭	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	200A/Sch. 40	
		150A/Sch. 40	
	材質	STPG370	
	最高使用圧力	静水頭	
	最高使用温度	40 ℃	
浄化水移送ポンプ出口から	呼び径	150A 相当	
排水箇所まで	材質	ポリエチレン	
(ポリエチレン管)	最高使用圧力	0.98 MPa	
	最高使用温度	40 °C	
(伸縮継手)	呼び径	100A 相当	
	材質	EPDM 合成ゴム	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 °C	
(鋼管)	呼び径/厚さ	100A/Sch. 40	
		150A/Sch. 40	
	材質	STPG370	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 °C	
(鋼管)	呼び径/厚さ	150A/Sch. 40	
	材質	SUS316LTP	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	

主要配管仕様(2/3)

名 称	仕 様		
サンプルタンク出口から	呼び径	200A 相当, 250A 相当	
攪拌ポンプ入口まで	材質	ポリエチレン	
(ポリエチレン管)	最高使用圧力	静水頭	
	最高使用温度	40 ℃	
(伸縮継手)	呼び径	200A 相当	
	材質	EPDM 合成ゴム	
	最高使用圧力	静水頭	
	最高使用温度	40 °C	
(鋼管)	呼び径/厚さ	200A/Sch. 40	
		250A/Sch. 40	
	材質	STPG370	
	最高使用圧力	静水頭	
	最高使用温度	40 ℃	
攪拌ポンプ出口から	呼び径	200A 相当, 250A 相当	
サンプルタンク攪拌水受入口まで	材質	ポリエチレン	
(ポリエチレン管)	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(伸縮継手)	呼び径	200A 相当	
	材質	EPDM 合成ゴム	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 °C	
(鋼管)	呼び径/厚さ	200A/Sch. 40	
		250A/Sch. 40	
	材質	STPG370	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	200A/Sch. 40	
	材質	SUS316LTP	
	最高使用圧力	0.49 MPa	
	最高使用温度	40 ℃	

主要配管仕様(3/3)

名 称	仕様		
攪拌ポンプ出口からサブドレン他浄化	呼び径	100A 相当	
設備(処理装置供給タンク)まで	材質	ポリエチレン	
(ポリエチレン管)	最高使用圧力	0.98 MPa	
	最高使用温度	40 °C	
(伸縮継手)	呼び径	200A 相当	
	材質	EPDM 合成ゴム	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	100A/Sch. 40	
		200A/Sch. 40	
	材質	STPG370	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	100A/Sch. 40	
	材質	STPT410	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	

[※] 現場施工状況により、配管仕様(呼び径、厚さ、材質)の一部を使用しない場合がある。

2.35.2.1.4 地下水ドレン集水設備

- (1) タンク
- a. 地下水ドレン中継タンク

		名	称		地下水ドレン中継タンク
種	Ì	ž	領	_	角形
容	:]	量	m³/個	12. 0
最	高使	用圧	カ	MPa	静水頭
最	高使	用温』	变	${\mathbb C}$	40
主	内		寸	mm	2000×4000
要	側	板厚	さ	mm	6. 0
寸	底	板厚	さ	mm	9. 0
法	高		さ	mm	1500
材	側		板	_	SS400
料	底		板	_	SS400
個		数	(個	3

- (2) その他機器
- a. 地下水ドレンポンド揚水ポンプ (完成品)

台 数 5台

容 量 120 L/min

b. 地下水ドレン中継タンク移送ポンプ(完成品)

台 数 3台

容 量 400 L/min

c. 地下水ドレン前処理装置(完成品)

台 数 1台

容 量 20m³/h

材 料 FRP (RO ベッセル)

SUS304 (脱塩器)

(3) 配管

主要配管仕様(1/3)

名 称	仕様		
地下水ドレンポンド内	呼び径	50A 相当	
(ポリエチレン管)	材質	ポリエチレン	
	最高使用圧力	0.49 MPa	
	最高使用温度	40 ℃	
地下水ドレンポンド出口から	呼び径	50A 相当	
地下水ドレン中継タンク入口まで	材質	ポリエチレン	
(ポリエチレン管)	最高使用圧力	0.49 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	50A/Sch. 40	
	材質	SUS316LTP	
	最高使用圧力	0.49 MPa	
	最高使用温度	40 ℃	
地下水ドレン中継タンク出口から	呼び径	80A 相当,150A 相当	
集水タンク入口まで	材質	ポリエチレン	
(ポリエチレン管)	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	80A, 150A, 200A/Sch. 40	
	材質	SUS316LTP	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	150A/Sch. 40	
	材質	STPG370	
	最高使用圧力	0.98 MPa	
	最高使用温度	40 ℃	
(鋼管)	呼び径/厚さ	150A/Sch. 40	
		200A/Sch. 40	
	材質	SUS316LTP	
	最高使用圧力	0.49 MPa	
	最高使用温度	40 ℃	

[※] 現場施工状況により、配管仕様(呼び径、厚さ、材質)の一部を使用しない場合がある。

主要配管仕様(2/3)

名 称		仕 様
地下水ドレン中継タンク出口移送配管	呼び径	80A 相当
分岐部から	材質	ポリエチレン
地下水ドレン前処理装置入口まで	最高使用圧力	0.98 MPa
(ポリエチレン管)	最高使用温度	40 ℃
地下水ドレン前処理装置入口から	呼び径/厚さ	50A/Sch. 20S
地下水ドレン前処理装置出口まで		65A/Sch. 20S
(鋼管)		80A/Sch. 20S
	材質	SUS316LTP
	最高使用圧力	0.5 MPa
	最高使用温度	40 ℃
(鋼管)	呼び径/厚さ	50A/Sch. 80
		65A/Sch. 20S, Sch. 80
	材質	SUS316LTP
	最高使用圧力	1.5 MPa
	最高使用温度	40 ℃
(鋼管)	呼び径/厚さ	40A/Sch. 80
		50A/Sch. 20S, Sch. 40, Sch. 80
		80A/Sch. 20S
	材質	SUS304TP
	最高使用圧力	0.5 MPa
	最高使用温度	40 ℃
(鋼管)	呼び径/厚さ	65A/Sch. 20S
		80A/Sch. 20S
	材質	SUS316LTP
	最高使用圧力	0.98 MPa
	最高使用温度	40 ℃
(耐圧ホース)	呼び径	50A 相当
	材質	合成ゴム
	最高使用圧力	0.5 MPa
	最高使用温度	40 °C

[※] 現場施工状況により、配管仕様(呼び径、厚さ、材質)の一部を使用しない場合がある。

主要配管仕様(3/3)

名 称		仕 様
地下水ドレン前処理装置出口(処理水)	呼び径	80A 相当
から	材質	ポリエチレン
集水タンク入口配管分岐部または地下	最高使用圧力	0.50 MPa
水ドレン中継タンク入口まで	最高使用温度	40 ℃
(ポリエチレン管)		
地下水ドレン前処理装置出口(濃縮水)	呼び径	80A 相当, 100A 相当
から	材質	ポリエチレン
タービン建屋または地下水ドレン中継	最高使用圧力	0.50 MPa, 大気圧
タンク入口まで	最高使用温度	40 ℃
(ポリエチレン管)		
地下水ドレン中継タンク出口配管分岐	呼び径	50A 相当, 80A 相当
部から	材質	ポリエチレン
地下水ドレン中継タンク入口まで	最高使用圧力	0.98 MPa
(ポリエチレン管)	最高使用温度	40 ℃

[※] 現場施工状況により、配管仕様(呼び径、厚さ、材質)の一部を使用しない場合がある。

2.35.3 添付資料

添付資料-1 : 全体概要図及び系統構成図

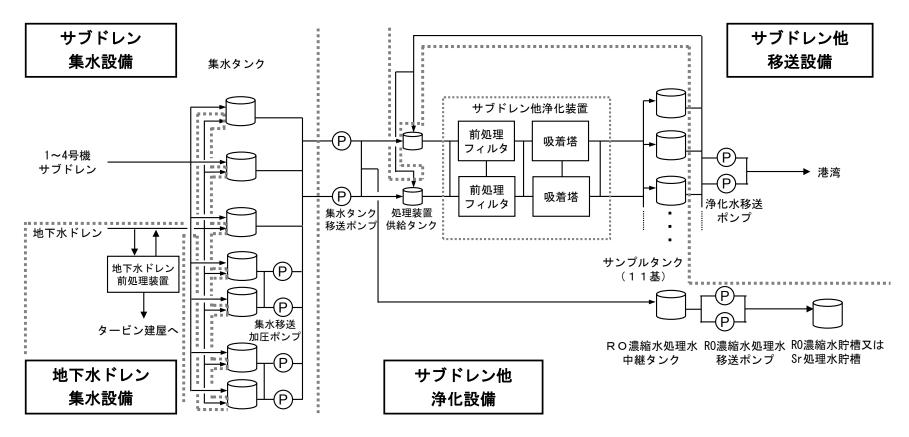
添付資料-2 : 機器配置図

添付資料-3 : サブドレン他水処理施設の耐震性に関する説明書

添付資料-4 : サブドレン集水設備の強度に関する説明書

添付資料-5 : サブドレン他浄化設備の強度に関する説明書 添付資料-6 : サブドレン他移送設備の強度に関する説明書 添付資料-7 : 地下水ドレン集水設備の強度に関する説明書

添付資料-8 : サブドレン他浄化装置建屋基礎の構造強度に関する検討結果 添付資料-9 : 流体状の放射性廃棄物の施設外への防止能力についての計算書


添付資料-10 : 工事工程表

添付資料-11 : サブドレン他水処理施設の具体的な安全確保策

添付資料-12 : サブドレン他水処理施設に係る確認事項

添付資料-13 : 地下水ドレン前処理装置について

全体概要図及び系統構成図

(a) 系統概要

図-1 サブドレン他水処理施設の全体概要図 (1/2)

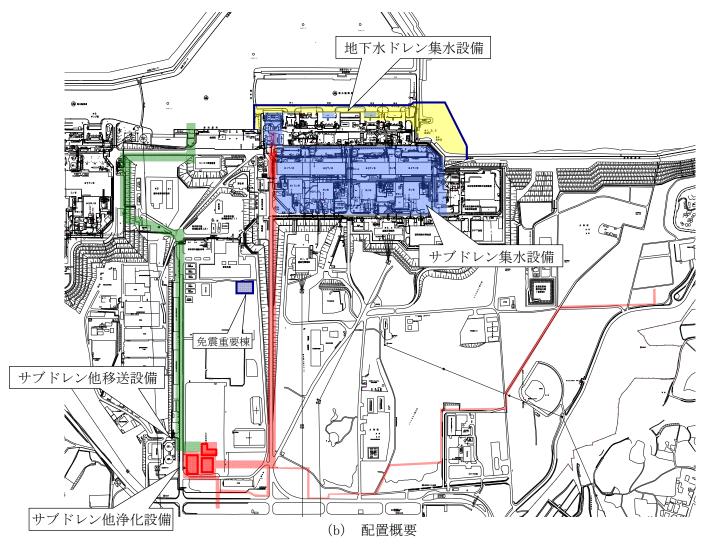
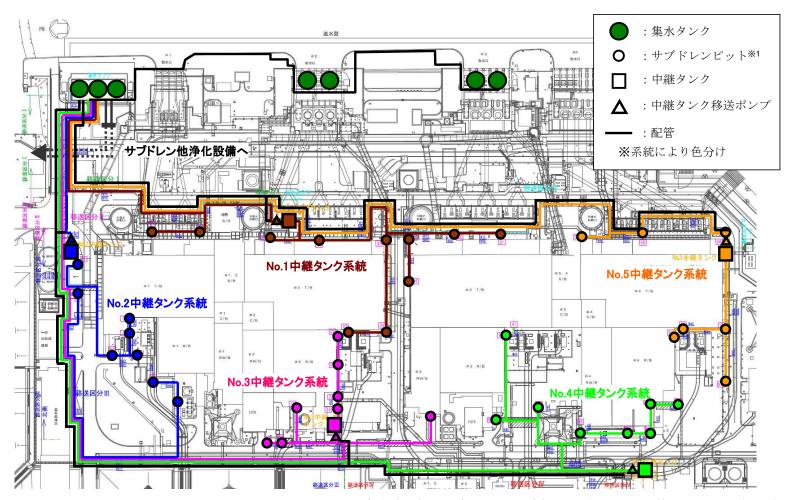



図-1 サブドレン他水処理施設の全体概要図(2/2)

※1 揚水ポンプは、サブドレンピット内部に設置されている。(各ピットに1台ずつ、計42台)

図-2 サブドレン集水設備系統図

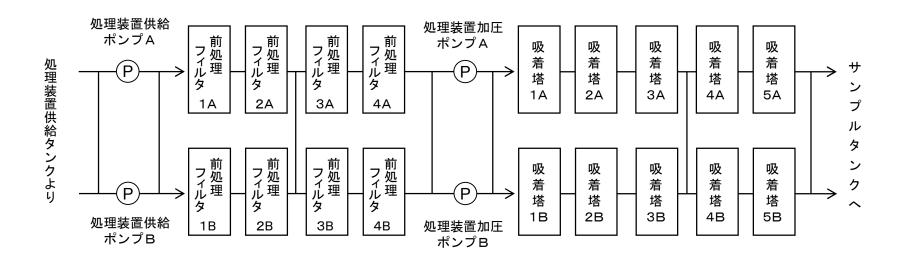


図-3 サブドレン他浄化装置系統構成図

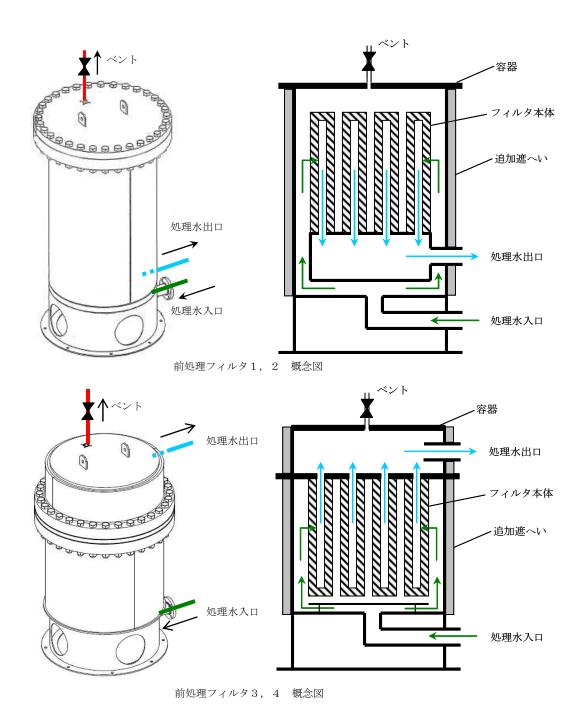
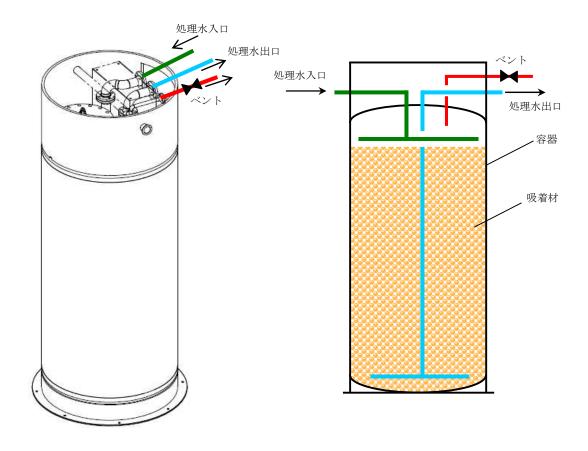
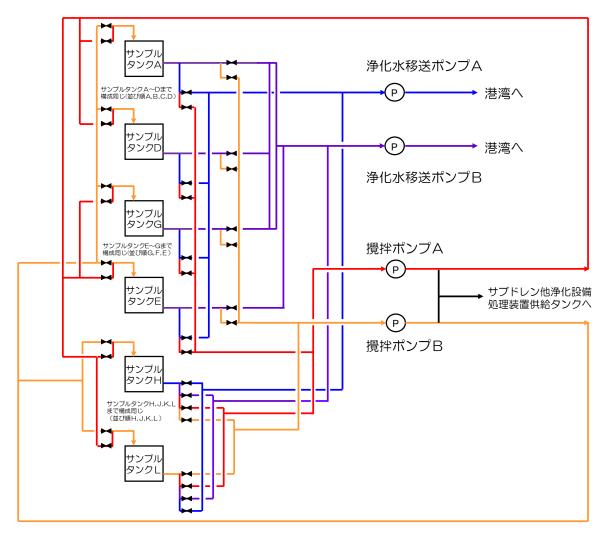
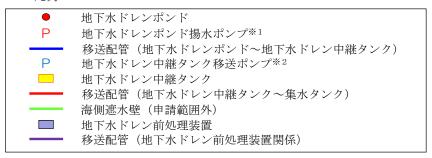
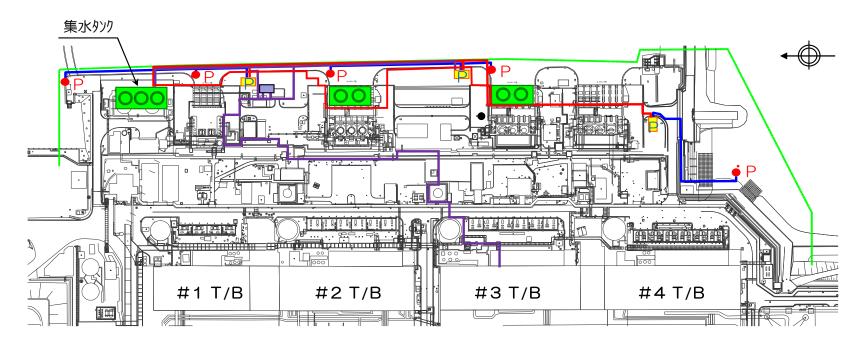


図-4 サブドレン他浄化装置 前処理フィルタの概念図

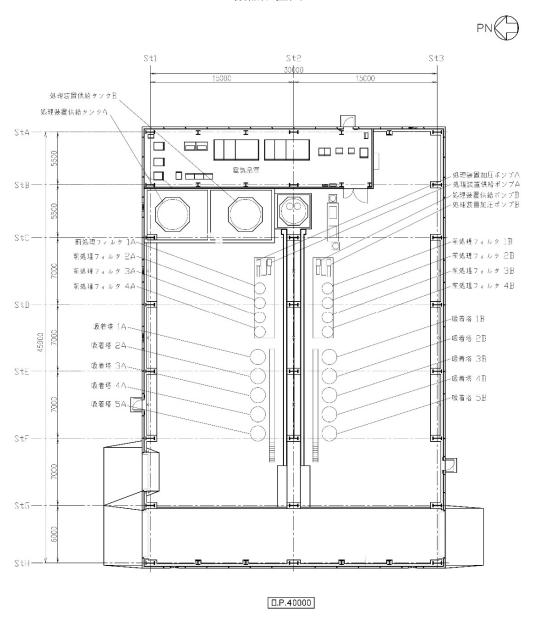




図-5 サブドレン他浄化装置 吸着塔の概念図



※サンプルタンクはサブドレン他浄化設備に含まれる

図-6 サブドレン他移送設備系統図


凡例

- ※1 地下水ドレンポンド揚水ポンプは、地下水ドレンポンド内に設置されている。(各ポンドに1台ずつ、計5台)
- ※2 地下水ドレン中継タンク移送ポンプは、地下水ドレン中継タンク内に設置されている。(各タンクに1台ずつ、計3台) 図-7 地下水ドレン集水設備系統図

機器配置図

(a) 平面図

図-1 サブドレン他浄化装置建屋内機器配置図(1/2)

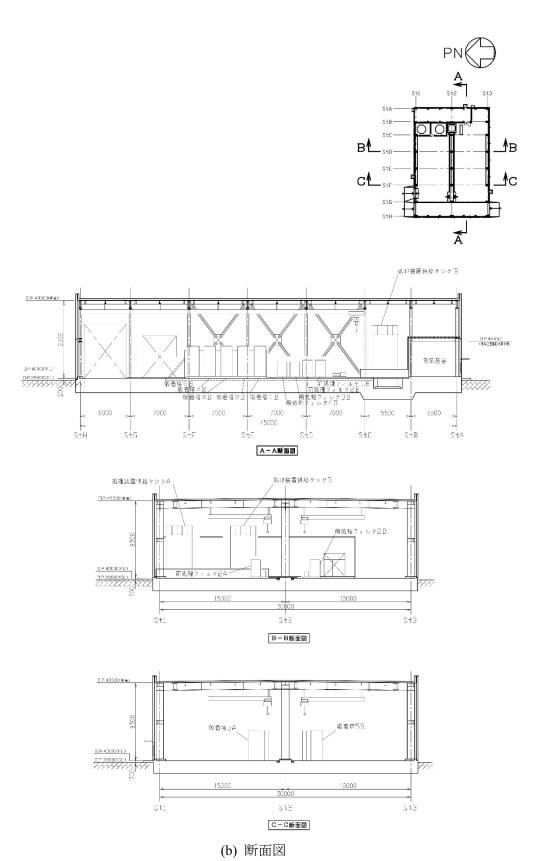


図-1 サブドレン他浄化装置建屋内機器配置図 (2/2)

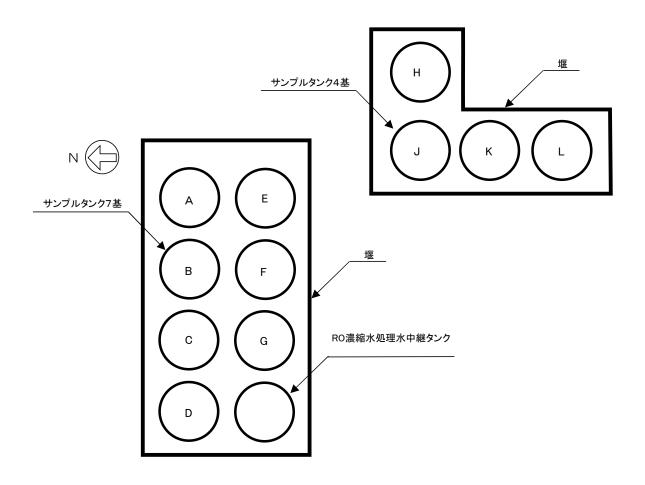


図-2 サンプルタンク設置エリアの機器配置図

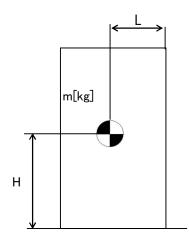
サブドレン他水処理施設の耐震性に関する説明書

1. 耐震設計の基本方針

サブドレン他水処理施設のうち放射性物質を内包するものは、「発電用原子炉施設に関する耐震設計審査指針」の B クラスに相当する設備と位置付ける。主要な機器の耐震性を評価するにあたっては、「JEAG4601 原子力発電所耐震設計技術指針」等に準拠する。

鋼管については、Bクラス相当の定ピッチスパン法で評価されるサポート間隔とする。ポリエチレン配管及び伸縮継手は、材料の可撓性により耐震性を確保する。

ただし、サブドレン他移送設備の浄化水移送ポンプは、水質分析を行い排水出来ることを確認した水のみを通水することから、「発電用原子炉施設に関する耐震設計審査指針」のCクラスに相当する設備と位置付ける。また、水質分析を行い排水出来ることを確認した水のみが通水される配管についてもCクラスに相当する設備と位置付ける。


なお、サブドレン他浄化装置建屋基礎は、「添付資料-8 サブドレン他浄化装置建屋基礎の構造強度に関する検討結果」において耐震性の評価を行っている。サブドレン他浄化装置建屋上屋は設備を支持しておらず、間接支持構造物及び相互影響を考慮すべき設備には該当しない。

2. 耐震性評価

2.1 タンク、ポンプ、地下水ドレン前処理装置の耐震性評価

(1) 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を実施した。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さいことから、転倒しないことを確認した(表-1)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²)

H: 据付面からの重心までの距離

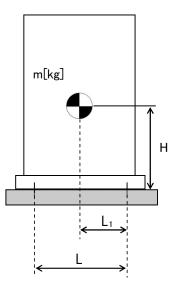
L: 転倒支点から重心までの距離

C_H: 水平方向設計震度 (0.36)

各記号の下付文字は、下記を意味する。

1:胴部,2:天板

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H$


 $= g \times C_H \times (m_1 \times H_1 + m_2 \times H_2)$

自重による安定モーメント: $M_2[N \cdot m] = m \times g \times L$

(2) 基礎ボルトの強度評価

原子力発電所耐震設計技術指針の評価方法に準拠して評価を実施した。評価の結果, 基礎ボルトの強度が確保されることを確認した(表-1)。

a. タンク, 地下水ドレン前処理装置

m : 機器質量

g : 重力加速度 (9.80665 m/s²) H : 据付面からの重心までの距離

L : 基礎ボルト間の水平方向距離

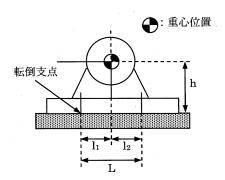
L₁: 重心と基礎ボルト間の水平方向距離

n_f: 引張力の作用する基礎ボルトの評価本数

n : 基礎ボルトの本数

Ab: 基礎ボルトの軸断面積

C_H: 水平方向設計震度 (0.36)


C_v : 鉛直方向設計震度 (0)

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \Big(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \Big)$

基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$

基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

b. ポンプ

m: 機器の運転時質量

g: 重力加速度 (9.80665 m/s²)

h: 据付面から重心までの距離

M_P: ポンプ回転により働くモーメント (0)

※ 基礎ボルトに My は作用しない

L: 基礎ボルト間の水平方向距離

11: 重心と基礎ボルト間の水平方向距離 (11≤12)

nf: 引張力の作用する基礎ボルトの評価本数

n: 基礎ボルトの本数

Ab: 基礎ボルトの軸断面積

C_H: 水平方向設計震度 (0.36 または 0.24)

C_v: 鉛直方向設計震度 (0) C_p: ポンプ振動による震度

ボルトに作用する引張力: $F_b = \frac{1}{L} \{ mg(C_H + C_p)h + M_P - mg(1 - C_V - C_p)l_1 \}$

ボルトの引張応力: σ_b = $\frac{F_b}{n_f A_b}$

ボルトに作用するせん断力: $Q_b = mg(C_H + C_p)$

ボルトのせん断応力: $\tau_b = \frac{Q_b}{nA_b}$

表-1 タンク、ポンプ、地下水ドレン前処理装置の耐震評価結果

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
集水タンク	本体	転倒	0.36	3.0×10^4	7. 0×10^4	kN•m
サンプルタンク	本体	転倒	0.36	3.0×10^4	7. 0×10^4	kN•m
中継タンク	基礎	引張	0.36	< 0	102	MPa
11. 收收 2 2 2	ボルト	せん断	0.36	39	72	MPa
処理装置供給 タンク	基礎	引張	0. 36	< 0	176	MPa
(SUS316L)	ボルト	せん断	0.36	16	135	MPa
処理装置供給 タンク	基礎	引張	0. 36	< 0	176	MPa
(SM400C)	ボルト	せん断	0.36	16	135	MPa
地下水ドレン	基礎	引張	0.36	< 0	102	MPa
中継タンク	ボルト	せん断	0.36	39	72	MPa
中継タンク移送	基礎	引張	0.36	1	176	MPa
ポンプ	ボルト	せん断	0.36	5	101	MPa
集水タンク移送	基礎	引張	0.36	1	188	MPa
ポンプ	ボルト	せん断	0.36	5	223	MPa
処理装置供給	基礎	引張	0.36	1	452	MPa
ポンプ	ボルト	せん断	0.36	3	348	MPa
処理装置加圧	基礎	引張	0.36	1	452	MPa
ポンプ	ボルト	せん断	0.36	3	348	MPa
浄化水移送	基礎	引張	0.24	< 0	176	MPa
ポンプ	ボルト	せん断	0. 24	3	135	MPa
+晩 4小ユ2 、一。	基礎	引張	0.36	< 0	176	MPa
攪拌ポンプ	ボルト	せん断	0.36	5	135	MPa
RO 濃縮水処理水 中継タンク	本体	転倒	0.36	3. 1×10^4	7. 1×10^4	kN•m
RO 濃縮水処理水	基礎	引張	0.36	< 0	183	MPa
移送ポンプ	ボルト	せん断	0. 36	4	141	MPa
地下水ドレン	基礎	引張	0.36	< 0	176	MPa
前処理装置	ボルト	せん断	0. 36	33	135	MPa
集水移送加圧	基礎	引張	0. 36	< 0	183	MPa
ポンプ	ボルト	せん断	0.36	2	141	MPa

(3) 応力評価及び座屈評価

サブドレン他水処理施設を構成する機器のうち、集水タンク、サンプルタンク、RO 濃縮水処理水中継タンクについて、『JEAC4601-2008 原子力発電所耐震設計技術規程』に基づき、タンク胴板の応力評価及び座屈評価により、発生する応力が許容値を超えないことを確認する。

1. 評価

1.1. 胴の応力評価

イ. 組合せ応力が胴の最高使用温度における許容応力Sa以下であること。

応力の種類	許容応力 Sa
一次一般膜応力	設計降伏点Syと設計引張強さSuの0.6倍のいずれか小さい方の値。

- 一次応力の評価は算出応力が一次一般膜応力と同じ値であるので省略する。 応力計算において,静的地震力を用いる場合は,絶対値和を用いる。
- (1) 静水頭及び鉛直方向地震による応力

$$\sigma_{\phi_{1}} = \frac{\rho' \cdot g \cdot H \cdot D i}{2 \cdot t}$$

$$\sigma_{\phi_{2}} = \frac{\rho' \cdot g \cdot H \cdot D i \cdot C v}{2 \cdot t}$$

 $\sigma_{x_1} = 0$

(2) 運転時質量及び鉛直方向地震による応力

胴がベースプレートと接合する点には、胴自身の質量による圧縮応力と鉛直 方向地震による軸方向応力が生じる。

$$\sigma_{x2} = \frac{m \cdot g}{\pi \cdot (D_i + t) \cdot t}$$

$$\sigma_{x3} = \frac{m \cdot g \cdot C_v}{\pi \cdot (D_i + t) \cdot t}$$

(3) 水平方向地震による応力

水平方向の地震力により胴はベースプレート接合部で最大となる曲げモーメントを受ける。この曲げモーメントによる軸方向応力と地震力によるせん断応力は次のように求める。

$$\sigma \times 4 = \frac{4 \cdot C \cdot H \cdot m_0 \cdot g \cdot \ell_g}{\pi \cdot (D_i + t)^2 \cdot t}$$

$$\tau = \frac{2 \cdot C \cdot H \cdot m_0 \cdot g}{\pi \cdot (D_i + t) \cdot t}$$

(4) 組合せ応力

(1) \sim (3) によって求めた胴の応力は以下のように組み合わせる。

a. 一次一般膜応力

(a) 組合せ引張応力

$$\sigma \phi = \sigma \phi_1 + \sigma \phi_2$$

$$\sigma \circ t = \frac{1}{2} \cdot \left\{ \sigma \phi + \sigma x t + \sqrt{(\sigma \phi - \sigma x t)^2 + 4 \cdot \tau^2} \right\}$$

 $\sigma x t = \sigma x_1 - \sigma x_2 + \sigma x_3 + \sigma x_4$

(b) 組合せ圧縮応力

σxcが正の値(圧縮側)のとき,次の組合せ圧縮応力を求める。

$$\sigma \phi = -\sigma \phi_1 - \sigma \phi_2$$

$$\sigma \circ c = \frac{1}{2} \cdot \left\{ \sigma \phi + \sigma x c + \sqrt{(\sigma \phi - \sigma x c)^2 + 4 \cdot \tau^2} \right\}$$

$$\sigma x c = -\sigma x_1 + \sigma x_2 + \sigma x_3 + \sigma x_4$$

したがって、胴の組合せ一次一般膜応力の最大値は、

 $\sigma_0=Max$ $\left\{$ 組合せ引張応力(σ_0t),組合せ圧縮応力(σ_0c) $\right\}$ とする。一次応力は一次一般膜応力と同じになるので省略する。

表-2 タンク応力評価結果

機器名称	部材	材料	水平方向 設計震度	応力	算出応力 [MPa]	許容応力 [MPa]
集水タンク	胴板	SM400C	0.36	一次一般膜	70	240
サンプルタンク	胴板	SM400C	0.36	一次一般膜	70	240
RO 濃縮水処理水 中継タンク	胴板	SM400C	0. 36	一次一般膜	70	240

ロ. 圧縮膜応力(圧縮応力と曲げによる圧縮側応力の組合せ)は次式を満足すること。 (座屈の評価)

$$\frac{\eta \cdot (\sigma \times z + \sigma \times s)}{f_c} + \frac{\eta \cdot \sigma \times s}{f_b} \leq 1$$
ここで、 f_c は次による。
$$\frac{D_i + 2 \cdot t}{2 \cdot t} \leq \frac{1200 \cdot g}{F} \quad \mathcal{O} \, \dot{\mathcal{E}} \,$$

ηは安全率で次による。

$$\begin{split} &\frac{\mathrm{D}\,\,\mathrm{i}\,+2\,\cdot\,\,\mathrm{t}}{2\,\cdot\,\,\mathrm{t}} \leq \frac{1200\,\cdot\,\mathrm{g}}{\mathrm{F}} \quad \mathcal{O}\,\,\boldsymbol{\xi}\,\,\boldsymbol{\xi} \\ &\eta = &1 \\ &\frac{1200\,\cdot\,\mathrm{g}}{\mathrm{F}} < \frac{\mathrm{D}\,\,\mathrm{i}\,+2\,\cdot\,\,\mathrm{t}}{2\,\cdot\,\,\mathrm{t}} < \frac{8000\,\cdot\,\mathrm{g}}{\mathrm{F}} \quad \mathcal{O}\,\,\boldsymbol{\xi}\,\,\boldsymbol{\xi} \\ &\eta = &1 + \frac{0.\,5\,\cdot\,\mathrm{F}}{6800\,\cdot\,\mathrm{g}}\,\cdot\left(\frac{\mathrm{D}\,\,\mathrm{i}\,+2\,\cdot\,\,\mathrm{t}}{2\,\cdot\,\,\mathrm{t}} - \frac{1200\,\cdot\,\mathrm{g}}{\mathrm{F}}\right) \\ &\frac{8000\,\cdot\,\mathrm{g}}{\mathrm{F}} \leq \frac{\mathrm{D}\,\,\mathrm{i}\,+2\,\cdot\,\,\mathrm{t}}{2\,\cdot\,\,\mathrm{t}} \quad \mathcal{O}\,\,\boldsymbol{\xi}\,\,\boldsymbol{\xi} \end{split}$$

$$\eta = 1.5$$

表-3 タンク座屈評価

機器名称	部材	材料	水平方向 設計震度	座屈評価結果
集水タンク	胴板	SM400C	0.36	0.35 < 1
サンプルタンク	胴板	SM400C	0.36	0.35 < 1
RO 濃縮水処理水 中継タンク	胴板	SM400C	0.36	0.35 < 1

記号の説明

記号	記 号 の 説 明	単 位
Сн	水平方向設計震度(=0.36)	_
C_{v}	鉛直方向設計震度(=0)	_
$D_{\rm \ i}$	胴の内径	mm
E	胴の縦弾性係数	MPa
F	設計・建設規格 SSB-3121.1又はSSB-3131に定める値	MPa
f b	曲げモーメントに対する許容座屈応力	MPa
$f_{ m c}$	軸圧縮荷重に対する許容座屈応力	MPa
g	重力加速度(=9.80665)	m/s^2
Н	水頭	mm
ℓ_{g}	基礎から容器重心までの距離	mm
$m_{{}_{\scriptscriptstyle{0}}}$	容器の運転時質量	kg
m e	容器の空質量	kg
S a	胴の許容応力	MPa
S u	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa
t	胴板の厚さ	mm
η	座屈応力に対する安全率	_
π	円周率	_
ρ '	液体の密度(=比重×10 ⁻⁶)	kg/mm³
σ ο	胴の一次一般膜応力の最大値	MPa
о ос	胴の組合せ圧縮応力	MPa
σ o t	胴の組合せ引張応力	MPa
σ χ 1, σ φ 1	静水頭により胴に生じる軸方向及び周方向応力	MPa
σ х 2	胴の空質量による軸方向圧縮応力	MPa
о х з	胴の鉛直方向地震による軸方向応力	MPa
О х 4	胴の水平方向地震による軸方向応力	MPa
σ х с	胴の軸方向応力の和(圧縮側)	MPa
σ x t	胴の軸方向応力の和(引張側)	MPa
σ φ	胴の周方向応力の和	MPa
σ φ 2	静水頭に鉛直方向地震が加わり胴に生じる周方向応力	MPa
τ	地震により胴に生じるせん断応力	MPa
$\phi_1(x)$	圧縮荷重に対する許容座屈応力の関数	MPa
$\phi_{2}(x)$	曲げモーメントに対する許容座屈応力の関数	MPa

2. 2 前処理フィルタ,吸着塔の耐震性評価

本評価は、「付録1 スカート支持たて置円筒形容器(耐震設計上の重要度分類Bクラス)の耐震性についての計算書作成の基本方針」(以下、「基本方針」という。)に基づいて、耐震性の計算を行う。

(1) 構造計画

1	搬番	・前処理フィルタ	• 吸 着 格	
	枕略構造 図		スカート 開口部 ベースプレート 基礎ボルト*	* 機器が架台に据え付けられる構造の場合は取付ボルトと称する。
概要	主体構造	上面及び下面に平板を有するたて置円筒形	上面及び下面に鏡板を有するたて置円筒形	
計画の概要	基礎・支持構造	胴をスカートで支持し、スカートをボル・スカートをボルトで基礎に据え付ける		
くと選手	上安內刀	(1) スカート支持 たて置円筒形 容器		

(2) 設計用地震力

耐震	適用する	る地震動	設計用地震力	摘要
クラス	水平	鉛直		[
В	静的震度	_	静的震度	・前処理フィルタ
	(1.8 · C _i *1)			·吸着塔

*1: Ciは、標準せん断力係数を 0.2 とし、建物・構築物の振動特性、地盤の種類等を 考慮して求められる値とする。

(3) 荷重の組合せと許容限界

荷重の組合せと許容限界は,原子力発電所耐震設計技術指針(重要度分類・許容応力編 JEAG4601・補-1984, JEAG4601-1987及びJEAG4601-1991追補版)(日本電気協会 電気技術基準調査委員会 昭和59年9月,昭和62年8月及び平成3年6月) (以下「JEAG4601」という。)および発電用原子力設備規格(設計・建設規格JSME S NC-1-2005 (2007年追補版含む。)) (日本機械学会 2005年9月,2007年9月) (以下「設計・建設規格」という。)に準拠する。

記号の説明

D : 死荷重

P d : 当該設備に設計上定められた最高使用圧力による荷重

M。 : 当該設備に設計上定められた機械的荷重

SB : Bクラスの設備に適用される地震動より求まる地震力又はBクラス設備に

適用される静的地震力

BAS : Bクラス設備の地震時許容応力状態

Sy設計降伏点Su: 設計引張強さS: 許容引張応力

f + : 許容引張応力 支持構造物 (ボルト等を除く。) に対して設計・建設規格

SSB-3121.1 により規定される値。ボルト等に対して設計・

建設規格 SSB-3131 により規定される値。

f。 : 許容せん断応力 同 上

f。 : 許容圧縮応力 支持構造物 (ボルト等を除く。) に対して設計・建設規格

SSB-3121.1 により規定される値。

f b : 許容曲げ応力 同 上

τ b : ボルトに生じるせん断応力

ASS : オーステナイト系ステンレス鋼

HNA : 高ニッケル合金

また、「供用状態C」とは、「対象とする機器等が構造不連続部等においては大変形を生じてもよい」と設計仕様書等で規定された圧力及び機械的荷重が負荷された条件下にある状態をいう。

a. 前処理フィルタ, 吸着塔

耐震		供用状態) 한		
クラス	荷重の組合せ	(許容応力 状態)	一次一般膜応力	一次一般膜応力+一次曲げ応力	適用範囲
			Syと0.6·Suの小さい方	S _y	・前処理フィルタ
D	D D M C	$C(B_AS)$	ただし、ASS及びHNAにつ	ただし,ASS及びHNAについては	• 吸着塔
D	$B \qquad D + P_d + M_d + S_B$	C(DAS)	いては上記の値と 1.2·Sのう	Sgと1.2・Sのうち大きい方とする。	
			ち大きい方とする。		

b. 支持構造物(注1,注2)

-1 -			許容限界	し (ボルト	等以外)		許容	限界(ボル	ト等)		
耐震	荷重の組合せ	(許容応力			一次応力				一次応力		適用範囲
クラス		状態)	引張	せん断	圧縮	曲げ	組合せ	引張	せん断	組合せ	
В	$D+P_d+M_d+S_B$	C (B _A S)	1.5•f _t	1. 5•f _s	1.5•f _c	1.5•f _b	1.5•f _t	1.5•f _t	1.5•f _s	Min{1.5• f _t , (2.1• f _t - 1.6• τ _b)}	

注1:耐圧部に溶接等により直接取り付けられる支持構造物であって、耐圧部と一体の応力解析を行うものについては、耐圧部と同じ許容応力とする。

注2:鋼構造設計規準(日本建築学会 2005改定)等の幅厚比の規定を満足する。

(1) 前処理フィルタ1,2

a. 条件

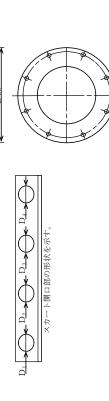
		1
比画	1	
周囲 (°C)	40	
最高使用温度(%C)	40	
最高使用圧力 (MPa)	1.03	
鉛直方向設計震度	1	
水平方向設計囊度	CH= 0.36	
据付場所及び床面高さ (m)	サブドレン他浄化装置建屋 0.P. 40.0*	注記*:基準床レベルを示
耐震設計上の 重要度分類	В	
秦 路 名 岑	前処理フィルタ1,2	

b. 評価結果

	t Di Maté	b.ou.	3	1 - 4x ×	ts Ds I		A D _C A 取付ボルト		D_1 D_2 D_3 D_4 D_4 D_4 D_5 D_4 D_5	
(単位: MPa)	h									
(庫(橙	262	262		_	52 *	8			
	鉄	S a = 29	$f_{\rm t} = 2$	1	(無次元)	$f_{ts} = 452$	$f_{sb} = 348$			
	橅	· co	f	% 2	10	£	f			
	the state of the s			7.0 sz	0, 15			Š		
	梧		2	3) +		2	6			
	H	σ o = 74	s = 35	s1+ σ s3) fc		II.	1			
	麒	Q	O s	η·(σ sι·		σp	ct D			
	ħ	力	#	げせ	幸価)	G	144			
	检	船	組合	圧縮と曲の値合	(座屈の評価	引强	せん			
	材	ASME SA516 Gr. 70		ASME SA516 Gr. 70	ė	and of over many	ASIM AIBS GI.B!	すべて許容応力以下である。		
	#	板		スカート		ं क स	AX NJ AN A	で許容応ブ		
	絽	噩		X		11,74	AX IVI	ナメイ		

(2) 前処理フィルタ3

a. 条件


事	ı
周囲環境温度 (°C)	40
最高使用温度(%)	40
最高使用压力 (MPa)	1.03
鉛直方向設計震度	I
水平方向設計農废	CH= 0.36
据付場所及び床面高さ (m)	サブドレン他浄化装置建屋 0.P. 40.0*
耐震設計上の 重要度分類	В
機器名称	前処理フィルタ 3
	器名称 耐震設計上の 据付場所及び床面高さ 水平方向設計震度 鉛直方向設計震度 最高使用压力 最高使用温度 周囲環境温度 比 (30)

主記*:基準床レベルを示す。

b. 評価結果

	+	_ \		¢			<u>\</u>
					0.P. 40.20m	\bigvee_{A}	
					より算出		
					2.3.2) 共		
					注記*: (3.2.3.2) 式より算出		
F					注記]
径					*		
徐	S a = 262	$f_{\rm t} = 262$		(無次元)	$f_{\mathrm{t\ s}}=452$	$f_{\rm s\ b} = 348$	
紘	S	f	$ + \frac{\eta \cdot \sigma s^2}{f_b} \le 1 $	13	£ t	£ s	
₽ F			$\frac{\rho \cdot \eta}{f}$	0.13			
ゼ	74	31			1	œ	
丑	σ o = 74	$\sigma_s =$	$\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_c}$		0 b=	= 9 1	
桝							
R.	4 4	合 世	と 曲 げ 合 せ	(座屈の評価)	張り	せん断	
授	器	網	圧縮と曲の組合	(座屈	16	中	
菜	Gr. 70		Gr. 70		100 6. 07	GE. D.	
*	ASME SA516 Gr. 70		ASME SA516 Gr. 70			ASIM AL93	
							
等本	胴 板		スカート		- F T T H	4X11) 41/17 F	

すべて許容応力以下である。

(3) 前処理フィルタ4

a. 条件

北重	Ī
周囲環境温度 (°C)	40
最高使用温度 (°C)	40
最高使用圧力 (MPa)	1.03
鉛直方向設計農度	1
水平方向設計震度	$CH\!=\!0.36$
据付場所及び床面高さ (m)	サブドレン他浄化装置建屋 0.P. 40.0*
耐震設計上の 重要度分類	В
器名称	処理フィルタ4

注記*:基準床レベルを示す。

b. 評価結果

			1 7 1		*	0. P. 40. 20m	AA Dbi	V V
						注記*: (3.2.3.2) 式より算出		1
(単位:MPa)	許 容 応 力	$S_a = 262$	$f_{\rm t} = 262$	$\frac{s^2}{b} \le 1$	38 (無次元)	$f_{ts} = 452$ *	$f_{\rm s~b} = 348$	
	第 出 応 力	0 0 = 74	$\sigma_s = 18$	$\frac{\eta \cdot (\sigma_{s1} + \sigma_{s3})}{f_c} + \frac{\eta \cdot \sigma_{s2}}{f_b}$	80.0	$\sigma = 1$	9 = 9 1	
	応 力	組合せ	組合せ	圧縮と曲げの組合を	(座屈の評価)	0	せん断	
	材料	ASME SA516 Gr. 70		ASME SA516 Gr. 70		Ed to born haby	AXPI 457F F ASIM AISS GF. BI	り以下である。
	部材	胴板		スカート		1 1 1	HXIVI AVVE	すべて許容応力以下である。

(4) 吸着塔1~5

a. 条件

, I—II		i i		胴板	メカト		l ←	A 取作ボルト		
比重	1			-	× ×	*] 	
周囲環境温度 (°C)	40	_		9	Di			A Dbi	D^{bo}	
最高使用温度 (°C)	40				+		40.25m	V	_₩	
最高使用压力 (MPa)	1, 55						0. P.	注記*: (3.2.3.2) 式より算出		
鉛直方向設計農度	ĵ		(単位:MPa)	4 力				* 注記*: (3.2		
向設計震度	Сн= 0.36			体	S a = 262	$f_{\rm t} = 262$	fb = 1 0.01 (無次元)	$f_{ts} = 452$	£ s b = 348	
据付場所及び床面高さ 水平方(m)	サブドレン他浄化装置建量 0.P. 40.0*	注記*:基準床レベルを示す		算田店力	0 0 = 42	$\sigma s = 4$ $\eta \cdot (\sigma s_1 + \sigma s_3) \eta \cdot$	f.	$\sigma b = 1$	0b = 4 2	
耐震設計上の 据付 重要度分類	B #7 k	茶記*		4	番合	組合は圧縮と曲げ	の 組合せ(座屈の評価)	引張り	世元節	
名 称 耐震	3, 4, 5		⊪K	林	ASME SA516 Gr. 70	On the state of th	ASME SABIO GF. (0	ACTURE STORE OF THE	ASIM A193 Gr. B	以下である。
機器	及着塔1,2,		. 評価結果	超	嗣	メカート		1 11 11 11 11	4X17307FF	する合理雑誌カ以下である。

2. 3 主配管(鋼管)の耐震性評価

a. 評価条件

評価条件として配管は、配管軸直角 2 方向拘束サポートにて支持される両端単純支持のはりモデル(20 21)とする。

次に、当該設備における主配管(鋼管)について、各種条件を表-1に示す。表-1より管軸方向については、サポート設置フロアの水平震度 0.36 が鉄と鉄の静止摩擦係数 0.52 より小さいことから、地震により管軸方向は動かないものと仮定する。

図-1 等分布荷重 両端単純支持はりモデル

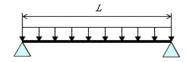


表-1 配管系における各種条件

配管分類	配管分類 主配管						(鋼管)			
配管クラス	クラス3相当									
耐震クラス	B クラス相当									
設計温度 [℃]	40									
配管材質	STPT410									
配管口径	150A	1	00A		80A		50A			
Sch	40		40	40 80			80			
設計圧力 [MPa]	0. 98	0.98	静水頭	1.03 1.55 0.98		0. 98				
配管支持間隔 [m]	[m] 8.4 7.2				6.5		5. 5			

配管分類	頁		主配管(鋼管)							
配管クラ	ス		クラス3相当							
耐震クラ	ス		B クラス相当							
設計温度	$[\mathcal{C}]$		40							
配管材質	Í	UNS S32750								
配管口径	Z E	100	A			80A			50)A
Sch		10			10		40		40	
設計圧力 [MPa]	静水頭	0.98	1.03	1. 55	0. 98	静水頭	1.03	1. 03	1. 55
配管支持間隔	鬲[m]	6. 3	3		5. 9 6. 5			5. 4		

配管分類	主配管 (鋼管)			
配管クラス	クラ	計		
耐震クラス	Bクラス相当			
設計温度 [℃]	40			
配管材質	STPG370			
配管口径	200A	1	00A	
Sch	40		40	
設計圧力 [MPa]	静水頭	0.98 静水頭		
配管支持間隔 [m]	9.4 7.2			

b. 評価方法

水平方向震度による管軸直角方向の配管応力評価する。

自重による応力 Sw は、下記の式で示される。

$$Sw = \frac{M}{Z} = \frac{w \cdot L^2}{8Z}$$

ここで Sw : 自重による応力 [MPa]

L : 支持間隔 [mm]

M :曲げモーメント [N·mm]

Z : 断面係数 [mm³] w : 等分布荷重 [N/mm]

管軸直角方向の地震による応力 Ss は、自重による応力 Sw の震度倍で下記の式で示される。

 $Ss = \alpha \cdot Sw$

Ss: 地震による応力 [MPa]

α : 想定震度値 [-]

また,評価基準値として JEAG4601-2008 に記載の供用応力状態 Cs におけるクラス 3 配管の一次応力制限を用いると,地震評価としては下記の式で示される。

 $S = Sp + Sw + Ss = Sp + Sw + \alpha$ \cdot $Sw = Sp + (1 + \alpha)$ $\cdot Sw \le 1.0Sy$

ここで、S : 内圧, 自重, 地震による発生応力 [MPa]

Sp : 内圧による応力 [MPa]

Sy : 設計降伏点 [MPa]

c. 評価結果

両端単純支持はりモデルで、自重による応力 Sw が 30 [MPa]以下となる配管サポート配置を仮定し、各応力を計算した結果を表-2に示す。

表 -2 より、自重による応力 Sw を 30 [MPa]以下となるようサポート配置を決定することで、配管は十分な強度を有するものと評価する。

表-2 応力評価結果

配管分類	主配管(鋼管)						
配管材質	STPT410						
配管口径	150A 100A 80A			50A			
Sch	40	40			40		
設計圧力 [MPa]	0.98	静水頭	0.98	1. 03	1.03 1.55 0		0.98
内圧, 自重, 地震による発生応力 S [MPa]	53	41	51	1 50 54 49 47			47
供用状態 Cs における 一次応力許容値 [MPa]	1. 0Sy=245						

配管分類		主配管 (鋼管)							
配管材質		UNS S32750							
配管口径	100	100A 80A 50A)A		
Sch	10		10			40		40	
設計圧力 [MPa]	静水頭	0. 98	1. 03	1.55	0.98	静水頭	1. 03	1. 03	1. 55
内圧, 自重, 地震による発生応力 S [MPa]	41 60 56 64 56 41 50 4				49	53			
供用状態 Cs における 一次応力許容値 [MPa]	1. 0Sy=552								

配管分類	主配管 (鋼管)			
配管材質	STPG370			
配管口径	200A 100A			
Sch	40	40		
設計圧力 [MPa]	静水頭	0.98	静水頭	
内圧, 自重, 地震による発生応力 S [MPa]	41	51	41	
供用状態 Cs における 一次応力許容値 [MPa]	1	. 0Sy=21	.5	

タンク基礎に関する説明書

サブドレン他水処理施設を構成する機器のうち、増設する集水タンク、サンプルタンク の基礎について、評価を実施する。

1. タンク基礎の支持力

(1) 評価方法

タンクの鉛直荷重と極限支持力を比較して評価を行う。支持力の算定式は「社団法人 日本道路協会(2002): 道路橋示方書・同解説IV下部構造編」に基づき次式を用いる。 計算した結果, ①タンクの鉛直荷重<②タンク基礎底面地盤の極限支持力であり, 安全 性を有していることを確認する。

①タンクの鉛直荷重: $W = m \times g$

②タンク基礎底面地盤の極限支持力: $Q_u = A_e \left(\alpha k c N_c S_c + k q N_q S_q + \frac{1}{2} \gamma_1 \beta B_e N_r S_r \right)$

m :機器質量

g : 重力加速度

Ae : 有効載荷面積

α, β : 基礎の形状係数

k:根入れ効果に対する割増し係数

c : 地盤の粘着力

 N_c, N_a, N_r : 荷重の傾斜を考慮した支持力係数

 S_c, S_a, S_r : 支持力係数の寸法効果に関する補正係数

q : 上載荷重 (*q*= γ₂*D_f*)

 γ_1 , γ_2 : 支持地盤及び根入れ地盤の単位重量 (γ_1 , $\gamma_2 = 15.9 \text{kN/m}^2$)

D_f:基礎の有効根入れ深さ

 B_e : 荷重の偏心を考慮した基礎の有効載荷幅 ($B_e=B-2e_B$)

B : 基礎幅

e_B : 荷重の偏心量

(2) 管理

地盤改良後,簡易支持力測定器 (キャスポル) **により地盤の強度を測定し,上記式により必要な極限支持力を有していることを確認する。

※ ランマー(重鎮)を一定の高さから地盤に自由落下させたときに生ずる衝撃加速度の 最大値と地盤強度特性値と相関させる衝撃加速度法を基本原理とした簡易な測定器。

2. タンク基礎の不陸

(1) 評価方法

タンクの設置高さが、設計高さに対して許容値以内*であることを確認する。 ※ 設計高さ±30mm (社内基準値)

(2) 管理

タンク基礎高さ (レベル) を測量し、当該高さが設計高さに対して±30mm 以内であることを確認する。

タンクに対するスロッシング評価

サブドレン他水処理施設を構成する機器のうち、集水タンク、サンプルタンク、RO 濃縮水処理水中継タンクについて地震発生時のタンク内包水のスロッシング評価を実施した。 速度ポテンシャル理論に基づきスロッシング波高の評価を行った結果、スロッシング時の タンク内の液位がタンク天板に到達しないことを確認した。

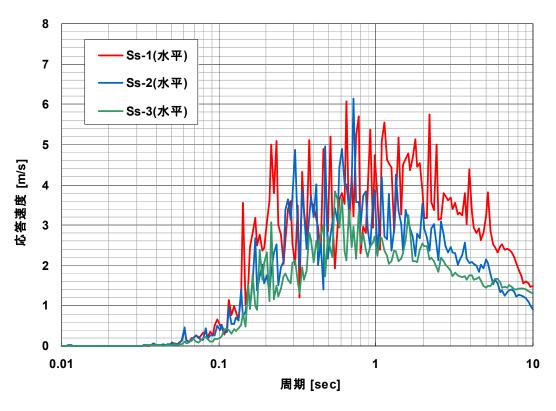
スロッシング評価の流れは下記の通り。

- ・ 速度ポテンシャル理論に基づき、スロッシング固有周期(水面の一次固有周期) を算出する。
- ・ タンク設置エリアの地表面における基準地震動: Ss-1, 2, 3 に対する速度応答スペクトルから、スロッシング固有周期に応じた速度応答値を求める。
- ・ 速度ポテンシャル理論に基づき、速度応答値からスロッシング波高を算出する。
- ・ スロッシング波高がタンク高さを超えないことを確認する。

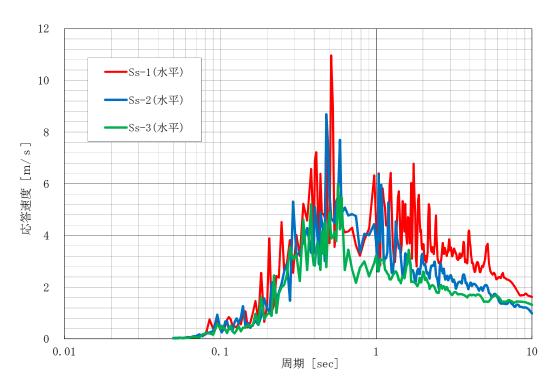
$$T_s = 2\pi \sqrt{\frac{D}{3.68g} \coth\left(\frac{3.68H}{D}\right)}$$

$$\eta = 0.837 \left(\frac{D}{2g}\right) \left(\frac{2\pi}{T_s}\right) S_v$$

D : タンク内径 [m]


H : タンク液位 [m]

g : 重力加速度 [m/s²]


T。: スロッシング固有周期 [s]

S_v : 速度応答値 [m/s]

 η : スロッシング波高 [m]

速度応答スペクトル(水平方向・減衰なし) サンプルタンク, RO 濃縮水処理水中継タンク

速度応答スペクトル (水平方向・減衰なし) 集水タンク

タンクのスロッシング評価結果

松见女孙	スロッシング	スロッシング時	タンク高さ	
機器名称	波高 [mm]	液位 [mm]	[mm]	
集水タンク	682	12, 888	13, 000	
サンプルタンク	702	12, 908	13, 000	
RO 濃縮水処理水 中継タンク	702	12, 908	13, 000	

付録1 スカート支持たて置円筒形容器 (耐震設計上の重要度分類Bクラス) の 耐震性についての計算書作成の基本方針

1. 一般事項

本基本方針は、スカート支持たて置円筒形容器(耐震設計上の重要度分類 Bクラス)の耐 震性についての計算方法を示す。

1.1 適用基準

本基本方針における計算方法は,原子力発電所耐震設計技術指針 JEAG4601-1987 (日本電気協会 電気技術基準調査委員会 昭和62年8月) に準拠する。

1.2 計算条件

- (1) 容器及び内容物の質量は重心に集中するものとする。
- (2) 地震力は容器に対して水平方向に作用するものとする。
- (3) 容器はスカートで支持され、スカートは下端のベースプレートを円周上等ピッチの多数の基礎ボルトで基礎又は架台に固定された固定端とする。ここで、基礎又は架台については剛となるように設計する。
- (4) 胴とスカートをはりと考え、変形モードは曲げ及びせん断変形を考慮する。
- (5) スカート部材において、マンホール等の開口部があって補強をしていない場合は、欠損の影響を考慮する。

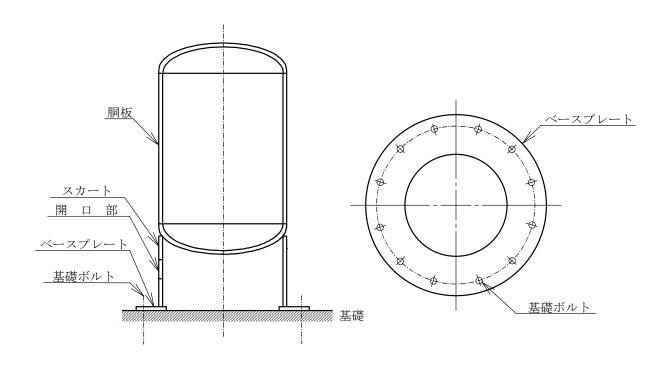


図1-1 概 要 図

1.3 記号の説明

1.3 記 記 号	号の説明 - 記 号 の 説 明	単 位
A	胴の軸断面積	mm ²
Аь	基礎ボルトの軸断面積	\mathbf{mm}^2
Ае	胴の有効せん断断面積	\mathbf{mm}^2
A s	スカートの軸断面積	\mathbf{mm}^2
A s e	スカートの有効せん断断面積	mm^2
Сс	基礎ボルト計算における係数	_
Сн	水平方向設計震度	
C t	基礎ボルト計算における係数	
C v	鉛直方向設計震度	_
Dьі	ベースプレートの内径	mm
Dьо	ベースプレートの外径	mm
D c	基礎ボルトのピッチ円直径	mm
Dі	胴の内径	mm
D j	スカートに設けられた各開口部の穴径 (j=1,2,3…j1)	mm
D s	スカートの内径	mm
Е	胴の縦弾性係数	MPa
	設計・建設規格 付録材料図表 Part6 表1に定める値。又は,	
	ASME BPVCセクションII Material Specifications	
	PartD-Properties Subpart2 Physical Properties Tables	ı
	Table TM-1~TM-5による	ı
E s	スカートの縦弾性係数	MPa
	設計・建設規格 付録材料図表 Part6 表1に定める値。又は、	
	ASME BPVC セクション II Material Specifications	
	PartD-Properties Subpart2 Physical Properties Tables	
	Table TM-1~TM-5による	
е	基礎ボルト計算における係数	_
F	設計・建設規格 SSB-3121.1又はSSB-3131に定める値	MPa
Fс	基礎に作用する圧縮力	N
F t	基礎ボルトに作用する引張力	N
fь	曲げモーメントに対する許容座屈応力	MPa
fс	軸圧縮荷重に対する許容座屈応力	MPa
fs b	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f t	スカートの許容引張応力	MPa
f t o	引張力のみを受ける基礎ボルトの許容引張応力	MPa
fts	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa

記号	記 号 の 説 明	単 位
G	胴のせん断弾性係数	MPa
G s	スカートのせん断弾性係数	MPa
g	重力加速度(=9.80665)	m/s^2
Н	水頭	mm
I	胴の断面二次モーメント	mm^4
Is	スカートの断面二次モーメント	mm^4
j 1	スカートに設けられた開口部の穴の個数	_
K_{H}	水平方向のばね定数	N/m
Κv	鉛直方向のばね定数	N/m
k	基礎ボルト計算における中立軸の荷重係数	_
ℓ	胴のスカート接合点から重心までの距離	mm
ℓ_1 , ℓ_2	基礎ボルト計算における中立軸から荷重作用点までの距離	mm
ℓ r	容器の重心から上端支持部までの距離	mm
ℓ s	スカートの長さ	mm
M s	スカートに作用する転倒モーメント	N•mm
M s 1	スカートの上端部に作用する転倒モーメント	N•mm
M s 2	スカートの下端部に作用する転倒モーメント	N•mm
m_0	容器の運転時質量	kg
m e	容器のスカート接合部から上部の空質量	kg
n	基礎ボルトの本数	_
Рr	最高使用圧力	MPa
Q	重心に作用する任意の水平力	N
Q'	Qにより上端の支持部に作用する反力	N
S	設計・建設規格 付録材料図表 Part5 表5に定める値。又は,	MPa
	ASME BPVCセクションIIMaterial Specifications	
	PartD-Properties Subpart1 -Stress Tables Table 1Aによる。	
S a	胴の許容応力	MPa
S u	設計・建設規格 付録材料図表 Part5 表9に定める値。	MPa
	又は, ASME BPVCセクションIIMaterial Specifications	
	PartD-Properties Subpart1 -Stress Tables Table Uによる。	
Sy	設計・建設規格 付録材料図表 Part5 表8に定める値。	MPa
	又は, ASME BPVCセクションIIMaterial Specifications	
	PartD-Properties Subpart1 -Stress Tables Table Y-1による。	
S	基礎ボルトと基礎の縦弾性係数比	_
Тн	水平方向固有周期	S
Τv	鉛直方向固有周期	S

記号	記 号 の 説 明	単 位
t	胴板の厚さ	mm
t 1	基礎ボルト面積相当板幅	mm
t 2	圧縮側基礎相当幅	mm
t s	スカートの厚さ	mm
Y	スカート開口部の水平断面における最大円周長さ	mm
Z	基礎ボルト計算における係数	_
α	基礎ボルト計算における中立軸を定める角度	rad
δ	荷重Qによる容器の上端での変位量	mm
δ'	荷重Q′による容器の上端での変位量	mm
δο	荷重 Q , Q' による容器の重心での変位量	mm
η	座屈応力に対する安全率	_
π	円周率	_
ρ $'$	液体の密度(=比重×10 ⁻⁶)	kg/mm³
σ ο	胴の一次一般膜応力の最大値	MPa
о о с	胴の組合せ圧縮応力	MPa
σοt	胴の組合せ引張応力	MPa
σь	基礎ボルトに生じる引張応力	MPa
О с	基礎に生じる圧縮応力	MPa
σ s	スカートの組合せ応力	MPa
σ s 1	スカートの運転時質量による軸方向応力	MPa
O s 2	スカートの曲げモーメントによる軸方向応力	MPa
О вз	スカートの鉛直方向地震による軸方向応力	MPa
σ x 1, σ φ 1	静水頭又は内圧により胴に生じる軸方向及び周方向応力	MPa
О х 2	胴の運転時質量による軸方向引張応力	MPa
о х з	胴の空質量による軸方向圧縮応力	MPa
О х 4	地震により胴に生じる軸方向応力	MPa
О х 5	胴の鉛直方向地震による軸方向引張応力	MPa
О х 6	胴の鉛直方向地震による軸方向圧縮応力	MPa
о х с	胴の軸方向応力の和(圧縮側)	MPa
о х t	胴の軸方向応力の和(引張側)	MPa
σ φ	胴の周方向応力の和	MPa
σ φ 2	静水頭に鉛直方向地震が加わり胴に生じる周方向応力	MPa
τ	地震により胴に生じるせん断応力	MPa
τь	基礎ボルトに生じるせん断応力	MPa
au s	地震によりスカートに生じるせん断応力	MPa

記	号		記	号	の	説	明		単	位
φ 1(x) 圧縮荷重に対する許容座屈応力の関数				M	Pa					
$\phi_2(\mathbf{x})$ 曲げモーメントに対する許容座屈応力の関数				M	Pa					

注:「設計・建設規格」とは,発電用原子力設備規格(設計・建設規格 JSME S NC-1-2005)(日本機械学会 2005年9月及び2007年9月)をいう。

「ASME BPVC セクションⅡ」とは,

The American Society of Mechanical Engineers「Boiler and Pressure Vessels Code」 Section II; Material Specifications (米国機械学会 セクションII 材料規格) をいう。

2. 計算方法

2.1 固有周期の計算方法

(1) 計算モデル

本容器は、1.2項より図2-1に示す下端固定の1質点系振動モデルあるいは下端固定上端支持の1質点系振動モデルとして考える。

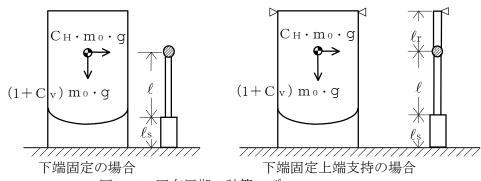


図2-1 固有周期の計算モデル

(2) 水平方向固有周期

a. 下端固定の場合

曲げ及びせん断変形によるばね定数KHは次式で求める。

$$K_{H}=1000 / \left\{ \frac{\ell^{3}}{3 \cdot E \cdot I} + \frac{1}{3 \cdot E \cdot I \cdot s} \cdot (3 \cdot \ell^{2} \cdot \ell \cdot s + 3 \cdot \ell \cdot \ell \cdot s^{2} + \ell \cdot s^{3}) + \frac{\ell}{G \cdot A \cdot e} + \frac{\ell \cdot s}{G \cdot s \cdot A \cdot s \cdot e} \right\}$$
(2.1.1)

ここで、スカートの開口部(図 2-2 参照)による影響を考慮し、胴及びスカートの断面性能は次のように求める。

胴の断面性能は

$$I = \frac{\pi}{8} \cdot (D_i + t)^3 \cdot t \qquad \dots \qquad (2.1.2)$$

$$A_{e} = \frac{2}{3} \cdot \pi \cdot (D_{i} + t) \cdot t \qquad \dots \qquad (2.1.3)$$

スカートの断面性能は

スカート開口部の水平断面における最大円周長さは、(図 2-2 及び図 2-3 参照)

$$Y = \sum_{j=1}^{j-1} (D_s + t_s) \cdot \sin^{-1} \left(\frac{D_j}{D_s + t_s} \right) \qquad (2.1.5)$$

$$A_{se} = \frac{2}{3} \cdot \{ \pi \cdot (D_s + t_s) - Y \} \cdot t_s \qquad (2.1.6)$$

As
$$e = \frac{2}{3} \cdot \{\pi \cdot (D_s + t_s) - Y\} \cdot t_s$$
 (2.1.6)

したがって、固有周期は次式で求める。

$$T_{H}=2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K_{H}}} \qquad \cdots \qquad (2.1.7)$$

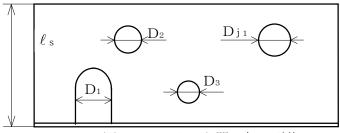


図2-2 スカート開口部の形状



図2-3 スカート開口部の水平断面における最大円周長さ

b. 下端固定上端支持の場合

重心の位置に水平方向の荷重Qが作用したときに上端の支持部に生じる反力Q'は、図 2-4 に示すように荷重Q及び反力Q'による上端の変位量 δ と δ' が等しいとして求める。

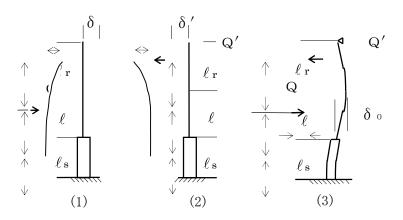


図2-4 下端固定上端支持の場合の変形モデル

図 2-4 の(1) の場合

$$\delta = \frac{Q \cdot \ell^{2}}{6 \cdot E \cdot I} \cdot (2 \cdot \ell + 3 \cdot \ell_{r}) + \frac{Q}{6 \cdot E_{s} \cdot I_{s}}$$

$$\cdot \{ 2 \cdot \ell_{s}^{3} + 3 \cdot \ell_{s}^{2} \cdot \ell_{r} + 6 \cdot \ell_{s} \cdot \ell \cdot (\ell_{s} + \ell + \ell_{r}) \}$$

$$+ \frac{Q \cdot \ell}{G \cdot A_{e}} + \frac{Q \cdot \ell_{s}}{G_{s} \cdot A_{s} e} \qquad (2.1.8)$$

図 2-4 の(2) の場合

$$\delta' = \frac{Q' \cdot (\ell + \ell_{r})^{3}}{3 \cdot E \cdot I} + \frac{Q'}{3 \cdot E_{s} \cdot I_{s}} \cdot \{3 \cdot (\ell + \ell_{r})^{2} \cdot \ell_{s} + 3 \cdot (\ell + \ell_{r}) \cdot \ell_{s}^{2} + \ell_{s}^{3}\} + \frac{Q' \cdot (\ell + \ell_{r})}{G \cdot A_{e}} + \frac{Q' \cdot \ell_{s}}{G_{s} \cdot A_{s}} \quad \cdots \qquad (2.1.9)$$

(2.1.8) 式と (2.1.9) 式を等しく置くことにより,

$$Q' = Q \cdot \left\{ \frac{\ell^{2} \cdot (2 \cdot \ell + 3 \cdot \ell_{r})}{6 \cdot E \cdot I} + \frac{2 \cdot \ell_{s}^{3} + 3 \cdot \ell_{s}^{2} \cdot \ell_{r} + 6 \cdot \ell_{s} \cdot \ell \cdot (\ell_{s} + \ell + \ell_{r})}{6 \cdot E_{s} \cdot I_{s}} + \frac{\ell}{G \cdot A_{e}} + \frac{\ell_{s}}{G_{s} \cdot A_{s}} \right\} / \left\{ \frac{(\ell + \ell_{r})^{3}}{3 \cdot E \cdot I} + \frac{3 \cdot (\ell + \ell_{r})^{2} \cdot \ell_{s} + 3 \cdot (\ell + \ell_{r}) \cdot \ell_{s}^{2} + \ell_{s}^{3}}{3 \cdot E_{s} \cdot I_{s}} + \frac{\ell + \ell_{r}}{G \cdot A_{e}} + \frac{\ell_{s}}{G_{s} \cdot A_{s}} \right\}$$

$$(2. 1. 10)$$

固有周期は(2.1.7)式により求める。

(3) 鉛直方向固有周期

軸方向変形によるばね定数Kvは、次式で求める。

$$K_{v} = 1000 / \left(\frac{\ell}{E \cdot A} + \frac{\ell_{s}}{E_{s} \cdot A_{s}}\right) \qquad (2. 1. 12)$$

$$A = \pi \cdot (D_i + t) \cdot t \qquad (2.1.13)$$

$$A_{s} = \{ \pi \cdot (D_{s} + t_{s}) - Y \} \cdot t_{s} \qquad \cdots \qquad (2.1.14)$$

したがって、固有周期 T v は次式で求める。

$$T = 2 \cdot \pi \cdot \sqrt{\frac{m_0}{K_v}} \qquad (2.1.15)$$

2.2 応力の計算方法

応力計算において, 静的地震力を用いる場合は絶対値和を用い, 動的地震力を用いる場合は, SRSS法を用いることができる。

2.2.1 胴の応力

(1) 静水頭又は内圧による応力

静水頭による場合(鉛直方向地震時を含む。)

$$\sigma_{\phi_1} = \frac{\rho' \cdot g \cdot H \cdot D_i}{2 \cdot t} \qquad (2.2.1.1)$$

$$\sigma_{\phi 2} = \frac{\rho' \cdot g \cdot H \cdot D_{i} \cdot C_{v}}{2 \cdot t} \qquad (2.2.1.2)$$

$$\sigma_{x_1} = 0 \qquad \cdots \qquad (2.2.1.3)$$

内圧による場合

$$\sigma_{\phi 1} = \frac{P_{r} \cdot (D_{i} + 1.2 \cdot t)}{2 \cdot t} \qquad \cdots \qquad (2.2.1.4)$$

$$\sigma_{\phi_2} = 0 \qquad \cdots \qquad (2.2.1.5)$$

$$\sigma_{x_1} = \frac{P_r \cdot (D_i + 1.2 \cdot t)}{4 \cdot t} \qquad (2.2.1.6)$$

(2) 運転時質量及び鉛直方向地震による応力

胴がスカートと接合する点を境界として、上部には胴自身の質量による圧縮応力が、下部には下部の胴自身の質量と内容物の質量による引張応力が生じる。

下部の胴について

$$\sigma_{x2} = \frac{(m_0 - m_e) \cdot g}{\pi \cdot (D_i + t) \cdot t} \qquad (2.2.1.7)$$

$$\sigma_{x5} = \frac{(m_0 - m_e) \cdot g \cdot C_v}{\pi \cdot (D_i + t) \cdot t}$$
 (2.2.1.8)

上部の胴について

$$\sigma \times 3 = \frac{\text{me} \cdot g}{\pi \cdot (D \text{ i} + t) \cdot t} \qquad (2.2.1.9)$$

$$\sigma \times _{6} = \frac{\text{me} \cdot \text{g} \cdot \text{C v}}{\pi \cdot (\text{D i} + \text{t}) \cdot \text{t}} \qquad (2.2.1.10)$$

(3) 水平方向地震による応力

水平方向の地震力により胴はスカート接合部で最大となる曲げモーメントを受ける。この曲げモーメントによる軸方向応力と地震力によるせん断応力は次のように求める。

a. 下端固定の場合

$$\sigma_{x4} = \frac{4 \cdot C_{H} \cdot m_{0} \cdot g \cdot \ell}{\pi \cdot (D_{i} + t)^{2} \cdot t} \qquad (2.2.1.11)$$

$$\tau = \frac{2 \cdot C_{H} \cdot m_{0} \cdot g}{\pi \cdot (D_{i} + t) \cdot t} \qquad (2.2.1.12)$$

b. 下端固定上端支持の場合

$$\sigma_{X4} = \frac{4 \cdot C_{H} \cdot m_{0} \cdot g \cdot \left| \ell - \frac{Q'}{Q} \cdot (\ell + \ell_{T}) \right|}{\pi \cdot (D_{i} + t)^{2} \cdot t} \qquad (2.2.1.13)$$

$$\tau = \frac{2 \cdot C_{H} \cdot m_{0} \cdot g \cdot (1 - \frac{Q'}{Q})}{\pi \cdot (D_{i} + t) \cdot t}$$
 (2. 2. 1. 14)

(4) 組合せ応力

(1) \sim (3)によって求めた胴の応力は以下のように組み合わせる。

- a. 一次一般膜応力
 - (a) 組合せ引張応力

$$\sigma_{\phi} = \sigma_{\phi_{1}} + \sigma_{\phi_{2}} \qquad (2.2.1.15)$$

$$\sigma_{0} t = \frac{1}{2} \cdot \left\{ \sigma_{\phi} + \sigma_{x} t + \sqrt{(\sigma_{\phi} - \sigma_{x} t)^{2} + 4 \cdot \tau^{2}} \right\}$$

ここで,

【絶対値和】

$$\sigma_{x t} = \sigma_{x 1} + \sigma_{x 2} + \sigma_{x 4} + \sigma_{x 5} \qquad \cdots \qquad (2.2.1.17)$$

【SRSS法】

$$\sigma_{x t} = \sigma_{x 1} + \sigma_{x 2} + \sqrt{\sigma_{x 4}^{2} + \sigma_{x 5}^{2}} \qquad \cdots \qquad (2. 2. 1. 18)$$

(b) 組合せ圧縮応力

$$\sigma_{\phi} = -\sigma_{\phi 1} - \sigma_{\phi 2} \qquad \cdots \qquad (2.2.1.19)$$

σxcが正の値(圧縮側)のとき、次の組合せ圧縮応力を求める。

ここで,

【絶対値和】

$$\sigma_{x c} = -\sigma_{x 1} + \sigma_{x 3} + \sigma_{x 4} + \sigma_{x 6} \qquad \cdots \qquad (2.2.1.21)$$

【SRSS法】

$$\sigma \times c = -\sigma \times 1 + \sigma \times 3 + \sqrt{\sigma \times 4^2 + \sigma \times 6^2}$$
 (2. 2. 1. 22)

したがって、胴の組合せ一次一般膜応力の最大値は、絶対値和、SRSS法それぞれに対して、

 σ o = Max {組合せ引張応力 (σ o t), 組合せ圧縮応力 (σ o c)}

$$\cdots \cdots \cdots \cdots \cdots (2.2.1.23)$$

とする。

一次応力は一次一般膜応力と同じになるので省略する。

2.2.2 スカートの応力

(1) 運転時質量及び鉛直方向地震による応力

スカート底部に生じる運転時質量及び鉛直方向地震による圧縮応力は次式で求める。

$$\sigma_{s1} = \frac{m_0 \cdot g}{\{\pi \cdot (D_s + t_s) - Y\} \cdot t_s} \qquad \dots \qquad (2.2.2.1)$$

$$\sigma_{s3} = \frac{m_0 \cdot g \cdot C_v}{\{\pi \cdot (D_s + t_s) - Y\} \cdot t_s} \qquad (2.2.2.2)$$

(2) 水平方向地震による応力

水平方向の地震力によりスカートには曲げモーメントが作用する。この曲げモーメント による軸方向応力と地震力によるせん断応力は次のように求める。

a. 下端固定の場合

$$\sigma_{s2} = \frac{M_s}{(D_s + t_s) \cdot t_s \cdot \left\{ \frac{\pi}{4} \cdot (D_s + t_s) - \frac{Y}{2} \right\}} \qquad \dots (2.2.2.3)$$

$$\tau s = \frac{2 \cdot C_H \cdot m_0 \cdot g}{\{\pi \cdot (D_s + t_s) - Y\} \cdot t_s} \qquad (2.2.2.4)$$

ここで、

$$M_s = C_H \cdot m_0 \cdot g \cdot (\ell_s + \ell) \qquad \dots \qquad (2.2.2.5)$$

b. 下端固定上端支持の場合

軸方向応力は (2.2.2.3) 式で表されるが、曲げモーメント M_s は次の M_{s_1} 又は M_{s_2} のいずれか大きい方の値とする。

$$M_{s 1} = C_{H} \cdot m_{0} \cdot g \cdot \left| \ell - \frac{Q'}{Q} \cdot (\ell + \ell_{r}) \right| \qquad (2. 2. 2. 6)$$

$$M_{s 2} = C_{H} \cdot m_{0} \cdot g \cdot \left| \ell_{s} + \ell - \frac{Q'}{Q} \cdot (\ell_{s} + \ell + \ell_{r}) \right|$$

$$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (2.2.2.7)$$

$$\tau_{s} = \frac{2 \cdot C_{H} \cdot m_{0} \cdot g \cdot (1 - \frac{Q'}{Q})}{\{\pi \cdot (D_{s} + t_{s}) - Y\} \cdot t_{s}} \qquad (2.2.2.8)$$

(3) 組合せ応力

組合せ応力は次式で求める。

【絶対値和】

【SRSS法】

$$\sigma_{s} = \sqrt{(\sigma_{s1} + \sqrt{\sigma_{s2}^{2} + \sigma_{s3}^{2}})^{2} + 3 \cdot \tau_{s}^{2}} \qquad \cdots \qquad (2. 2. 2. 10)$$

2.2.3 基礎ボルトの応力

(1) 引張応力

基礎に作用する転倒モーメントMsは下端固定の場合, (2.2.2.5)式を,下端固定上端 支持の場合は(2.2.2.6)式又は(2.2.2.7)式を用いる。

転倒モーメントが作用した場合に生じる基礎ボルトの引張荷重と基礎部の圧縮荷重に ついては、荷重と変位量の釣合い条件を考慮することにより求める。(図2-5参照) 以下にその手順を示す。

a. σ b 及び σ c を仮定して基礎ボルトの応力計算における中立軸の荷重係数 k を求める。

$$k = \frac{1}{1 + \frac{\sigma b}{s \cdot \sigma c}}$$
 (2. 2. 3. 1)

基礎ボルトの応力計算における中立軸を定める角度 α を求める。

$$\alpha = \cos^{-1} (1 - 2 \cdot k) \qquad \dots \qquad (2. 2. 3. 2)$$

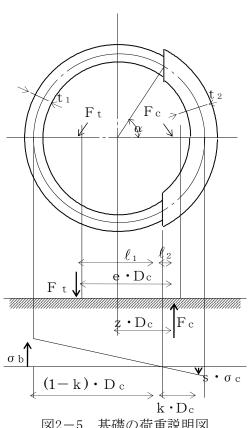


図2-5 基礎の荷重説明図

c. 各定数e, z, Ct及びCcを求める。

$$e = \frac{1}{2} \cdot \left\{ \frac{(\pi - \alpha) \cdot \cos^{2}\alpha + \frac{1}{2} \cdot (\pi - \alpha) + \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha}{(\pi - \alpha) \cdot \cos \alpha + \sin \alpha} + \frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^{2}\alpha}{\sin \alpha - \alpha \cdot \cos \alpha} \right\} \qquad (2. 2. 3. 3)$$

$$z = \frac{1}{2} \cdot \left(\cos \alpha + \frac{\frac{1}{2} \cdot \alpha - \frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha + \alpha \cdot \cos^2 \alpha}{\sin \alpha - \alpha \cdot \cos \alpha} \right)$$

$$(2.2.3.4)$$

$$C_{t} = \frac{2 \cdot \{ (\pi - \alpha) \cdot \cos \alpha + \sin \alpha \}}{1 + \cos \alpha} \qquad (2.2.3.5)$$

$$C_{c} = \frac{2 \cdot (\sin \alpha - \alpha \cdot \cos \alpha)}{1 - \cos \alpha} \qquad (2.2.3.6)$$

d. 各定数を用いてFt及びFcを求める。

【絶対値和】

$$F_{t} = \frac{M_{s} - (1 - C_{v}) \cdot m_{0} \cdot g \cdot z \cdot D_{c}}{e \cdot D_{c}} \qquad \cdots \qquad (2.2.3.7)$$

【SRSS法】

$$F_{t} = \frac{\sqrt{M_{s}^{2} + (C_{v} \cdot m_{0} \cdot g \cdot z \cdot D_{c})^{2}}}{e \cdot D_{c}} - \frac{z}{e} \cdot m_{0} \cdot g$$

$$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (2, 2, 3, 9)$$

$$F_{c} = \frac{\sqrt{M_{s}^{2} + (C_{v} \cdot m_{0} \cdot g \cdot (z - e) \cdot D_{c})^{2}}}{e \cdot D_{c}} + (1 - \frac{z}{e}) \cdot m_{0} \cdot g$$

$$(2.2.3.10)$$

基礎ボルトに引張力が作用しないのは、 α が π に等しくなったときであり、(2.2.3.3) 式及び((2.2.3.4) 式において α を π に近づけた場合の値 e=0.75及び z=0.25を((2.2.3.7) 式又は((2.2.3.9) 式に代入し、得られる F_t の値によって引張力の有無を次のように判定する。

F t ≤0ならば引張力は作用しない。

F_t>0ならば引張力が作用しているので次の計算を行う。

e. σ b及び σ cを求める。

$$\sigma_b = \frac{2 \cdot F_t}{t_1 \cdot D_c \cdot C_t} \qquad (2.2.3.11)$$

$$\sigma c = \frac{2 \cdot F c}{(t + s \cdot t) \cdot D \cdot C \cdot C c} \qquad (2.2.3.12)$$

ここで

$$t_1 = \frac{\mathbf{n} \cdot \mathbf{A} \,\mathbf{b}}{\pi \cdot \mathbf{D} \,\mathbf{c}} \qquad \dots \qquad (2. \, 2. \, 3. \, 13)$$

$$t_2 = \frac{1}{2} \cdot (D_{b o} - D_{b i}) - t_1$$
 (2.2.3.14)

 σ b 及び σ c がa項にて仮定した値と十分に近似していることを確認する。この場合の σ b 及び σ c を基礎ボルトと基礎に生じる応力とする。

- (2) せん断応力
 - a. 下端固定の場合

$$\tau_b = \frac{C_H \cdot m_0 \cdot g}{n \cdot A_b} \qquad (2.2.3.15)$$

b. 下端固定上端支持の場合

$$\tau_{b} = \frac{C \, \text{H} \cdot \text{m}_{0} \cdot \text{g} \cdot (1 - \frac{Q'}{Q})}{\text{n} \cdot A_{b}} \qquad (2.2.3.16)$$

3. 評価方法

- 3.1 固有周期の評価
 - 2.1項で求めた固有周期から、水平方向及び鉛直方向の設計震度を求める。

3.2 応力の評価

- 3.2.1 胴の応力評価
 - 2.2.1 項で求めた組合せ応力が胴の最高使用温度における許容応力 Sa以下であること。

応力の種類	許 容 応 力 Sa
	設計降伏点Syと設計引張強さSuの0.6倍のいずれか小さい
VL 60.0#; L - L	方の値。ただし、オーステナイト系ステンレス鋼及び高ニッ
一次一般膜応力	ケル合金にあっては許容引張応力Sの1.2倍の方が大きい場
	合は,この大きい方の値とする。

一次応力の評価は算出応力が一次一般膜応力と同じ値であるので省略する。

3.2.2 スカートの応力評価

(1) 2.2.2項で求めたスカートの組合せ応力が許容引張応力 f_t 以下であること。

$$f_{\rm t} = \frac{\rm F}{1.5} \cdot 1.5$$
 (3. 2. 2. 1)

(2) 圧縮膜応力(圧縮応力と曲げによる圧縮側応力の組合せ)は次式を満足すること。(座 屈の評価)

ここで, fc は次による。

$$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \le \frac{1200 \cdot g}{F} \quad \text{の と き}$$

$$f_c = F \qquad (3. 2. 2. 3)$$

$$\frac{8000 \cdot g}{F} \le \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \le 800 \quad \emptyset \ge 3$$

$$f_c = \phi_1 \left(\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \right) \qquad \dots (3.2.2.5)$$

ただし、 $\phi_1(\mathbf{x})$ は次の関数とする。

$$\phi_{1}(x) = 0.6 \cdot \frac{E_{s}}{x} \cdot \left[1 - 0.901 \cdot \left\{ 1 - e_{x} p \left(-\frac{1}{16} \cdot \sqrt{x} \right) \right\} \right].$$

また, fbは次による。

$$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq \frac{1200 \cdot g}{F} \quad \text{Ole }$$

$$\frac{1200 \cdot g}{F} < \frac{D \cdot s + 2 \cdot t \cdot s}{2 \cdot t \cdot s} < \frac{9600 \cdot g}{F} \quad \text{Obs}$$

$$f_{b} = F \cdot \left[1 - \frac{1}{8400 \cdot g} \cdot \left\{ F - \phi_{2} \left(\frac{9600 \cdot g}{F} \right) \right\} \right]$$

$$\cdot \left(\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} - \frac{1200 \cdot g}{F} \right) \right]$$

$$\frac{9600 \cdot g}{F} \le \frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \le 800 \quad \text{のとき}$$

$$f_{b} = \phi_{2} \left(\frac{D_{s} + 2 \cdot t_{s}}{2 \cdot t_{s}} \right) \qquad (3.2.2.9)$$

ただし、 $\phi_2(\mathbf{x})$ は次の関数とする。

$$\phi_{2}(\mathbf{x})=0.6 \cdot \frac{\mathbf{E}_{s}}{\mathbf{x}} \cdot \left[1-0.731 \cdot \left\{1-e \times p\left(-\frac{1}{16} \cdot \sqrt{\mathbf{x}}\right)\right\}\right] \cdot \cdot \cdot$$
 (3. 2. 2. 10)

ηは安全率で次による。

$$\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} \leq \frac{1200 \cdot g}{F} \quad \text{のとき}$$

$$n = 1 \qquad \dots \qquad (3. 2. 2. 11)$$

$$\frac{1200 \cdot g}{F} < \frac{D \cdot s + 2 \cdot t \cdot s}{2 \cdot t \cdot s} < \frac{8000 \cdot g}{F} \quad \text{Obs}$$

$$\eta = 1 + \frac{0.5 \cdot F}{6800 \cdot g} \cdot \left(\frac{D_s + 2 \cdot t_s}{2 \cdot t_s} - \frac{1200 \cdot g}{F} \right) \qquad (3.2.2.12)$$

$$\frac{8000 \cdot g}{F} \leq \frac{D + 2 \cdot t s}{2 \cdot t s} \quad \text{のとき}$$

$$\eta = 1.5 \qquad (3.2.2.13)$$

3.2.3 基礎ボルトの応力評価

2.2.3項で求めた基礎ボルトの引張応力 σ_b は次式より求めた許容引張応力 f_t s 以下であること。

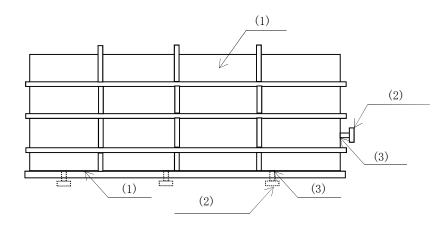
せん断応力 τ b はせん断力のみを受ける基礎ボルトの許容せん断応力 f s b 以下であること。

$$f_{t s} \leq f_{t o}$$
 (3.2.3.2)

ただし、 f_{to} 及び f_{sb} は下表による。

			許容引張応力 ƒ t 。	許容せん断応力 f _{sb}
計	算	式	$\frac{\mathrm{F}}{2}$ · 1.5	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

サブドレン集水設備の強度に関する説明書


1. 強度評価の方針

強度評価においては、中継タンクは JIS 等に準じた評価を行う。集水タンク及び主配管 (鋼管、伸縮継手) は「JSME S NC-1 発電用原子力設備規格 設計・建設規格」(以下、 「設計・建設規格」という。)のクラス3機器またはクラス3配管に、準じた評価を行う。

2. 強度評価

- 2.1 中継タンク
- 2.1.1 評価箇所

強度評価箇所を図-1に示す。

図中の番号は、2.1.2の番号に対応する。

図-1 中継タンク概要図

2.1.2 評価方法

(1) 側板, 底板の評価

中継タンクの側板,底板の必要厚さは,それぞれ次に掲げる値のうちいずれか大きい値とする。

a. 規格上必要な最小厚さ

側板, 底板の最小厚さは, それぞれ 4.5mm, 6.0mm とする。

b. 計算上必要な厚さ: t

t = d (β · P / fb · η)^{1/2} + c δ = α · P · d⁴ / E · (T - c)³ \leq d / 300

ここに, t:最小必要厚さ (mm)

β: d/Dに対する応力係数

d:短辺の長さ (mm)

D:長辺の長さ (mm)

P:作用する荷重 (MPa)

fb: 許容曲げ応力 (N/mm²)

η:溶接継手効率

c:腐れ代 (mm)

δ: 最大たわみ量 (mm)

 $\alpha: d/D$ に対するたわみ係数

E:縦弾性係数 (N/mm²)

T:使用板厚(mm)

(2) 管台の厚さの評価

管台に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 規格上必要な最小厚さ

管台の外径に応じ,「JIS B 8501 鋼製石油貯槽の構造(全溶接製)」に規定された値とする。

b. 計算上必要な厚さ: t

t = Di \times H \times ρ / (0.204 \times S \times η) \times 1000 + c

ここに, t:必要厚さ (mm)

Di:管台の内径 (m)

H:水頭(m)

ρ:液体の比重

S:許容引張応力 (MPa)

η:継手効率

c : 腐れ代 (mm)

(3) 管台の穴の補強計算

管台取付部の穴の補強について,補強に有効な範囲内にある有効面積が,補強に必要な 面積より大きくなるようにする。

 $Ar = Dp \times ta$

At = A1 + A2 + A3 + A4 + A5

ここに, Ar:補強に必要な面積 (mm²)

Dp:取付部板の開口径 (mm)

ta: 腐れ代を差引いた取付部板の板厚 (mm)

At:補強に有効な面積の合計 (mm²)

A1: 強め材の有効面積 (= 2 × (Dp — Dr / 2) × tr) (mm²)

A2: 管台(外側)の有効面積(=2×(4×tn)×tn)(mm²)

A3:管台(板部)の有効面積 (= 2 × t × tn) (mm²)

A4: 管台(内側)の有効面積(= 2 × (4 × tn) × tn) (mm²)

A5: 側板腐食代分の有効面積(= $2 \times (Dp / 2) \times ts)$ (mm²)

Dr:強め材の開口径 (mm)

tr:強め材の実際の板厚 (mm)

tn:管台の採用板厚 (mm)

t:取付部板の実際の板厚 (mm)

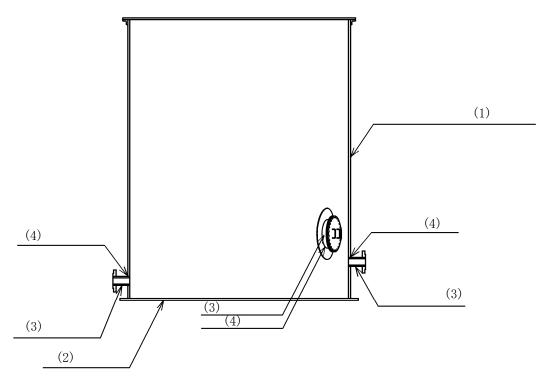
ts:取付部板の腐れ代 (mm)

2.1.3 評価結果

評価結果を表-1, 2に示す。必要厚さ等を満足しており、十分な構造強度を有すると評価している。

表-1 中継タンクの評価結果(板厚)

機器名称	評価項目	必要厚さ	最小厚さ
		(mm)	(mm)
	側板の厚さ	4. 5	4.5以上
中継タンク	底板の厚さ	6. 0	6.0以上
	管台の厚さ (流出管:65A)	7. 0	7.0以上
	管台の厚さ(ドレン管:50A)	5. 5	5.5以上


表-2 中継タンクの評価結果(管台の穴の補強計算)

機器名称	評価項目	評価結果		
		補強に必要な面積 補強に有効な総面積 (mm²)		
		(mm ²)		
中継タンク	流出管 (65A)	397	555	
	ドレン管 (50A)	512	1045	

2.2 集水タンク

2.2.1 評価箇所

強度評価箇所を図ー2に示す。

図中の番号は、2.2.2、2.2.3の番号に対応する。

図-2 集水タンク概要図

2.2.2 評価方法

(1) 胴の厚さの評価

開放タンクの胴に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 規格上必要な最小厚さ: t₁

炭素鋼鋼板又は低合金鋼鋼板で作られた場合は 3mm, その他の材料で作られた場合は 1.5mm とする。

b. 胴の計算上必要な厚さ: t₂

t₂: 必要厚さ (mm) D_i: 胴の内径 (m) $t_2 = \frac{D_i \cdot H \cdot \rho}{0.204 \cdot S \cdot \eta}$ H: 水頭(m)

ρ: 液体の比重。ただし, 1未満の場合は,

1とする。

S: 許容引張応力 (MPa)

η : 継手効率

c. 胴の内径に応じた必要厚さ: t3

胴の内径が 5m を超えるものについては,胴の内径の区分に応じ設計・建設規格 表 PVC-3920-1 より求めた胴の厚さとする。

(2) 底板の厚さの評価

地面,基礎等に直接接触する開放タンクの底板の厚さは、3mm以上であること。

(3) 管台の厚さの評価

管台に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 管台の計算上必要な厚さ: t₁

t₁: 必要厚さ (mm) Di: 管台の内径 (m) $t = \frac{D_i \cdot H \cdot \rho}{0.204 \cdot S \cdot \eta}$

H : 水頭 (m)

ρ:液体の比重。ただし、1未満の場合は、

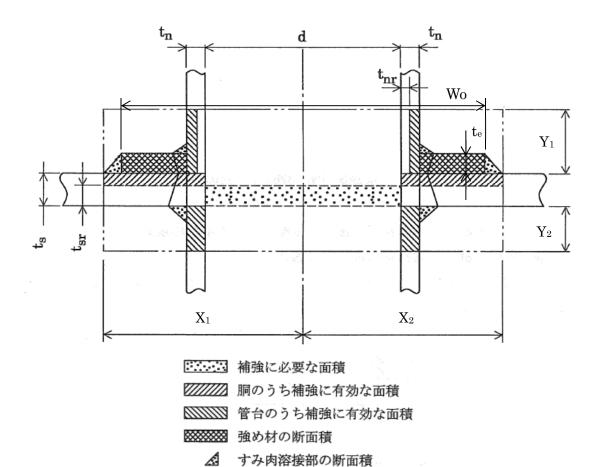
1とする。

S: 許容引張応力 (MPa)

η : 継手効率

b. 規格上必要な最小厚さ: t₂

管台の外径に応じ設計・建設規格 表 PVC-3980-1 より求めた管台の厚さとする。


(4) 胴の穴の補強計算

a. 補強に有効な範囲内にある補強に有効な面積が、補強に必要な面積より大きくなる ようにすること。(図-3参照)

b. 大きい穴の補強を要しない最大径

内径が 1500mm 以下の胴に設ける穴の径が胴の内径の 2 分の 1 (500mm を超える場 合は,500mm) 以下および内径が 1500mm を超える胴に設ける穴の径が胴の内径の 3 分 の1 (1000mm を超える場合は, 1000mm) 以下の場合は, 大きい穴の補強計算は必要な V,

c. 溶接部の強度として, 予想される破断箇所の強さが, 溶接部の負うべき荷重以上であること。(図-3参照)

d:胴の断面に現れる穴の径(mm) X₁, X₂, Y₁, Y₂:補強の有効範囲(mm)

 $t_s: 胴板の厚さ (mm) W_o: 強め材の外径 (mm)$

 $t_{sr}:$ 胴板の計算上必要な厚さ (mm) $t_{e}:$ 強め材の厚さ (mm)

 t_n : 管台の厚さ (mm) A_r : 補強に必要な面積 (mm^2) t_{nr} : 管台の計算上必要な厚さ (mm) A_0 : 補強に有効な総面積 (mm^2)

図-3 補強計算概念図

2.2.3 評価結果

評価結果を表-3,4に示す。必要厚さ等を満足しており、十分な構造強度を有すると評価している。

表-3 集水タンクの評価結果(板厚)

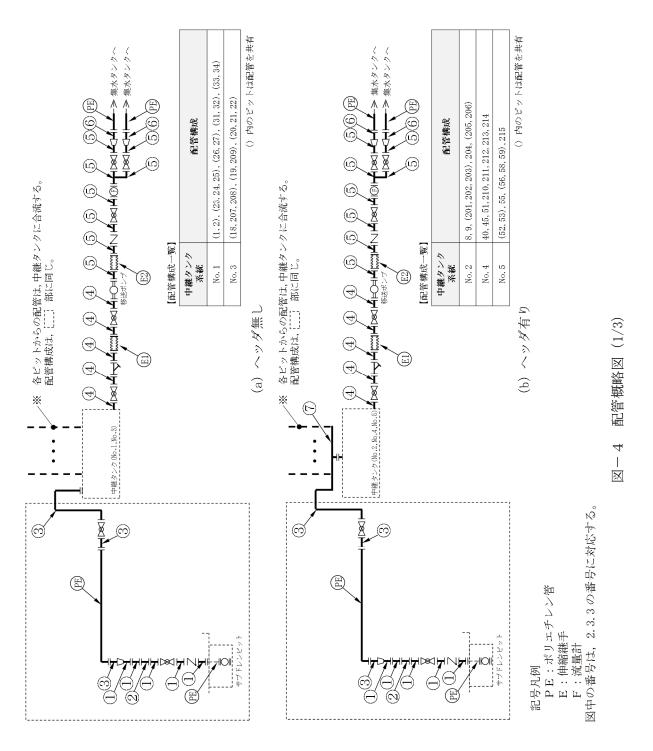
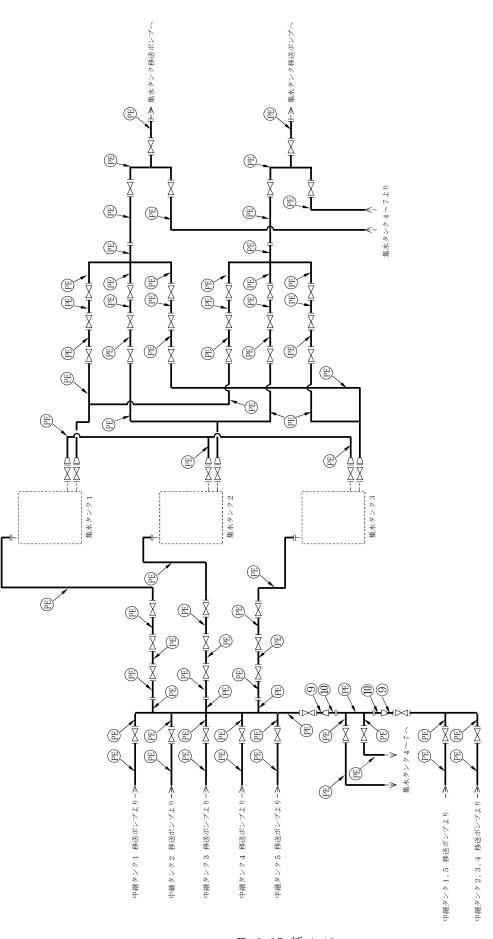
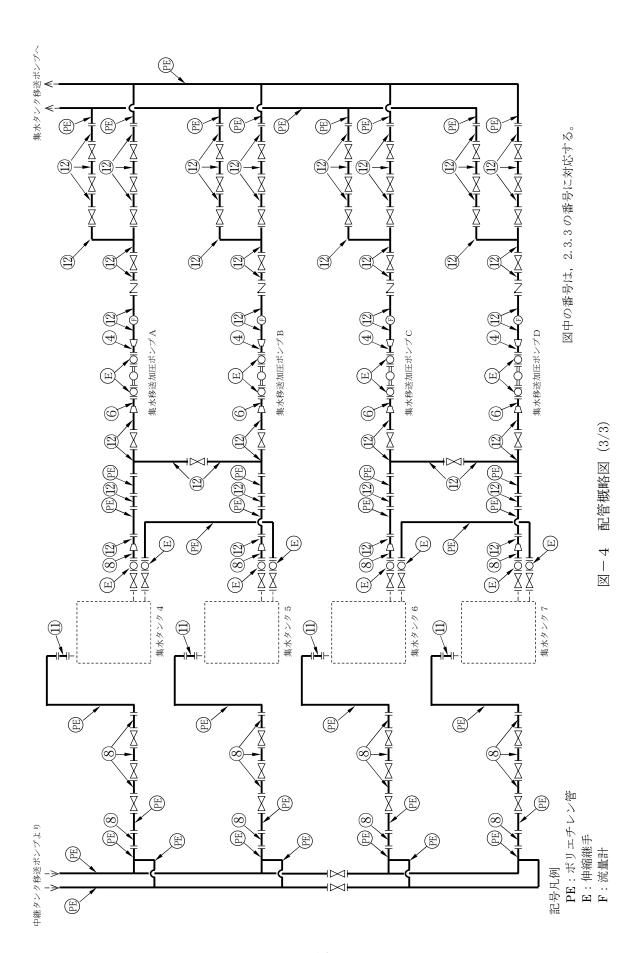

機器名称	評価項目	必要厚さ (mm)	最小厚さ (mm)
	(1)胴板の厚さ	11. 7	12. 0
	(2)底板の厚さ	3.00	11. 2
集水タンク	(3)管台の厚さ (100A)	3. 50	5. 25
	(3)管台の厚さ (200A)	3.50	7. 18
	(3)管台の厚さ (マンホール)	3.50	11. 2

表-4 集水タンクの評価結果 (胴の穴の補強計算)

機器名称	評価項目	評価流	結果	
		補強に必要な	補強に有効な	
		面積 (mm²)	総面積 (mm²)	
		7.318×10^{2}	1.6222×10^3	
		大きな穴の補強を要	穴の径	
	(4)胴(100A 管台)	しない最大径(mm)	(mm)	
		1000	1000以下	
		溶接部の負うべき	予想される破断	
		荷重(N)	箇所の強さ(N)	
集水タンク		3.5520×10^4	1.05278×10^5	
		補強に必要な補強に有効		
		面積 (mm²) 総面積 (m 1.4204×10³ 3.1414×		
		1.4204×10^3	3.1414×10^3	
	(4)胴(200A 管台)	大きな穴の補強を要	穴の径	
		しない最大径(mm)	(mm)	
		1000	1000以下	
		面積 (mm²)総面積 (mm²)1.4204×10³3.1414×10³大きな穴の補強を要穴の径しない最大径 (mm)(mm)		
		荷重(N)	議債 (mm²) 総面積 (mm²)	
		6. 1220×10^4	#強に有効な 総面積 (mm²) 0³ 3.1414×10³ 食を要 穴の径 (mm) (mm) 1000以下 べき 予想される破断 箇所の強さ (N) 0⁴ 2.88899×10⁵ な 補強に有効な 総面積 (mm²) 3° 7.6348×10³ 食を要 穴の径	
		補強に必要な	補強に有効な	
		面積 (mm²)	総面積(mm²)	
		4.466×10^3	7. 6348×10^3	
		大きな穴の補強を要	穴の径	
	(4)胴(マンホール)	しない最大径(mm)	(mm)	
		1000	1000以下	
		溶接部の負うべき	予想される破断	
		荷重(N)	箇所の強さ(N)	
		1.6324×10^{5}	1.160164×10^6	

2.3.1 評価箇所


強度評価箇所を図-4に示す。


Ⅱ-2-35-添 4-9

図中の番号は,2.3.3の番号に対応する。

記号凡例 **PE**:ポリエチレン管

Ⅱ-2-35-添 4-10

Ⅱ-2-35-添 4-11

2.3.2 評価方法

(1) 管の厚さの評価

管の必要な厚さは、次に掲げる値のいずれか大きい方の値とする。

a. 内面に圧力を受ける管

$$t = \frac{P \cdot D \circ}{2 \cdot S \cdot n + 0.8 \cdot P}$$

P:最高使用圧力 (MPa)

D₀: 管の外径 (mm)

S:許容引張応力 (MPa)

η:継手効率

b. 炭素鋼鋼管の設計・建設規格上必要な最小必要厚さ: t $_{\rm t}$

設計・建設規格 PPD-3411(3)の表 PPD-3411-1 より求めた値

(2) 伸縮継手における疲労評価

伸縮継手については、次の計算式により計算した許容繰り返し回数が、実際の繰り返し 回数以上のものとする。

$$N = \left(\frac{11031}{\sigma}\right)^{3.5}$$

N: 許容繰返し回数

σ:継手部応力 (MPa)

ここで、継手部応力は、調整リングが付いていない場合の以下の式により計算した値とする。

E:材料の縦弾性係数 (MPa)

$$\sigma = \frac{1.5 \cdot E \cdot t \cdot \delta}{n \cdot \sqrt{b \cdot h^3}} + \frac{P \cdot h^2}{2 \cdot t^2 \cdot c}$$

t :継手部の板の厚さ (mm)

σ:全伸縮量 (mm)

n:継手部の波数の2倍の値

b:継手部の波のピッチの2分の1 (mm)

h:継手部の波の高さ (mm)

P:最高使用圧力 (MPa)

c : 継手部の層数

2.3.3 評価結果

評価結果を表-5, 6に示す。必要厚さ等を満足しており、十分な構造強度を有していると評価している。

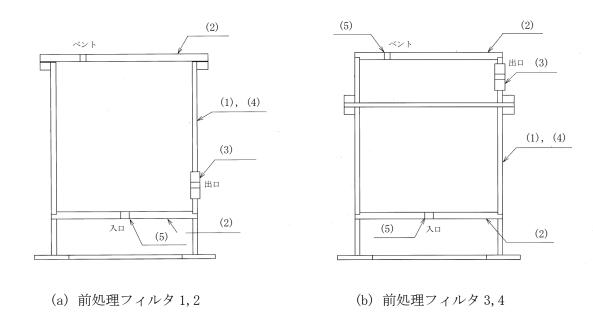
表-5 配管の評価結果(管厚)

	外径		最高使用	最高使用	必要厚さ	最小厚さ
No.	(mm)	材料	圧力	温度	(mm)	(mm)
			(MPa)	(℃)		
1	42.70	STPG370	0. 98	40	1.90	3. 10
2	42.70	SUS316LTP	0. 98	40	0.18	3. 10
3	48.60	STPG370	0. 98	40	2. 20	3. 20
4	76. 30	STPG370	0. 98	40	2. 70	4. 55
5	60.50	STPG370	0. 98	40	2.40	3. 40
6	89. 10	STPG370	0. 98	40	3.00	4.81
7	216. 3	SUS316LTP	0. 98	40	1.31	5.85
8	216. 3	STPG370	0. 98	40	3.80	7. 18
9	318.5	STPG370	0. 98	40	3.80	9. 01
10	355. 6	STPG370	0. 98	40	3.80	9. 71
11)	216. 3	SUS316LTP	0.49	40	0.46	7. 18
12	114. 3	STPG370	0. 98	40	3.40	5. 25

表-6 伸縮継手の評価結果(管厚)

		最高使用	最高使用	許容繰り	実際の繰り
No.	材料	圧力	温度	返し回数	返し回数
		(MPa)	(\mathcal{C})	(回)	(回)
E1	SUS316L	0. 98	40	2.4×10^3	0.1×10^3
E2	SUS316L	0. 98	40	1.0×10^3	0.1×10^3

サブドレン他浄化設備の強度に関する説明書


1. 強度評価の方針

サブドレン他浄化設備を構成する主要な機器及び主配管(鋼管,伸縮継手)は、強度評価においては、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」(以下、「設計・建設規格」という。)のクラス3機器またはクラス3配管に準じた評価を行う。

2. 強度評価

- 2.1 前処理フィルタ
- 2.1.1 評価箇所

強度評価箇所を図-1に示す。

図中の番号は、2.1.2及び2.1.3の番号に対応する。

図-1 前処理フィルタ概要図

2.1.2 評価方法

(1) 胴の厚さの評価

胴に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 規格上必要な最小厚さ: t 1 炭素鋼鋼板又は低合金鋼鋼板で作られたものにあっては 3mm, その他の材料で作ら れたものにあっては 1.5mm とする。

b. 内面に圧力を受ける胴の必要厚さ: t 2

$$t_2 = \frac{P \cdot D_i}{2 \cdot S \cdot \eta - 1.2 \cdot P}$$

t₂:必要厚さ (mm)

P : 最高使用圧力 (MPa)

D: : 胴の内径 (mm)

S : 許容引張応力 (MPa)

η : 継手効率 (-)

(2) 平板の厚さの評価

平板の厚さは、次に掲げる値のうちいずれかによるものとする。

a. 平板に穴を設ける場合であって、穴の径が平板の径の2分の1以下であり、穴の補強計算を行うもの。なお、平板の穴の補強計算については(5)参照。

$$t = d \cdot \sqrt{\frac{K \cdot P}{S}}$$

t: 必要厚さ (mm)

d: 平板の径 (mm)

K:取付方法による係数 (-)

P:最高使用圧力 (MPa)

S:許容引張応力 (MPa)

b. 平板に穴を設ける場合であって、穴の径が平板の径の 2 分の 1 以下であり、下記 を満足するもの。

$$t = d \cdot \sqrt{\frac{2 \cdot K \cdot P}{S}}$$

t: 必要厚さ (mm)

d: 平板の径 (mm)

K:取付方法による係数(-)

P:最高使用圧力 (MPa)

S:許容引張応力 (MPa)

(3) 管台の厚さの評価

管台に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 内面に圧力を受ける管台: t₁

$$t_{1} = \frac{P \cdot D_{0}}{2 \cdot S \cdot \eta + 0.8 \cdot P}$$

P: 最高使用圧力 (MPa)

D₀:管台の外径 (mm)

S : 許容引張応力 (MPa)

η : 継手効率 (-)

b. 規格上必要な最小厚さ: t₂

炭素鋼鋼管を使用する管台にあっては、管台の外径に応じて設計・建設規格 表 PVC-3610-1 より求めた管台の厚さとする。

(4) 胴の補強を要しない穴の最大径の評価

胴の補強を要しない穴の最大径は、以下で計算した値のうちいずれかとする。

a. 穴の径が 61mm 以下で、かつ、次の式により計算した値以下の穴。

$$d_{r_1} = \frac{D-2 \cdot t_s}{4}$$

D:胴の外径 (mm)

ts:胴の最小厚さ (mm)

b. a に掲げるものを除き, 穴の径が 200mm以下で, かつ, 設計・建設規格 図 PVD-3122-1 及び図 PVD-3122-2 により求めた値以下の穴。

d r₂=8.05
$$\cdot \sqrt[3]{D \cdot t_s \cdot (1-K)}$$

D:胴の外径 (mm)

ts:胴の最小厚さ (mm)

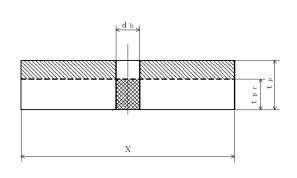
K:係数(-)

ここで、Kは、円筒形の場合、次の式により計算した値で、K>0.99 のときは、K=0.99 とする。

$$K = \frac{P \cdot D}{1.82 \cdot S \cdot \eta \cdot t s}$$

P: 最高使用圧力 (MPa)

D : 胴の外径 (mm)


S : 許容引張応力 (MPa)

η : 継手効率 (-)

ts: 胴板の最小厚さ (mm)

(5) 平板の穴の補強計算

補強に有効な範囲内にある補強に有効な面積が、補強に必要な面積より大きくなるようにすること。(図-2参照)

d_h: 穴の径 (mm)

t_{pr}: 平板の計算上必要な厚さ (mm)

t。: 平板の最小厚さ (mm)

X :補強の有効範囲 (mm)

A1:補強に有効な面積 (mm²)

Ar:補強に必要な面積 (mm²)

補強に有効な面積

補強に必要な面積

図-2 補強計算概念図

Ⅱ-2-35-添 5-3

2.1.3 評価結果

評価結果を表 $-1\sim3$ に示す。必要厚さ等を満足しており、十分な構造強度を有すると評価している。

表-1 前処理フィルタ評価結果(板厚)

機器名称	評価項目	必要厚さ (mm)	最小厚さ (mm)
前処理フィルタ 1,2	(1)胴板の厚さ	4.84	4.84以上
	(2)上部平板の厚さ	54. 71	54.71以上
	(2)下部平板の厚さ	44. 75	44.75以上
	(3)管台の厚さ	3. 80	3.80以上
前処理フィルタ 3,4	(1)胴板の厚さ	4.84	4.84以上
	(2)上部平板の厚さ	44. 75	44.75以上
	(2)下部平板の厚さ	44. 75	44.75以上
	(3)管台の厚さ	3. 80	3.80以上

表-2 前処理フィルタ評価結果 (胴の補強要否)

機器名称	評価項目	補強を要しない穴 の最大径 (mm)	穴の径 (mm)
前処理フィルタ 1,2	(4)胴(出口)	99. 93	99.93以下
前処理フィルタ 3,4	(4)胴(出口)	99. 93	99.93以下

表-3 前処理フィルタ評価結果(平板の穴の補強計算)

機器名称	評価項目	補強に必要な 面積 ^{※1} (mm²)	補強に有効な 総面積 (mm²)
前処理フィルタ 1,2	(5)平板(入口)	1.853×10^3	2.219×10^3
前処理フィルタ 3,4	(5)平板(入口)	1.853×10^3	2.219×10^3
	(5)平板 (ベント)	7.474×10^2	2.219×10^3

※1 設計・建設規格 PVD-3322 より, PVC-3160 の規定に準じた面積の 2 分の 1

2.2 吸着塔

2.2.1 評価箇所

強度評価箇所を図-3に示す。

図中の番号は、2.2.2、2.2.3の番号に対応する。

図-3 吸着塔概要図

2.2.2 評価方法

(1) 胴の厚さの評価

胴に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

- a. 規格上必要な最小厚さ: t 1 炭素鋼鋼板又は低合金鋼鋼板で作られたものにあっては3mm,その他の材料で作ら れたものにあっては 1.5mm とする。
- b. 内面に圧力を受ける胴の必要厚さ: t 2

t₂:必要厚さ (mm)

P :最高使用圧力 (MPa) $t_2 = \frac{P \cdot D_i}{2 \cdot S \cdot \eta - 1.2 \cdot P}$

D_i:胴の内径 (mm)

S : 許容引張応力 (MPa)

η : 継手効率 (-)

(2) 鏡板の厚さの評価

さら形鏡板に必要な厚さは、以下で計算した値のうちいずれか大きい方の値とする。

a. フランジ部: t₁

 $t_{1} = \frac{P \cdot D_{i}}{2 \cdot S \cdot \eta - 1.2 \cdot P}$

t₁:必要厚さ (mm)

P : 最高使用圧力 (MPa)

D_i:胴の内径 (mm)

S : 許容引張応力 (MPa)

η : 継手効率 (-)

b. 鏡板: t₂

t₂:

t2:必要厚さ (mm)

 $t_2 = \frac{P \cdot R \cdot W}{2 \cdot S \cdot \eta - 0.2 \cdot P}$

P :最高使用圧力 (MPa)

R:鏡板の中央部における内面の半径(mm)

W : さら形鏡板の形状による係数 (-)

S : 許容引張応力 (MPa)

η : 継手効率 (-)

ここで、Wは以下の式により計算した値とする。

 $W = \frac{1}{4} \cdot \left(3 + \sqrt{\frac{R}{r}} \right)$

R:鏡板の中央部における内面の半径 (mm)

r:さら形鏡板のすみの丸みの内半径 (mm)

(3) 管台の厚さの評価

管台に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 内面に圧力を受ける管台: t₁

t₁: 最小厚さ (mm)

 $t_1 = \frac{P \cdot D \circ}{2 \cdot S \cdot \eta + 0.8 \cdot P}$

P:最高使用圧力 (MPa)

D₀:管台の外径 (mm)

S : 許容引張応力 (MPa)

η : 継手効率 (-)

b. 規格上必要な最小厚さ: t₂

炭素鋼鋼管を使用する管台にあっては、管台の外径に応じて設計・建設規格 表 PVC-3610-1 より求めた管台の厚さとする。

(4) 鏡板の補強を要しない穴の最大径の評価

鏡板の補強を要しない穴の最大径は、以下で計算した値のうちいずれかとする。

a. 穴の径が 61mm 以下で、かつ、次の式により計算した値以下の穴。

$$d_{r_1} = \frac{D-2 \cdot t_c}{4}$$

dr1:補強を要しない穴の最大径 (mm)

D:鏡板のフランジ部の外径 (mm)

t。: 鏡板の最小厚さ (mm)

b. a に掲げるものを除き, 穴の径が 200mm 以下で, かつ, 設計・建設規格 図 PVD-3122-1 及び図 PVD-3122-2 により求めた値以下の穴。

dr2:補強を要しない穴の最大径 (mm)

 $d_{r_2} = 8.05 \cdot \sqrt[3]{D \cdot t_0 \cdot (1 - K)}$

D :鏡板のフランジ部の外径 (mm)

t_c :鏡板の最小厚さ (mm)

K :係数 (-)

ここで、Kは、さら形鏡板の場合、次の式により計算した値で、K>0.99 のときは、K=0.99 とする。

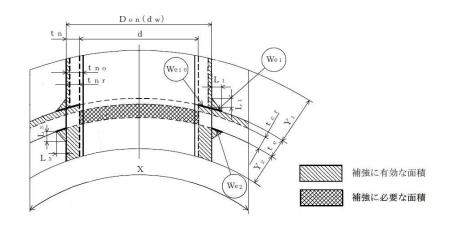
 $K = \frac{P \cdot D}{1.82 \cdot S \cdot \eta \cdot t \cdot c}$

P: 最高使用圧力 (MPa)

D:鏡板のフランジ部の外径 (mm)

S:許容引張応力 (MPa)

η:継手効率 (-)


tc:鏡板の最小厚さ (mm)

(5) 鏡板の穴の補強計算

- a. 補強に有効な範囲内にある補強に有効な面積が、補強に必要な面積より大きくなるようにすること。(図-4参照)
- b. 大きい穴の補強を要しない最大径

内径が 1500mm 以下の胴に設ける穴の径が胴の内径の 2 分の 1 (500mm を超える場合は,500mm) 以下および内径が 1500mm を超える胴に設ける穴の径が胴の内径の 3 分の 1 (1000mm を超える場合は,1000mm) 以下の場合は,大きい穴の補強計算は必要ない。

c. 溶接部の強度として、予想される破断箇所の強さが、溶接部の負うべき荷重以上であること。(図-4参照)

d : 穴の径 (mm) X, Y₁, Y₂: 補強の有効範囲 (mm)

 d_w : 管台が取り付く穴の径 (mm) L_1 , L_3 : 溶接寸法 (mm)

 D_{on} : 管台の外径 (mm) A_{r} : 補強に必要な面積 (mm²)

 t_{\circ} : 鏡板の最小厚さ (mm) A_{\circ} : 補強に有効な面積 (= $A_1+A_2+A_3$) (mm²)

 $t_{\rm cr}$: 鏡板の計算上必要な厚さ (mm) $W_{\rm ebp1}$: 予想される破断箇所の強さ (pm) (pm) (pm) (pm) (pm) (pm)

 $t_{\rm n}$: 管台の最小厚さ (mm) $W_{\rm ebp2}$: 予想される破断箇所の強さ (管台側) $(=W_{\rm el}+W_{\rm el0})$ (N)

t nr: 管台の計算上必要な厚さ (mm)

図-4 補強計算概念図

2.2.3 評価結果

評価結果を表 $-4\sim6$ に示す。必要厚さ等を満足しており、十分な構造強度を有すると評価している。

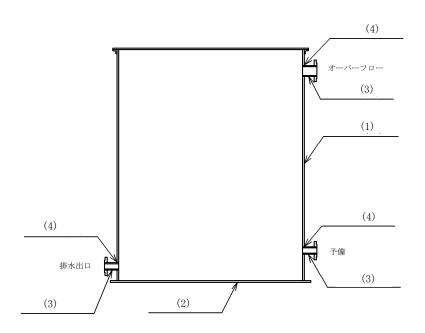
表-4 吸着塔の評価結果(板厚)

機器名称	評価項目	必要厚さ (mm)	最小厚さ (mm)
	(1)胴板の厚さ	10. 91	10.91 以上
	(2)鏡板の厚さ	13. 91	13.91 以上
吸着塔 1 ~ 5	(3)管台の厚さ(入口)	3.00	3.00以上
	(3)管台の厚さ(出口)	3.00	3.00以上
	(3)管台の厚さ (ベント)	2.40	2.40 以上
	(3)管台の厚さ (マンホール)	3.80	3.80以上

表-5 吸着塔の評価結果 (鏡板の補強要否確認)

機器名称	評価項目	補強を要しない穴 の最大径 (mm)	穴の径 (mm)
	(4)鏡板 (入口)		200 以下
吸着塔 1 ~ 5	(4)鏡板(出口)	200	200 以下
	(4)鏡板 (ベント)	200	200 以下
	(4)鏡板(マンホール)	200	200 を超える ^{※2}

※2 鏡板の穴の補強計算を行う


表-6 吸着塔の評価結果 (鏡板の穴の補強計算)

機器名称	評価項目	評価結果		
		補強に必要な	補強に有効な	
		面積(mm²)	総面積(mm²)	
		3.516×10^3	5.252×10^3	
		大きな穴の補強を要	穴の径	
│ 吸着塔 1 ~ 5	 (5)鏡板(マンホール)	しない最大径(mm)	(mm)	
吸有培 1 ∼ 5		500	500 以下	
		溶接部の負う	予想される破断	
		べき荷重(N)	箇所の強さ(N)	
		5.476×10^4	(胴側)1.969×10 ⁶	
			(管台側)1.715×10 ⁶	

2.3 処理装置供給タンク

2.3.1 評価箇所

強度評価箇所を図-5に示す。

図中の番号は, 2.3.2, 2.3.3の番号に対応する。

図-5 処理装置供給タンク概要図

2.3.2 評価方法

(1) 胴の厚さの評価

開放タンクの胴に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 規格上必要な最小厚さ: t1

炭素鋼鋼板又は低合金鋼鋼板で作られた場合は 3mm, その他の材料で作られた場合は 1.5mm とする。

b. 胴の計算上必要な厚さ: t 2

 t_2 : 必要厚さ (mm) $t_2 = \frac{D_i \cdot H \cdot \rho}{0.204 \cdot S \cdot \eta} \hspace{1cm} D_i : 胴の内径 (m) \\ H : 水頭 (m)$

 ρ : 液体の比重。ただし、1未満の場合は、

1とする。

S : 許容引張応力 (MPa)

η : 継手効率 (-)

Ⅱ-2-35-添 5-10

c. 胴の内径に応じた必要厚さ: t3

胴の内径が 5m を超えるものについては, 胴の内径の区分に応じ設計・建設規格 表 PVC-3920-1 より求めた胴の厚さとする。

(2) 底板の厚さの評価

地面,基礎等に直接接触する開放タンクの底板の厚さは、3mm以上であること。

(3) 管台の厚さの評価

管台に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 管台の計算上必要な厚さ: t 1

 $t_{i} = \frac{D_{i} \cdot H \cdot \rho}{0.204 \cdot S \cdot n}$

t₁: 必要厚さ (mm)

D_i: 管台の内径 (m)

H : 水頭 (m)

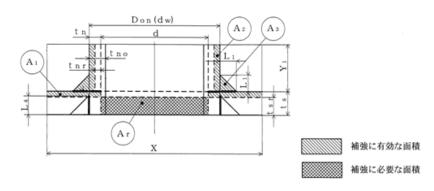
ρ : 液体の比重。ただし, 1未満の場合は,

1とする。

S : 許容引張応力 (MPa)

η : 継手効率 (-)

b. 規格上必要な最小厚さ: t₂


管台の外径に応じ設計・建設規格 表 PVC-3980-1 より求めた管台の厚さとする。

(4) 胴の穴の補強計算

- a. 補強に有効な範囲内にある補強に有効な面積が、補強に必要な面積より大きくなるようにすること。(図-6参照)
- b. 大きい穴の補強を要しない最大径

内径が 1500mm 以下の胴に設ける穴の径が胴の内径の 2 分の 1 (500mm を超える場合は,500mm) 以下および内径が 1500mm を超える胴に設ける穴の径が胴の内径の 3 分の 1 (1000mm を超える場合は,1000mm) 以下の場合は,大きい穴の補強計算は必要ない。

c. 溶接部の強度として、予想される破断箇所の強さが、溶接部の負うべき荷重以上であること。(図-6参照)

d : 穴の径 (mm)

X, Y₁, Y₂:補強の有効範囲 (mm)

d w: 管台が取り付く穴の径 (mm)

L₁, L₄:溶接寸法 (mm)

Don:管台の外径 (mm)

Ar: 補強に必要な面積 (mm²)

t_s:胴板の最小厚さ (mm)

 A_0 :補強に有効な面積($=A_1+A_2+A_3$)(mm²)

t_{sr}:胴板の計算上必要な厚さ (mm)

tn:管台の最小厚さ (mm)

t_m:管台の計算上必要な厚さ (mm)

図-6 補強計算概念図

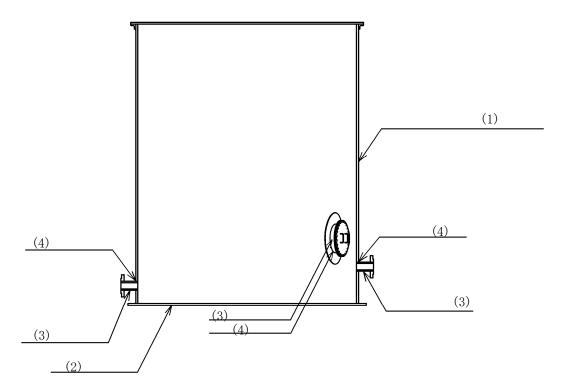
2.3.3 評価結果

評価結果を表-7,8に示す。必要厚さ等を満足しており、十分な構造強度を有する と評価している。

表-7 処理装置供給タンクの評価結果(板厚)

機器名称	評価項目	必要厚さ (mm)	最小厚さ (mm)	
	(1)胴板の厚さ	1.50	1.50以上	
An extra vide trat All AA	(2)底板の厚さ	3.00	3.00以上	
処理装置供給 タンク	(3)管台の厚さ(排水出口)	3. 50	3.50以上	
(SUS316L)	(3) 管台の厚さ (オーバーフ	3. 50	3.50以上	
(Session)	ロー)			
	(3)管台の厚さ (予備)	3.50	3.50以上	
処理装置供給 タンク (SM400C)	(1)胴板の厚さ	3.00	3.00以上	
	(2)底板の厚さ	3.00	3.00以上	
	(3)管台の厚さ(排水出口)	3.50	3.50以上	
	(3) 管台の厚さ (オーバーフ	3.50	3.50以上	
(3)(4000)	ロー)			
	(3)管台の厚さ (予備)	3.50	3.50以上	

表-8 処理装置供給タンクの評価結果 (胴の穴の補強計算)


機器名称	評価項目	評価結果		
		補強に必要な	補強に有効な	
		面積 (mm²)	総面積 (mm²)	
		6.961×10^{1}	7.577×10^{2}	
	(4)胴(排水出口)	大きな穴の補強を要	穴の径	
		しない最大径 (mm)	(mm)	
	(4)胴(予備)	1000	1000以下	
		溶接部の負う	予想される破断	
6π τπ 1+ ππ (H- ψΛ		べき荷重 (N)	箇所の強さ (N)	
処理装置供給 タンク		-6.080×10^4	_*3	
(SUS316L)	(4)胴(オーバーフロー)	補強に必要な	補強に有効な	
(SUSSIOL)		面積 (mm²)	総面積 (mm²)	
		1.019×10^2	1.122×10^3	
		大きな穴の補強を要	穴の径	
		しない最大径 (mm)	(mm)	
		1000	1000以下	
		溶接部の負う	予想される破断	
		べき荷重 (N)	箇所の強さ(N)	
		-8.921×10^4	*3	
		補強に必要な	補強に有効な	
		面積(mm²)	総面積 (mm²)	
		7.756×10^{1}	7.437×10^2	
	(4)胴(排水出口)	大きな穴の補強を要	穴の径	
	(4)胴(予備)	しない最大径(mm)	(mm)	
		1000	1000 以下	
		溶接部の負う	予想される破断	
加细壮栗什么		べき荷重 (N)	箇所の強さ(N)	
処理装置供給 タンク		-5.341×10^4	_*3	
(SM400C)	(4)胴(オーバーフロー)	補強に必要な	補強に有効な	
(SM400C)		面積 (mm²)	総面積 (mm²)	
		1.142×10^2	1.084×10^3	
		大きな穴の補強を要	穴の径	
		しない最大径 (mm)	(mm)	
		1000	1000 以下	
		溶接部の負う	予想される破断	
		べき荷重 (N)	箇所の強さ(N)	
		-7.886×10^4	_ *3	

※3 溶接部の負うべき荷重が負であり溶接部の強度計算は不要

2.4 サンプルタンク, RO 濃縮水処理水中継タンク

2.4.1 評価箇所

強度評価箇所を図-7に示す。

図中の番号は, 2.4.2, 2.4.3の番号に対応する。

図-7 サンプルタンク, RO 濃縮水処理水中継タンク概要図

2.4.2 評価方法

(1) 胴の厚さの評価

開放タンクの胴に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 規格上必要な最小厚さ: t 1

炭素鋼鋼板又は低合金鋼鋼板で作られた場合は 3mm, その他の材料で作られた場合は 1.5mm とする。

b. 胴の計算上必要な厚さ: t₂

t₂: 必要厚さ (mm) $t_2 = \frac{D_i \cdot H \cdot \rho}{0.204 \cdot S \cdot n}$

Di: 胴の内径 (m)

H: 水頭 (m)

ρ: 液体の比重。ただし、1 未満の場合は、

1とする。

S: 許容引張応力 (MPa)

n : 継手効率 (-)

c. 胴の内径に応じた必要厚さ: t3

胴の内径が 5m を超えるものについては,胴の内径の区分に応じ設計・建設規格 表 PVC-3920-1 より求めた胴の厚さとする。

(2) 底板の厚さの評価

地面、基礎等に直接接触する開放タンクの底板の厚さは、3mm以上であること。

(3) 管台の厚さの評価

管台に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 管台の計算上必要な厚さ: t₁

t₁: 必要厚さ (mm)

D_i: 管台の内径 (m) $t_{i} = \frac{D_{i} \cdot H \cdot \rho}{0.204 \cdot S \cdot n}$ H : 水頭 (m)

ρ: 液体の比重。ただし、1未満の場合は、

1とする。

S: 許容引張応力 (MPa)

η : 継手効率 (-)

b. 規格上必要な最小厚さ: t₂

管台の外径に応じ設計・建設規格 表 PVC-3980-1 より求めた管台の厚さとする。

(4) 胴の穴の補強計算

a. 補強に有効な範囲内にある補強に有効な面積が、補強に必要な面積より大きくな るようにすること。(図-8参照)

b. 大きい穴の補強を要しない最大径

内径が 1500mm 以下の胴に設ける穴の径が胴の内径の 2 分の 1 (500mm を超える場 合は,500mm) 以下および内径が 1500mm を超える胴に設ける穴の径が胴の内径の 3 分の 1 (1000mm を超える場合は、1000mm) 以下の場合は、大きい穴の補強計算は必 要ない。

c. 溶接部の強度として、予想される破断箇所の強さが、溶接部の負うべき荷重以上であること。(図-8参照)

補強に必要な面積

胴のうち補強に有効な面積

管台のうち補強に有効な面積

※※※ 強め材の断面積

△ すみ肉溶接部の断面積

d : 胴の断面に現れる穴の径 (mm) X_1, X_2, Y_1, Y_2 : 補強の有効範囲 (mm)

 $t_s: 胴板の厚さ (mm) W_o: 強め材の外径 (mm)$

 t_n : 管台の厚さ (mm) A_r : 補強に必要な面積 (mm^2)

 t_{mr} : 管台の計算上必要な厚さ (mm) A_0 : 補強に有効な総面積 (mm²)

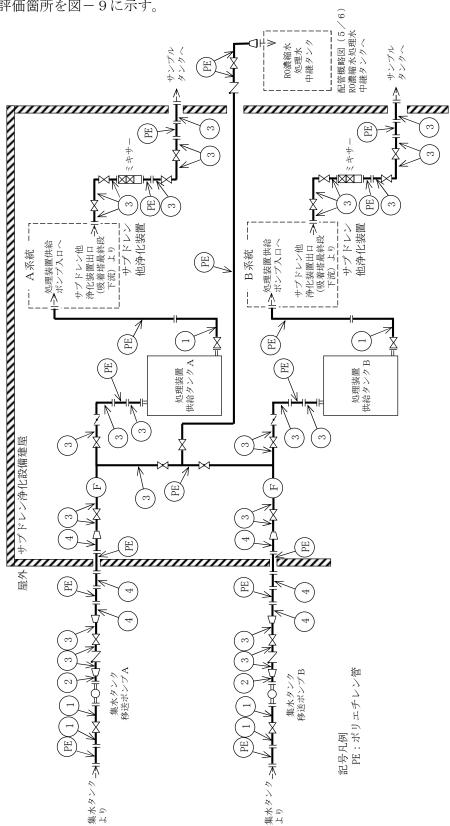
図-8 補強計算概念図

2.4.3 評価結果

評価結果を表-9,10 に示す。必要厚さ等を満足しており、十分な構造強度を有すると評価している。

表-9 サンプルタンク、RO濃縮水処理水中継タンクの評価結果(板厚)

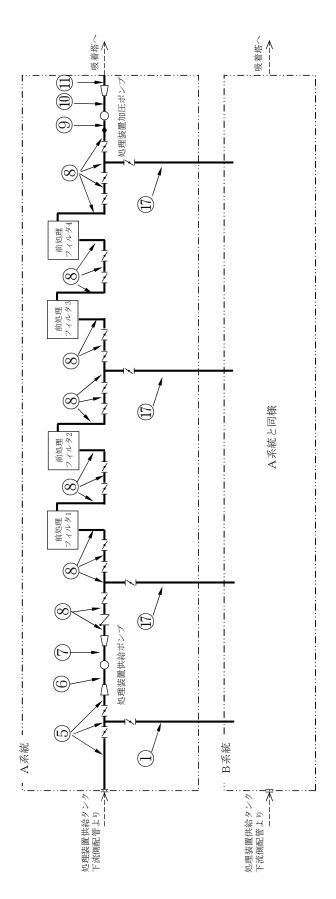
機器名称	評価項目	必要厚さ (mm)	最小厚さ (mm)
	(1)胴板の厚さ	11.7	12. 0
	(2)底板の厚さ	3. 00	11.2
サンプルタンク	(3)管台の厚さ (100A)	3. 50	5. 25
	(3)管台の厚さ (200A)	3. 50	7. 18
	(3)管台の厚さ (マンホール)	3. 50	11. 2
	(1)胴板の厚さ	11.7	12. 0
DO 連絡水加珊水	(2)底板の厚さ	3.00	11. 2
RO 濃縮水処理水中継タンク	(3)管台の厚さ (100A)	3. 50	5. 25
	(3)管台の厚さ (200A)	3. 50	7. 18
	(3)管台の厚さ (マンホール)	3. 50	11.2


表-10 サンプルタンク, RO 濃縮水処理水中継タンクの評価結果 (胴の穴の補強計算)

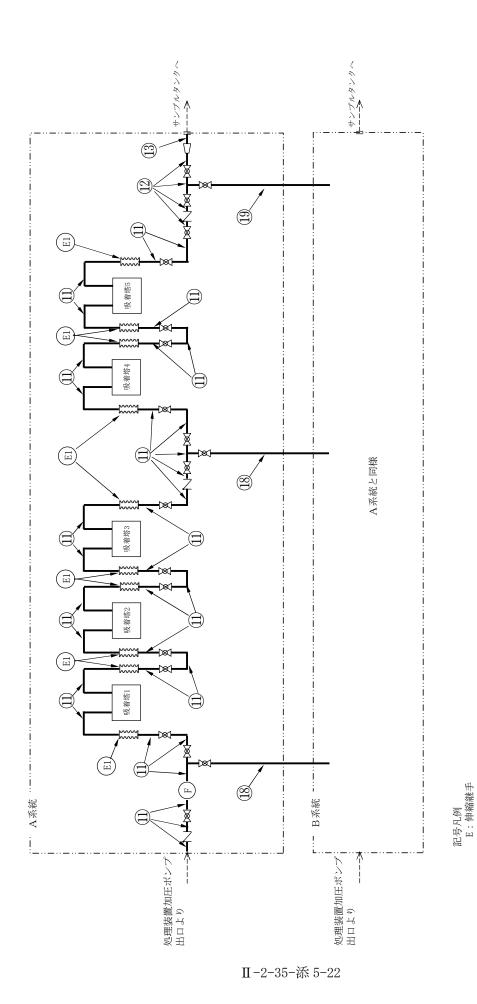
機器名称	評価項目	評価結果		
		補強に必要な	補強に有効な	
		面積 (mm²)	総面積(mm²)	
		7. 318×10^2	1.6222×10^3	
		補強に必要な 面積 (mm²) 補強に有効な 総面積 (mm²) 7.318×10² 1.6222×10³ 大きな穴の補強を要 しない最大径 (mm) 穴の径 (mm) 1000 1000以下 溶接部の負う べき荷重 (N) 予想される破け 箇所の強さ (N 3.5520×10⁴ 1.05278×10⁵ 補強に必要な 面積 (mm²) 総面積 (mm²) 1.4204×10³ 3.1414×10³ 大きな穴の補強を要 しない最大径 (mm) (mm) 1000 1000以下 溶接部の負う べき荷重 (N) 労想される破け (mm) べき荷重 (N) 箇所の強さ (N 6.1220×10⁴ 2.88899×10⁵ 補強に必要な 面積 (mm²) 補強に有効な 総面積 (mm²) 4.466×10³ 7.6348×10³ 大きな穴の補強を要 穴の径	穴の径	
	(4)胴(100A 管台)	しない最大径 (mm)	(mm)	
		1000	1000 以下	
		溶接部の負う	予想される破断	
		べき荷重 (N)	箇所の強さ (N)	
		3.5520×10^4	1.05278×10^{5}	
		補強に必要な	補強に有効な	
		面積(mm²)	総面積(mm²)	
		1.4204×10^3	3.1414×10^3	
サンプルタンク		大きな穴の補強を要	穴の径	
	(4)胴(200A 管台)	しない最大径 (mm)	(mm)	
		1000	1000 以下	
			予想される破断	
			箇所の強さ (N)	
		6. 1220×10 ⁴	1.6222×10 ³	
		補強に必要な	補強に有効な	
		面積(mm²)	総面積(mm²)	
		4.466×10^3	7. 6348×10^3	
		大きな穴の補強を要	穴の径	
	(4)胴(マンホール)	しない最大径 (mm)(mm)10001000 以下溶接部の負う予想される破断べき荷重 (N)3.5520×10⁴1.05278×10⁵補強に必要な補強に有効な面積 (mm²)総面積 (mm²)1.4204×10³3.1414×10³大きな穴の補強を要穴の径しない最大径 (mm)(mm)10001000 以下溶接部の負う予想される破断べき荷重 (N)6.1220×10⁴2.88899×10⁵補強に必要な補強に有効な補強に必要な補強に有効なが直積 (mm²)2.6348×10³大きな穴の補強を要穴の径しない最大径 (mm)(mm)10001000 以下溶接部の負う予想される破断べき荷重 (N)箇所の強さ (N)	(mm)	
		1000	1000 以下	
		溶接部の負う	予想される破断	
		べき荷重 (N)	箇所の強さ(N)	
		1.6324×10^{5}	1. 160164×10^6	

機器名称	評価項目	評価結果		
		補強に必要な	補強に有効な	
		面積 (mm²)	総面積(mm²)	
		7.318×10^{2}	1.6222×10^3	
		大きな穴の補強を要	穴の径	
	(4)胴(100A 管台)	しない最大径(mm)	(mm)	
		1000	1000 以下	
		溶接部の負うべき	予想される破断	
		荷重(N)	箇所の強さ(N)	
		3.5520×10^4	1.05278×10^5	
		補強に必要な	補強に有効な	
		面積(mm²)	総面積(mm²)	
		1.4204×10^3	3.1414×10^3	
RO 濃縮水処理水			 穴の径	
中継タンク	(4)胴(200A 管台)		(mm)	
		1000	1000 以下	
		溶接部の負うべき	予想される破断	
		荷重(N)	箇所の強さ(N)	
		6. 1220×10 ⁴	2.88899×10^{5}	
		補強に必要な	補強に有効な	
		面積(mm²)	総面積 (mm²)	
		4.466×10^3	7. 6348×10^3	
		大きな穴の補強を要	穴の径	
	(4)胴(マンホール)	しない最大径(mm)	(mm)	
		1000	1000 以下	
		溶接部の負うべき	予想される破断	
		荷重(N)	箇所の強さ(N)	
		1.6324×10^5	1. 160164×10^6	

2. 5. 1 評価箇所

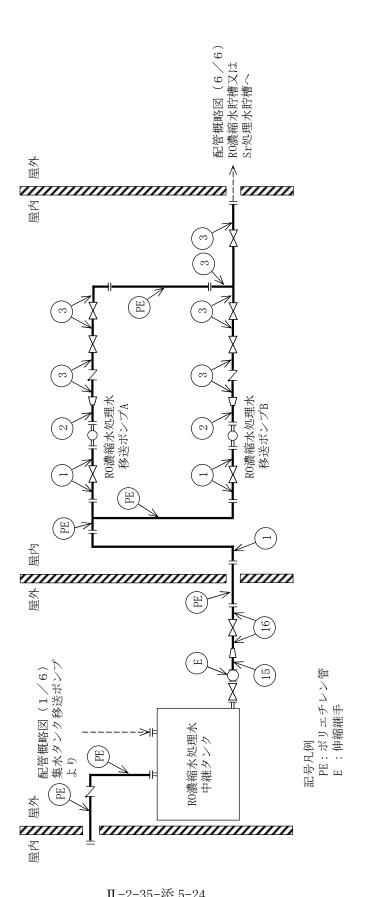

強度評価箇所を図-9に示す。

Ⅱ-2-35-添 5-20

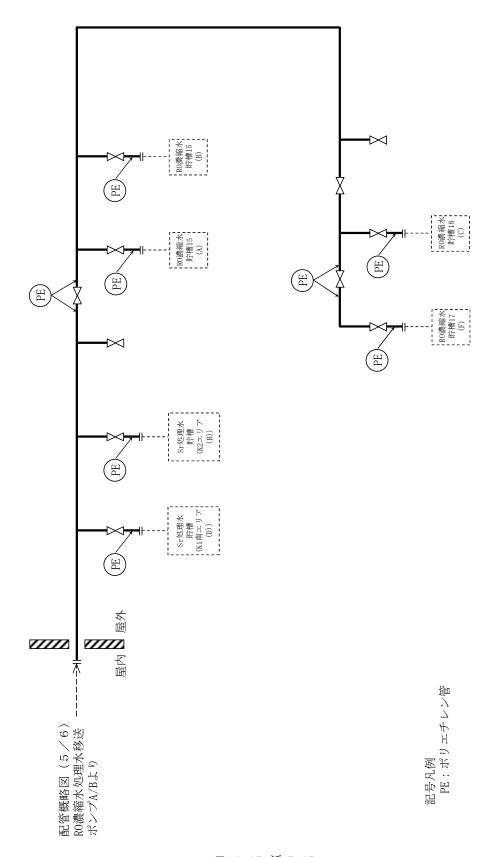

配管概略図 (1/6) 6 \mathbb{X}

図中の番号は, 2.5.3の番号に対応する。

図中の番号は,2.5.3の番号に対応する。



図中の番号は,2.5.3の番号に対応する。


図中の番号は, 2.5.3の番号に対応する。

Ⅱ-2-35-添 5-23

図中の番号は, 2.5.3の番号に対応する。

Ⅱ-2-35-添 5-24

Ⅱ-2-35-添 5-25

2.5.2 評価方法

(1) 管の厚さの評価

管の必要な厚さは、次に掲げる値のいずれか大きい方の値とする。

a. 内面に圧力を受ける管

t : 必要厚さ (mm)

 $t = \frac{P \cdot D \circ}{2 \cdot S \cdot \eta + 0.8 \cdot P}$

P : 最高使用圧力 (MPa)

D₀:管の外径 (mm)

S : 許容引張応力 (MPa)

η : 継手効率 (-)

b. 炭素鋼鋼管の設計・建設規格上必要な最小必要厚さ: t t

設計・建設規格 PPD-3411(3)の表 PPD-3411-1 より求めた値

(2) 伸縮継手における疲労評価

伸縮継手については、次の計算式により計算した許容繰り返し回数が、実際の繰り返 し回数以上のものとする。

$$N = \left(\frac{11031}{\sigma}\right)^{3.5}$$

N : 許容繰返し回数

σ :継手部応力 (MPa)

ここで、継手部応力は、調整リングが付いていない場合の以下の式により計算した値とする。

 $\sigma = \frac{1.5 \cdot E \cdot t \cdot \delta}{n \cdot \sqrt{b \cdot h^3}} + \frac{P \cdot h^2}{2 \cdot t^2 \cdot c}$

E: 材料の縦弾性係数 (MPa)

t : 継手部の板の厚さ (mm)

δ : 全伸縮量 (mm)

n:継手部の波数の2倍の値

b:継手部の波のピッチの2分の1 (mm)

h:継手部の波の高さ (mm)

P: 最高使用圧力 (MPa)

c : 継手部の層数

2.5.3 評価結果

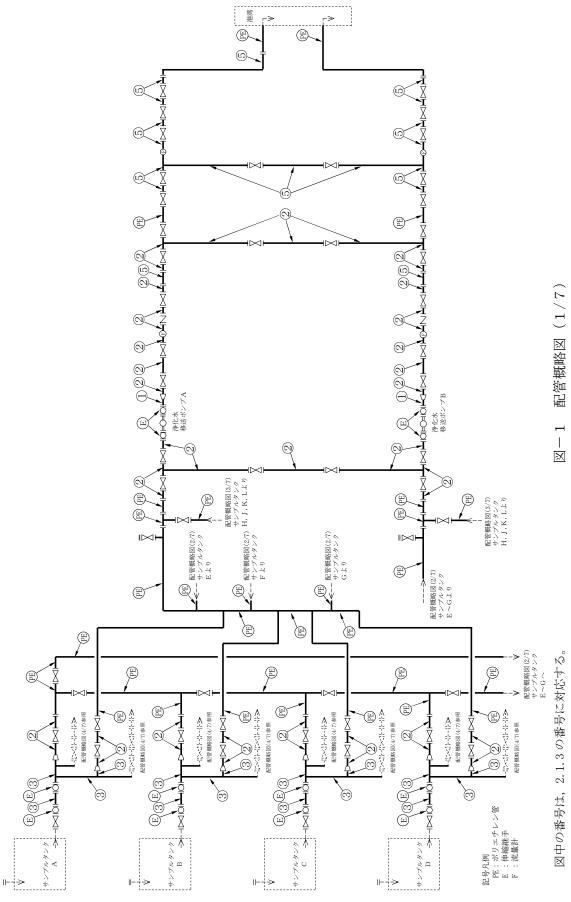
評価結果を表-11,12 に示す。必要厚さ等を満足しており、十分な構造強度を有していると評価している。

表-11 配管の評価結果(管厚)

	外径	4X 11	最高使用	最高使用	必要厚さ	最小厚さ
No.	(mm)	材料	圧力(MPa)	温度 (℃)	(mm)	(mm)
1	114. 30	STPT410	静水頭	40	_	5. 25
2	60.50	STPT410	0. 98	40	2. 40	4.81
3	114. 30	STPT410	0. 98	40	3. 40	5. 25
4	165. 20	STPT410	0. 98	40	3.80	6. 21
5	114. 30	UNS S32750 (ASME SA 790)	静水頭	40	_	2. 67
6	88. 90	UNS S32750 (ASME SA 790)	静水頭	40	_	4.80
7	60. 33	UNS S32750 (ASME SA 790)	1.03	40	0.14	3. 42
8	88. 90	UNS S32750 (ASME SA 790)	1.03	40	0. 20	2. 67
9	88. 90	UNS S32750 (ASME SA 790)	1.03	40	0. 20	4.80
10	60. 33	UNS S32750 (ASME SA 790)	1. 55	40	0. 21	3. 42
11)	88. 90	UNS S32750 (ASME SA 790)	1. 55	40	0.31	2. 67
12	88. 90	UNS S32750 (ASME SA 790)	0. 98	40	0. 19	2. 67
13	114. 30	UNS S32750 (ASME SA 790)	0.98	40	0. 25	2. 67
14)	114. 30	STPG370	0. 98	40	3.40	5. 25
15)	216. 30	STPG370	静水頭	40	_	7. 18
16)	114. 30	STPT370	静水頭	40	_	5. 25
17)	89. 10	STPT410	1.03	40	3.00	4.81
18	89. 10	STPT410	1. 55	40	3.00	4.81
19	89. 10	STPT410	0. 98	40	3.00	4.81

表-12 伸縮継手の評価結果(管厚)

No. 材料		最高使用	最高使用	許容繰り	実際の繰り
No.	1/1 1/1	圧力(MPa)	温度 (℃)	返し回数(回)	返し回数(回)
E1	UNS N04400 (ASME SB 127 / ASTM B 127)	1.55	40	6. 3×10^3	0.1×10^3

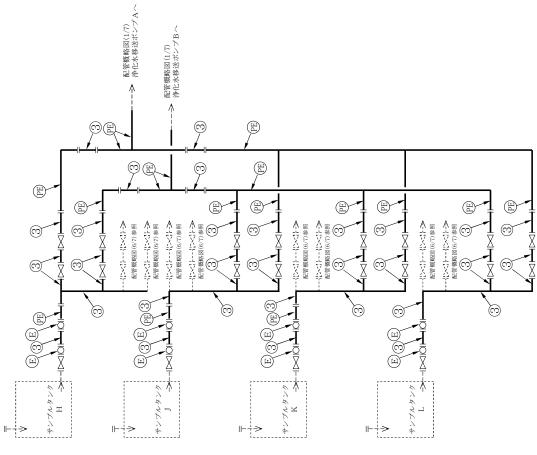

サブドレン他移送設備の強度に関する説明書

1. 強度評価の方針

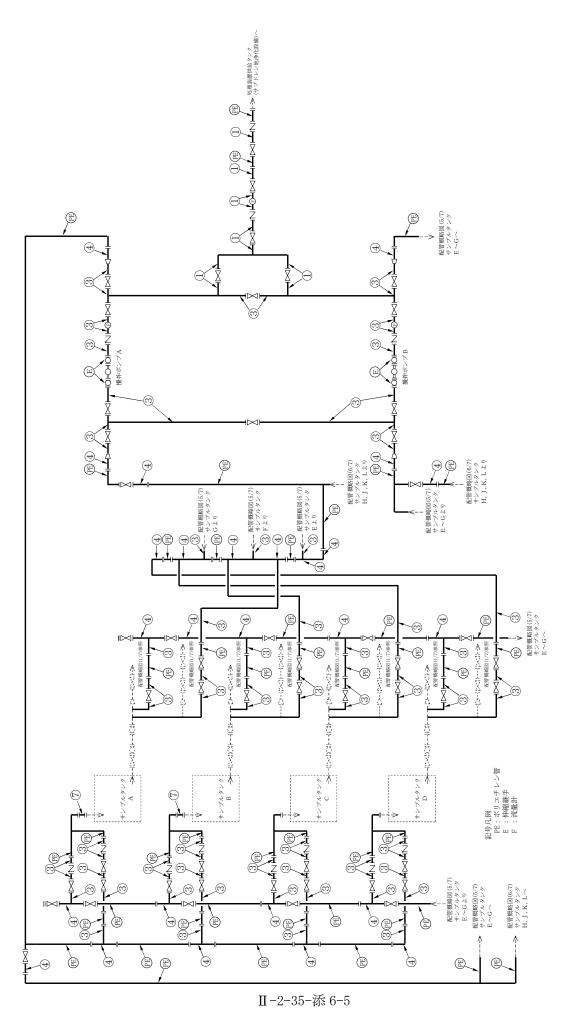
サブドレン他移送設備を構成する主配管(鋼管)は、強度評価においては、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」(以下、「設計・建設規格」という。)のクラス3配管に準じた評価を行う。

- 2. 強度評価
- 2.1 主配管
- 2.1.1 評価箇所

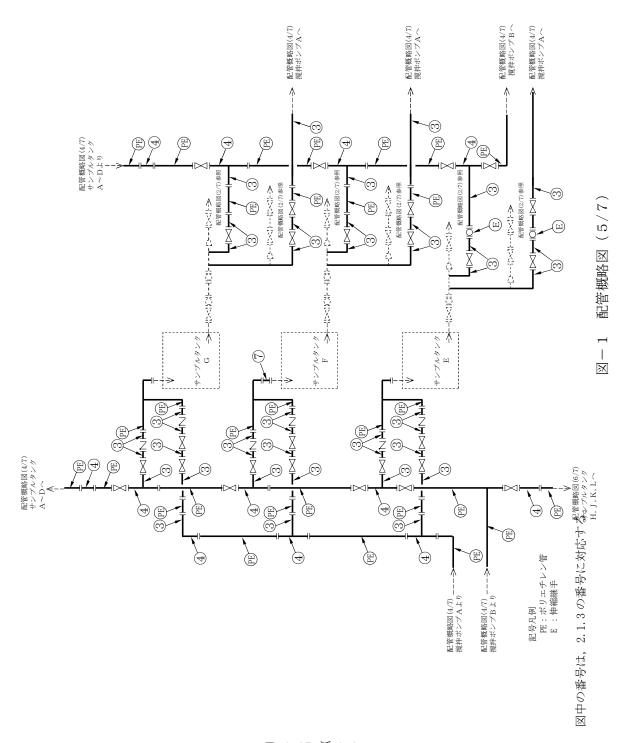
強度評価箇所を図-1に示す。

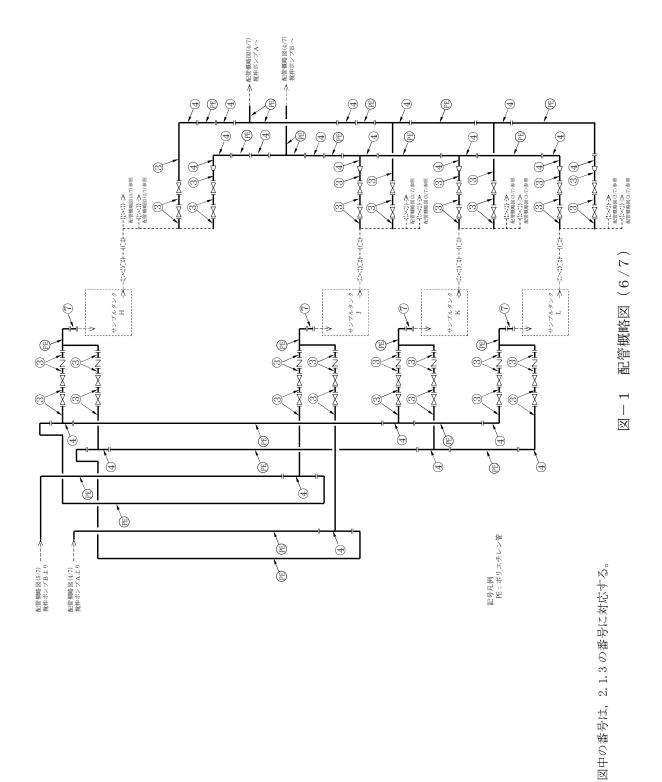


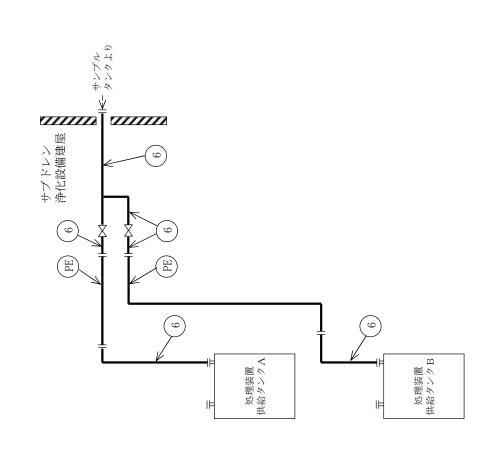
Ⅱ-2-35-添 6-2


図中の番号は,2.1.3の番号に対応する。 図ー1配管概略図(2/7)

Ⅱ-2-35-添 6-3


図中の番号は,2.1.3の番号に対応する。


記号凡例 PE:ポリエチレン管 E:伸縮継手



図中の番号は, 2.1.3の番号に対応する。

Ⅱ-2-35-添 6-6

記号凡例 PE:ポリエチレン管 図中の番号は,2.1.3の番号に対応する。

Ⅱ-2-35-添 6-8

2.1.2 評価方法

(1) 管の厚さの評価

管の必要な厚さは、次に掲げる値のいずれか大きい方の値とする。

a. 内面に圧力を受ける管

t : 必要厚さ (mm)

 $t = \frac{P \cdot D \circ}{2 \cdot S \cdot \eta + 0.8 \cdot P}$

P: 最高使用圧力 (MPa)

D₀: 管の外径 (mm)

S : 許容引張応力 (MPa)

η : 継手効率 (-)

b. 炭素鋼鋼管の設計・建設規格上必要な最小必要厚さ: t_t 設計・建設規格 PPD-3411(3)の表 PPD-3411-1 より求めた値

2.1.3 評価結果1

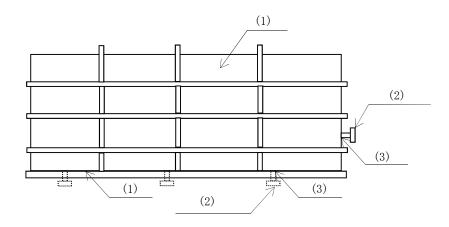
評価結果を表-1に示す。必要厚さ等を満足しており、十分な構造強度を有していると評価している。

外径 最高使用 最高使用 必要厚さ 最小厚さ 材料 No. 温度 (℃) (mm) 圧力(MPa) (mm) (mm) (1)5.25 114.3 STPG370 0.98 40 3.4 (2) 165.2 STPG370 0.98 40 3.8 6.21 7.17 216.3 STPG370 0.98 40 3.8 4 267.4 STPG370 0.98 40 3.8 8.13 (5)SUS316LTP 165.2 0.98 40 0.73 6.21 6 114.3 STPT410 0.98 40 3.4 5.25 $\overline{7}$ 216.3 SUS316LTP 0.49 40 0.48 7.17

表-1 配管の評価結果(管厚)

※配管仕様毎に最も高い圧力にて評価

地下水ドレン集水設備の強度に関する説明書


1. 強度評価の方針

強度評価においては、地下水ドレン中継タンクは JIS 等に準じた評価を行う。主配管(鋼管)は「JSME S NC-1 発電用原子力設備規格 設計・建設規格」(以下、「設計・建設規格」という。)のクラス3配管に、準じた評価を行う。

2. 強度評価

- 2.1 地下水ドレン中継タンク
- 2.1.1 評価箇所

強度評価箇所を図-1に示す。

図中の番号は、2.1.2の番号に対応する。

図-1 地下水ドレン中継タンク概要図

2.1.2 評価方法

(1) 側板, 底板の評価

地下水ドレン中継タンクの側板,底板の必要厚さは,それぞれ次に掲げる値のうちいずれか大きい値とする。

a. 規格上必要な最小厚さ

側板, 底板の最小厚さは, それぞれ 4.5mm, 6.0mm とする。

b. 計算上必要な厚さ: t

t = d (β · P / fb · η)^{1/2} + c δ = α · P · d⁴ / E · (T - c)³ \leq d / 300

ここに, t:最小必要厚さ (mm)

β: d/Dに対する応力係数

d:短辺の長さ (mm)

D:長辺の長さ (mm)

P:作用する荷重 (MPa)

fb: 許容曲げ応力 (N/mm²)

η:溶接継手効率

c:腐れ代 (mm)

δ: 最大たわみ量 (mm)

 $\alpha: d/D$ に対するたわみ係数

E:縦弾性係数 (N/mm²)

T:使用板厚(mm)

(2) 管台の厚さの評価

管台に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 規格上必要な最小厚さ

管台の外径に応じ,「JIS B 8501 鋼製石油貯槽の構造(全溶接製)」に規定された値とする。

b. 計算上必要な厚さ: t

t = Di \times H \times ρ / (0.204 \times S \times η) \times 1000 + c

ここに, t:必要厚さ (mm)

Di:管台の内径 (m)

H: 水頭 (m)

ρ:液体の比重

S:許容引張応力 (MPa)

η:継手効率

c : 腐れ代 (mm)

(3) 管台の穴の補強計算

管台取付部の穴の補強について,補強に有効な範囲内にある有効面積が,補強に必要な 面積より大きくなるようにする。

 $Ar = Dp \times ta$

At = A1 + A2 + A3 + A4 + A5

ここに, Ar:補強に必要な面積 (mm²)

Dp:取付部板の開口径 (mm)

ta: 腐れ代を差引いた取付部板の板厚 (mm)

At:補強に有効な面積の合計 (mm²)

A1: 強め材の有効面積 (= 2 × (Dp — Dr / 2) × tr) (mm²)

A2: 管台(外側)の有効面積 (= 2 × (4 × tn) × tn) (mm²)

A3:管台(板部)の有効面積 (= 2 × t × tn) (mm²)

A4: 管台(内側)の有効面積(=2×(4×tn)×tn)(mm²)

A5: 側板腐食代分の有効面積 (= 2 × (Dp / 2) × ts) (mm²)

Dr:強め材の開口径 (mm)

tr:強め材の実際の板厚 (mm)

tn:管台の採用板厚 (mm)

t:取付部板の実際の板厚(mm)

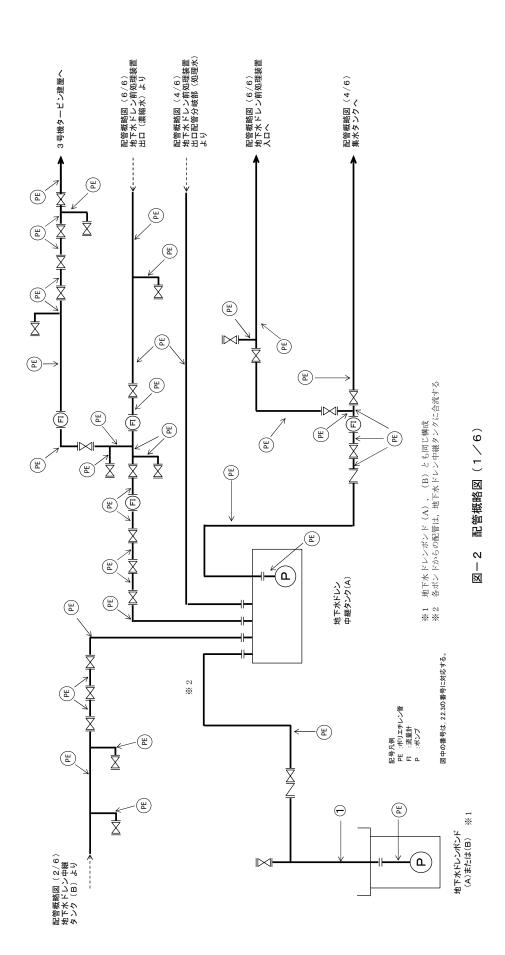
ts:取付部板の腐れ代 (mm)

2.1.3 評価結果

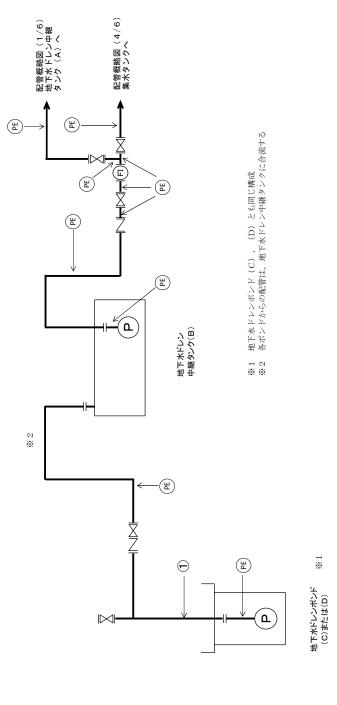
評価結果を表-1, 2に示す。必要厚さ等を満足しており、十分な構造強度を有すると評価している。

表-1 地下水ドレン中継タンクの評価結果(板厚)

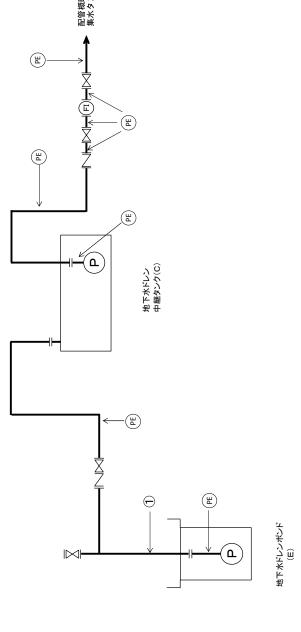
機器名称	評価項目	必要厚さ	最小厚さ
		(mm)	(mm)
地下水ドレン	側板の厚さ	4. 5	4.5以上
中継タンク	底板の厚さ	6. 0	6.0以上
	管台の厚さ		E E DI L
	(流出管, ドレン管:50A)	5. 5	5.5以上

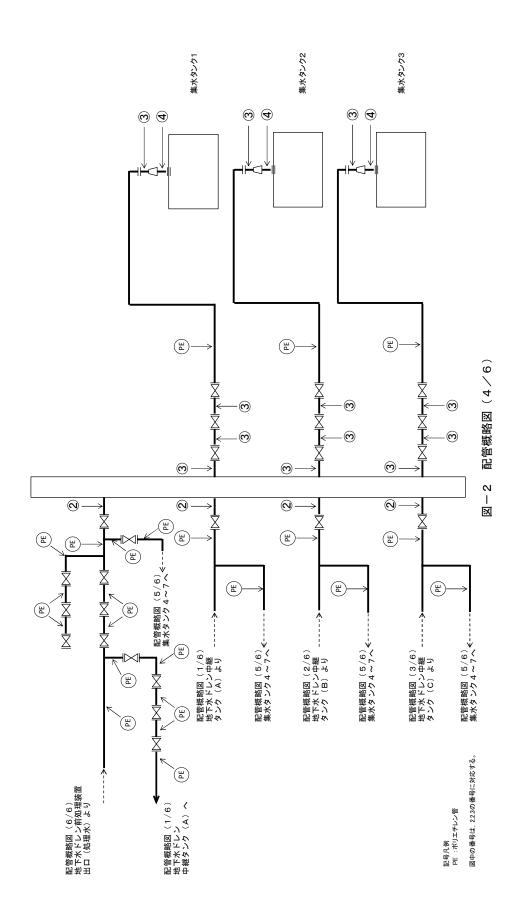

表-2 地下水ドレン中継タンクの評価結果(管台の穴の補強計算)

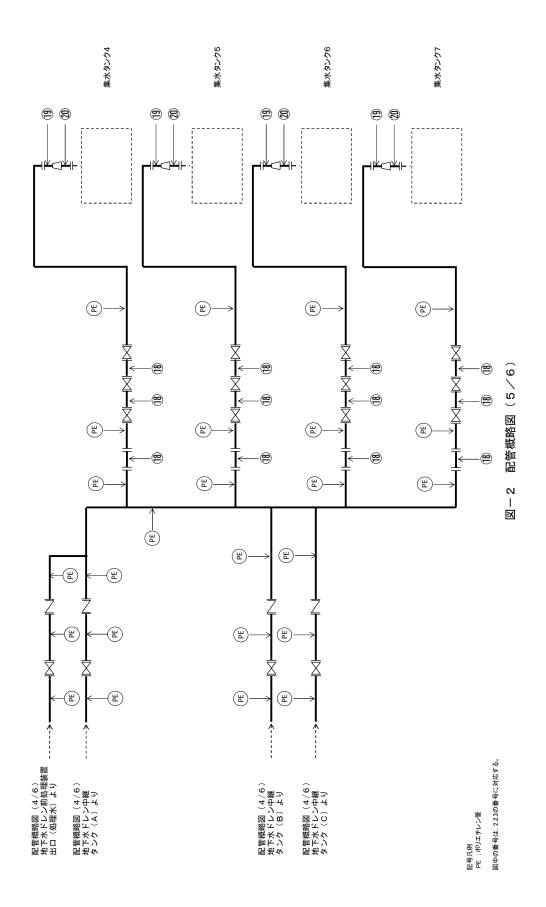
機器名称	評価項目	評価結果		
(茂谷) 4 小	計価項目	補強に必要な面積 (mm²)	補強に有効な総面積 (mm²)	
地下水ドレン	流出管:50A	320	372	
中継タンク	ドレン管:50A	512	981	

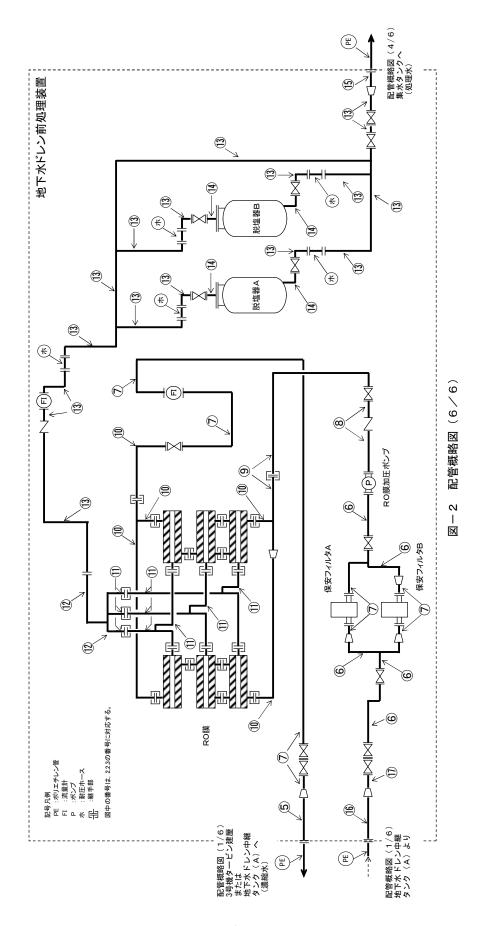

2.2 主配管

2.2.1 評価箇所


強度評価箇所を図ー2に示す。


Ⅱ-2-35-添 7-4


図中の番号は, 2.2.3の番号に対応する。


図中の番号は, 2.2.3の番号に対応する。

Ⅱ-2-35-添 7-7

Ⅱ-2-35-添 7-8

Ⅱ-2-35-添 7-9

2.2.2 評価方法

(1) 管の厚さの評価

管の必要な厚さは,次に掲げる値とする。

a. 内面に圧力を受ける管

 $t = \frac{P \cdot D \circ}{2 \cdot S \cdot \eta + 0.8 \cdot P}$

t :必要厚さ (mm)

P:最高使用圧力 (MPa)

D₀:管の外径 (mm)

S:許容引張応力 (MPa)

η:継手効率

2.2.3 評価結果

評価結果を表-3に示す。必要厚さ等を満足しており、十分な構造強度を有していると評価している。

表-3 配管の評価結果(管厚)

	外径		最高使用	最高使用	必要厚さ	最小厚さ
No.	(mm)	材料	圧力	温度	(mm)	(mm)
			(MPa)	(\mathcal{C})		
1	60.5	SUS316LTP	0. 49	40	0.13	3.40
2	89. 1	SUS316LTP	0. 98	40	0.40	4. 90
3	165. 2	SUS316LTP	0. 98	40	0.73	6. 20
4	216.3	SUS316LTP	0. 98	40	0.95	7. 20
(5)	89. 1	SUS316LTP	0. 5	40	0.20	3.50
6	76. 3	SUS316LTP	0. 5	40	0.18	3.00
7	60.5	SUS316LTP	0. 5	40	0.14	3.00
8	76. 3	SUS316LTP	1.5	40	0.52	3.00
9	76. 3	SUS316LTP	1.5	40	0.52	6. 13
10	60.5	SUS316LTP	1.5	40	0.41	4.82
(11)	48.6	SUS304TP	0. 5	40	0.10	4. 47
12	60.5	SUS304TP	0.5	40	0.12	4.82
13	60.5	SUS304TP	0. 5	40	0.12	3.00
14)	60.5	SUS304TP	0. 5	40	0.12	3.40
15	89. 1	SUS304TP	0. 5	40	0.18	3. 50
16	89. 1	SUS316LTP	0.98	40	0.40	3. 50
17)	76. 3	SUS316LTP	0.98	40	0.34	3.00
18	165. 2	STPG370	0.98	40	3.80	6. 22
19	165. 2	SUS316LTP	0.49	40	0.35	6. 22
20	216. 3	SUS316LTP	0.49	40	0.46	7. 18

サブドレン他水処理施設の具体的な安全確保策

サブドレン他水処理施設で扱う液体の放射能濃度は、1~4号機タービン建屋等の滞留 水のそれと比較して遥かに低いものの、放射性物質を含むことから、水位管理等の方法、漏 えい防止対策、放射線遮へい・崩壊熱除去及び可燃性ガス滞留防止等について、具体的な安 全確保策を以下の通り定め、実施する。

1. 水位管理等の方法

- (1) サブドレンの水位管理
 - a. サブドレンピット内の水位管理は,各ピット内に設置した揚水ポンプの起動・停止によって行い,サブドレンピット内水位が建屋滞留水水位を下回らないよう管理する。(具体的な管理方法は,「Ⅲ.3.1.7 1~4 号機の滞留水とサブドレンの運転管理について」を参照。) なお,サブドレンの水位検出器は多重化し,計器の単一故障に備える。
 - b. 全てのサブドレンピットの水位を免震重要棟の監視・制御装置に表示し、サブドレンの 稼働による水位変動が常に確認可能な状態とする。

(2) 地下水ドレンポンドの水位設定

- a. 地下水ドレンポンドの水位設定は、各ポンド内に設置した地下水ドレンポンド揚水ポンプの起動・停止により地下水を汲み上げるが、海側のサブドレン水位が建屋滞留水水位を下回らないようポンプ停止位置を設定する。なお、地下水ドレン稼働に伴う地下水の水位変動は、より建屋近傍に位置する海側のサブドレン水位で管理する。
 - (具体的な水位設定は、「Ⅲ.3.1.8地下水ドレンの運転管理について」を参照。)
- b. 地下水の汚染拡大防止の観点から、既設護岸内で確認されている高濃度の放射性物質 を含む地下水は、継続して汲み上げる。
- c. なお、地下水ドレンの汲み上げ水の水質に有意な変動が確認される場合には、既設護 岸エリアの地下水の汲み上げ量を増やす等の対応をとるものとする。

2. 放射性物質の漏えい防止等に対する考慮

- (1) 漏えい発生防止
 - a. 処理対象水及び処理済水の移送配管は、耐腐食性を有するポリエチレン管、十分な肉厚を有する炭素鋼の鋼管または二相ステンレス配管等とする。
 - b. 主要機器及び主要配管の炭素鋼材料の内面には、耐腐食性を有するよう、ライニングまたは塗装を施す。
 - c. タンク(中継タンク,集水タンク,処理装置供給タンク,サンプルタンク,地下水ドレン中継タンク,RO 濃縮水処理水中継タンク)には水位検出器を設け、水位を監視してオーバーフローを防止する。また、タンクには、念のため、タンク水位が高くなった場

合に移送元のポンプを自動停止させるインターロックを設ける。

d. EPDM 合成ゴム製の伸縮継手は接続部をフランジ接続とし、取合部が外れないように処置する。

(2) 漏えい検知・漏えい拡大防止

- a. タンク (中継タンク,集水タンク,処理装置供給タンク,サンプルタンク,地下水ドレン中継タンク,RO 濃縮水処理水中継タンク)は、タンク1基の保有水量以上の容積を確保した堰を設ける (表-1)。
- b. 吸着塔は、漏えいの早期検知として、スキッド毎に漏えいパンを設けるとともに、漏えい検知器を設ける。漏えいの早期検知及び漏えい拡大防止として、サブドレン他浄化装置設置エリアの最外周及びサブドレン他浄化装置の周囲に、漏えいの拡大を防止する堰を設けるとともに、床に設置した側溝内に漏えい検知器を設ける。
- c. 上記漏えいを検知した場合には、免震重要棟集中監視室等に警報を発し、運転操作員によりカメラ、流量等の運転監視パラメータ等の状況を確認し、適切な対応を図る。また、漏えいが確認された場合には、サブドレン他浄化装置のポンプを遠隔操作で停止し、吸着塔等の周りの弁を閉止することで、漏えい拡大防止を図る。
- d. 漏えい水のコンクリートへの浸透を防止するため、サブドレン他浄化装置設置エリア には床塗装を実施する。
- e. 移送配管について,以下の対応を行う。
 - ・ 屋外に敷設される移送配管について、ポリエチレン管とポリエチレン管の接合部は漏えい発生を防止のため融着構造とすることを基本とし、ポリエチレン管と鋼管との取合い等でフランジ接続となる箇所については養生を行い、漏えい拡大防止を図る。また、処理対象水の移送配管は、万一、漏えいしても排水路を通じて環境に放出することがないように、排水路から可能な限り離隔するとともに、排水路を跨ぐ箇所はボックス鋼内等に配管を敷設する。また、ボックス鋼端部から排水路に漏えい水が直接流入しないように土のうを設ける。
 - ・ 移送配管は、使用開始までに漏えい確認等を実施し、施工不良等による大規模な漏 えいの発生を防止する。
 - 移送配管のフランジ部は、移送配管からの漏えいを早期検知するために巡視点検に て漏えいの有無を確認する。
 - ・ 移送配管から漏えいが確認された場合は、ポンプ等を停止し、系統の隔離及び土の うの設置等により漏えいの拡大防止を図る。
- f. サブドレン他浄化装置の 2 系列同時運転を実施する場合には,系統間の隔離を実施し,他系統への流入防止をすることで漏えい拡大防止を図る。
- g. 集水タンク並びにサンプルタンクについては、タンクからの漏えいを早期検知するために巡視点検にて漏えいの有無を確認する。

表-1 タンク堰仕様(設計値)

堰名称	縦幅	横幅	高さ	保有水量
中継タンク堰	8.4 m	3.3 m	0.7 m	12.0 m ³
集水タンク 1~3 堰	38.4 m	18.4 m	3.0 m [*] 1	$1235~\mathrm{m}^3$
集水タンク 4,5 堰	34.9 m	12.9 m	3.5 m [*] 1	$1235~\mathrm{m}^3$
集水タンク 6,7 堰	34.9 m	12.9 m	3.5 m [*] 1	$1235~\mathrm{m}^3$
処理装置供給タンク A 堰	6.3 m	5.2 m	1.1 m	30 m^3
処理装置供給タンク B 堰	6.4 m	5.2 m	1.1 m	30 m^3
サンプルタンク A~G 堰 ^{※3}	57.4 m	31.6 m	1.5 m	$1235~\mathrm{m}^3$
サンプルタンク H, J, K, L 堰	42.4 m ^{** 4}	33.0 m [*] 4	1.7 m	1235 m^3
地下水ドレン中継タンク堰	9.4 m	3.3 m	0.6 m	12.0 m^3

- ※1 アウターライズ津波高さ 0.P. 約 6m (浸水深 約 2m) を上回るよう設定
- 注) タンク堰は閉運用とする。堰内に溜まった雨水については、タンク等に回収・分析し雨水**2と判断されればそのまま処理する。雨水と判断されない場合は、集水タンク等に移送する。ただし、緊急時の場合は、タービン建屋等に移送することもある。
- ※2 「2.36 雨水処理設備等」2.36.1.1 に示す排水基準以内であること
- ※3 RO濃縮水処理水中継タンク堰を兼ねる。
- ※4 堰形状のうち、縦幅、横幅の最長箇所を記載。

3. 放射線遮へい・崩壊熱除去

- (1) 放射線遮へい(被ばくに対する考慮)
 - a. サブドレン他浄化装置等からの放射線による雰囲気線量当量率(遮へい体を含む機器 表面から 1m の位置) は、0.1mSv/h 以下となるよう適切な遮へいを設ける。また、本 設備から最寄りの敷地境界における直接線・スカイシャイン線の寄与は年間約 0.06mSv となる。(別紙-1参照)

表-2 敷地境界における年間線量

評価点	年間線量(mSv/年)
No. 66	0.06

- b. 通常運転時は,免震重要棟集中監視室から遠隔での監視及び操作を可能とする。
- c. 使用済吸着塔等の輸送時は,輸送物からの放射線による線量当量率(遮へい体を含む機器表面から 1m の位置)が,0.1mSv/h以下となるよう適切な遮へいを設ける。
- d. サブドレン他浄化装置の運転操作等に係る放射線業務従事者以外の者が不要に近づくことがないよう、標識等を設ける。さらに、放射線レベルの高い区域についても標識等を設け放射線業務従事者の被ばく低減を図る。

(2) 崩壊熱除去

- a. 処理対象水に含まれる放射性物質の崩壊熱は、通水により熱除去する。
- b. 使用済吸着塔等は自然放熱により熱除去する。いずれの使用済吸着塔,使用済前処理 フィルタにおいても、内部の水抜き実施後において、容器中心部の温度上昇は1℃未 満であり、容器及び内容物の健全性を損なうものではない。(別紙-2参照)

(3) 吸着量の管理

a. 前処理フィルタ・吸着塔は、捕集する吸着量が設計の範囲内に納まるよう、機器表面線量の計測、通水流量・濃度の把握等の方法により管理を行う。

N - // I I I I I I I I I I I I I I I I I					
機器名称	フィルタ・ 吸着材の組成	捕捉・吸着 主要核種	吸着量 (Bq/個) ^{※1}	備考	
前処理フィルタ 1, 2 ^{*2}	ポリプロピレン	Cs	2.5×10^{11}	浮遊物質(汚泥等) への放射性物質の 付着を想定	
前処理フィルタ3	ナイロン樹脂	Cs	4. 3×10^{10}		
前処理フィルタ4	ナイロン樹脂	Sr	2.8×10^9		
吸着塔 1, 2, 3 ^{*3}	ゼオライト	Cs Sr	$ \begin{array}{c} 2.9 \times 10^{10} \\ 4.3 \times 10^{9} \end{array} $	Cs, Sr 両方とも吸 着可能な吸着材を 使用した場合	
吸着塔4	水酸化セリウム	Sb-125	1.4×10^{10}		
吸着塔 5	活性炭	Ag-110m	2. 7×10^9		

表-3 サブドレン他浄化装置各機器の吸着量

- ※1 捕捉・吸着する主要核種の吸着量
- ※2 保守的にいずれか一つの前処理フィルタで捕捉すると仮定
- ※3 保守的にいずれか一つの吸着塔で吸着すると仮定

4. 可燃性ガスの滞留防止

- a. サブドレン他浄化装置の前処理フィルタ及び吸着塔においては、水の放射線分解により発生する可能性のある可燃性ガスは、通水時に処理水とともに排出される。通水停止以降も再度その前処理フィルタおよび吸着塔により処理を行う場合には、可燃性ガスが滞留する可能性があるため、前処理フィルタおよび吸着塔内の可燃性ガスの濃度が可燃限界を超えないようベント弁より排出する。なお、サブドレン他浄化装置建屋には、換気装置及び換気装置のための貫通箇所があり、可燃性ガスが滞留し難い構造となっている。
- b. 使用済の前処理フィルタ及び吸着塔は、可燃性ガスの滞留防止のため、内部の水抜きを実施後、使用済フィルタは保管容器に収容し、吸着塔はベントを開放して保管する。保管時の水素濃度の評価を行った結果、最も大きい水素発生速度となる前処理フィルタ1、2でも水素濃度は20年間で約0.7%であり、可燃限界を超えることはない(別紙-3参照)。なお、水抜きにより発生した水は、処理装置供給タンクに移送する。

5. その他

(1) 凍結

水を移送している過程では、凍結の恐れはない。

水の移送を停止した場合,屋内外敷設のポリエチレン管等は凍結による破損が懸念される。そのため、屋内外敷設のポリエチレン管等に保温材を取り付け、凍結防止を図る。なお、保温材は高い気密性と断熱性を有する硬質ポリウレタン等を使用し、凍結しない十分な厚さを確保する。

保温材厚さの設定の際には、「建設設備の凍結防止(空気調和・衛生工学会)」に基づき、 震災以降に凍結事象が発生した外気温-8℃、内部流体の初期温度 5℃、保温材厚さ 21.4mm の条件において、内部流体が 25%*凍結するまでに十分な時間(50 時間程度)があること を確認した。なお、震災以降の実測データから、外気温-8℃が半日程度継続することはない。 **「JIS A 9501 保温保冷工事施工標準」において管内水の凍結割合を 25%以下と推奨

(2) 紫外線

屋外敷設箇所のポリエチレン管等には、紫外線による劣化を防止するため、紫外線防止効果のあるカーボンブラックを添加した保温材を取り付ける、もしくは、カーボンブラックを添加していない保温材を使用する場合は、カーボンブラックを添加した被覆材または紫外線による劣化のし難い材料である鋼板を取り付ける。

(3) 熱による劣化

熱による劣化が懸念されるポリエチレン管については,処理対象水の温度がほぼ常温の ため,熱による材料の劣化の可能性は十分低い。

(4) 耐放射線性

ポリエチレンは、集積線量が 2×10^5 Gy に達すると、引張強度は低下しないが、破断時の伸びが減少する傾向を示す。ポリエチレン管の照射線量率を 1 Gy/h と仮定すると、 2×10^5 Gy に到達する時間は 2×10^5 時間(22.8 年)と評価される。そのため、ポリエチレン管は数年程度の使用では放射線照射の影響を受けることはないと考えられる。

(5) 使用済前処理フィルタの貯蔵

使用済の前処理フィルタは、エアブロー等により水切りした後、コンクリート製または 金属製の保管容器に収容して固体廃棄物貯蔵庫(第3棟~第8棟、第9棟地下2階:瓦 礫類線量区分>30 mSv/h)に貯蔵する。

使用済前処理フィルタの発生量は、最大でも年間 300m³ 程度(約 2m³ の容器で 150 個程度)と想定される。

使用済前処理フィルタの保管時は、保管エリアの受入目安表面線量率に応じて、保管容

器の表面線量率を管理(保管容器の遮へいを考慮し、保管容器の表面線量率を測定する。 また、必要に応じてフィルタの収納数を制限)する。

(6) 使用済吸着塔の貯蔵

使用済吸着塔は、淡水置換し、エアブローにより水切りした後、使用済セシウム吸着 塔保管施設(II 2.5.2.1.2 参照)のコンクリート製ボックスカルバート内、または架台 に格納して保管する。

使用済吸着塔の発生量は、最大でも年間 20 基程度、ボックスカルバートの使用数では最大でも年間 10 基程度と想定される。

使用済吸着塔の貯蔵による敷地境界への直接線・スカイシャイン線による寄与は,使 用済セシウム吸着塔一時保管施設に貯蔵される他の廃棄物と同程度であり,同施設の敷 地境界線量の評価結果に包絡される。

(7) 設備停止

設備故障等による浄化設備停止期間中は、サブドレンの汲み上げ量を減らし、地下水ドレンの汲み上げを優先する。なお、汲み上げた地下水ドレン水は集水タンクへ貯留するが、 集水タンクの貯留容量を超えることが見込まれる場合は、機動的対応として、タービン建 屋等に移送する。

(8) 誤操作防止対策について

サブドレン他移送設備は操作盤にキーロックを設け、鍵を使用しなければ排水操作が出 来ない設計としている。

6. 別紙

別紙-1 : サブドレン他浄化装置の敷地境界線量評価について

別紙-2 : サブドレン他浄化装置の温度評価について

別紙-3 : サブドレン他浄化装置の水素発生量評価について

別紙-4 : 水質調査結果一覧

別紙-7 : サブドレン及び建屋滯留水水位への測量結果の反映について

サブドレン他浄化装置の敷地境界線量評価について

サブドレン他浄化装置から近傍の敷地境界に対する直接線・スカイシャイン線の寄与を 評価する。

1. 評価概要

- ○評価手法:
 - ・解析コード MCNP を用いて評価
- ○評価条件:
 - ・敷地境界線量の合算値が最大となる評価地点(敷地境界評価地点 No. 7, 距離約 1,310m), 及びサブドレン他浄化設備から最寄りの敷地境界(敷地境界評価地点 No. 66, 距離約 230m)を評価した。(図1)
 - ・吸着塔に収容する吸着材の構成は、最も保守的なケースとして、吸着塔 $1\sim3$ をセシウム・ストロンチウム同時吸着塔、吸着塔4をアンチモン吸着塔、吸着塔5を重金属塔として評価した。

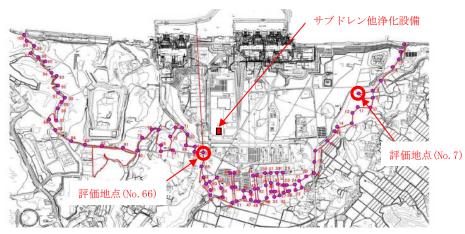


図1 サブドレン他浄化設備と評価点の位置関係

・評価対象機器を表1に示す。

表 1 評価対象機器

1	幾器	評価上考慮する基数	放射能条件
前処理フ	フィルタ1,2 4		前処理フィルタ2
前処理フィルタ3		2	前処理フィルタ3
前処理	フィルタ 4	2	前処理フィルタ4
	1~3 塔目	6	吸着塔1
吸着塔	4 塔目	2	吸着塔4
	5 塔目	2	吸着塔 5

- ・吸着材の放射能濃度は、吸着塔の入口濃度から除去率、通水量(遮へい体を含む機器表面から 1m の位置における雰囲気線量当量率が 0.1mSv/h 以下となるよう設定) を考慮して算出した値にて評価を行う。
- ・前処理フィルタ及び吸着塔は,各々が交換直前で放射性物質の捕捉量又は吸着量が最大 になっていると設定する。
- ・前処理フィルタ1,2は,2塔に分布する放射能の全量が前処理フィルタ2に吸着していると保守的に設定する。
- ・吸着塔 $1 \sim 3$ は、3 塔に分布する放射能の全量が吸着塔 1 に吸着していると保守的に設定する。
- ・評価点における直接線・スカイシャイン線の評価値は,前処理フィルタ,吸着塔の評価値を合算して算出した。

・前処理フィルタ及び吸着塔の線源条件を表2に示す。

表 2 前処理フィルタ及び吸着塔の線源条件

公2 前尺径2 470 及 0 次 1 名 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					
機器名称	核種	線源強度 (Bq/体)			
前処理フィルタ 2	Cs	2.5×10^{11}			
前処理フィルタ3	Cs	4.3×10^{10}			
前処理フィルタ4	Sr	2.8×10^9			
吸着塔 1	Cs Sr	$2. 9 \times 10^{10}$ $4. 3 \times 10^{9}$			
吸着塔 4	Sb	1.4×10^{10}			
吸着塔 5	Ag-110m	2.7×10^9			

2. 評価結果

上記条件により、評価を行った結果、各評価地点における直接線・スカイシャイン線の寄与は表3の通りとなった。

表3 サブドレン他浄化設備の敷地境界線量評価結果

評価地点	評価値 (mSv/年)
No. 7	0.0001 未満
No. 66	0.06

実効線量は、H28 年 12 月現在の敷地境界線量評価値にサブドレン他浄化設備による寄与を加えても、評価地点 No. 7, 及び No. 66 にて約 0.93 mSv/年, 及び約 0.90 mSv/年であり、1 mSv/年を下回る。

なお,本装置から発生する使用済フィルタ及び吸着塔については,固体廃棄物貯蔵庫及び 使用済セシウム吸着塔一時保管施設において線源として考慮している。

以上

サブドレン他浄化装置の温度評価について

温度評価は、使用済前処理フィルタ及び使用済吸着塔の収容物からの発熱を入熱条件と し、一次元の定常温度評価により使用済前処理フィルタ及び使用済吸着塔の最高温度を評価した。

1. 評価概要

各フィルタ及び吸着塔に捕捉・吸着した放射性物質による発熱を入熱条件とし、一次元の定常温度評価を行い、各フィルタ及び吸着塔の保管状態における温度上昇が 1° C未満であることを確認した。

2. 前処理フィルタの温度評価

2. 1 評価方法

○評価手法:

・一次元定常温度評価により評価(評価体系については、図-1を参照。また、考慮した伝熱機構及び使用した熱伝導率等は表-1及び2を参照)

○線源条件:

線源条件は,下表を条件とする。

機器名称	捕捉・吸着 主要核種	吸着量 (Bq/個) ^{※1}
前処理フィルタ 1, 2 ^{*2}	Cs	2.5×10^{11}
前処理フィルタ3	Cs	4. 3×10^{10}
前処理フィルタ4	Sr	2.8×10^9

※1 捕捉・吸着する主要核種の吸着量

※2 保守的にいずれか一つの前処理フィルタで捕捉すると仮定

○入熱条件:

- ・前処理フィルタ1及び2は同等の保管形状であり、かつ発熱量も等しいことから、前処理フィルタ2の入熱条件である 4.9×10^{-2} [W]を採用する。
- ・前処理フィルタ3及び4は同等の保管形状であり、また発熱量は前処理フィルタ3

が前処理フィルタ4に比べて大きいことから、保守的に前処理フィルタ3の入熱条件である 8.4×10^{-3} [W]を採用する。

○評価条件:

- ・保管容器内は保守的に均一の発熱体と仮定し、また容器内の伝熱は空気の熱伝導の みを考慮し、空気の対流及び輻射による放熱は考慮しない。
- ・保管容器の側面からの放熱については、保守的に 2 面からの放熱のみ考慮し、また 上蓋及び床からの放熱は考慮しない。
- ・保管容器の外面において、熱輻射による放熱は考慮しない。
- ・外気温度は保守的に40℃とする。

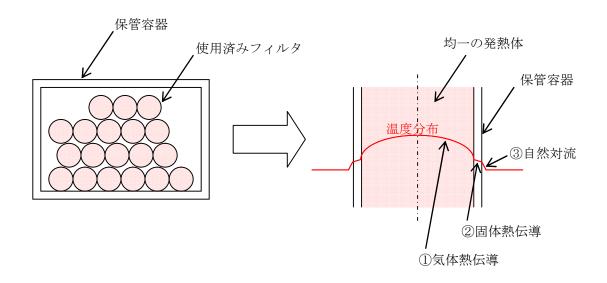


図-1 前処理フィルタの評価体系概念図(一次元定常温度評価モデル)

表-1 考慮した伝熱機構及び温度評価に用いた熱伝導率等(前処理フィルタ2)

No.	伝熱箇所	伝熱機構	伝熱距離	熱伝導率等
1	保管容器内(空	気体熱伝導	約 570mm	熱伝導率
	気)			約 0.028[W/(m・K)]
2	保管容器(コン	固体熱伝導	約 100mm	熱伝導率
	クリート)			約1.2[W/(m・K)]
3	保管容器から空	自然対流	*1	熱伝達率
	気			約 0.46[W/(m²・K]]

※1:自然対流による伝熱のため、距離に依存しない。

表-2 考慮した伝熱機構及び温度評価に用いた熱伝導率等(前処理フィルタ3)

No.	伝熱箇所	伝熱機構	伝熱距離	熱伝導率等
1	保管容器内(空	気体熱伝導	約 640mm	熱伝導率
	気)			約 0.028[W/(m・K)]
2	保管容器(炭素	固体熱伝導	約 2.3mm	熱伝導率
	鋼)			約 43[W/(m・K)]
3	保管容器から空	自然対流	_*1	熱伝達率
	気			約 0.27 [W/(m² · K]]

※1:自然対流による伝熱のため、距離に依存しない。

2. 2 評価結果

評価の結果,前処理フィルタ2の温度上昇は約0.27°C,前処理フィルタ3の温度上昇は約0.06°Cであり、フィルタの耐熱温度である80°Cを超えることはなく、材料の健全性に影響を与えるものではないことを確認した。

3. 吸着塔の温度評価

3. 1 評価方法

○評価手法:

・一次元定常温度評価により評価(評価体系については、図-2を参照。また、考慮した伝熱機構及び使用した熱伝導率等は表-3を参照)

○線源条件:

線源条件は,下表を条件とする。

機器名称	捕捉・吸着	吸着量
機器石物	主要核種	(Bq/個) **1
吸着塔	Cs	2.9×10^{10}
1, 2, 3*2	Sr	4. 3×10^9
吸着塔 4	Sb-125	1.4×10^{10}
吸着塔 5	Ag-110m	2.7×10^9

^{※1} 捕捉・吸着する主要核種の吸着量

^{※2} 保守的にいずれか一つの吸着塔で吸着すると仮定

○入熱条件:

・吸着塔 $1\sim5$ は同等の保管形状であり、また吸着塔内で発生する放射線エネルギーは吸着塔1が最も大きく、発熱量が最大となることから、保守的に吸着塔1の入熱条件である 5.73×10^{-3} [W]を採用する。

○評価条件:

- ・吸着塔は円柱形上であるが、評価においては保守的に吸着塔を包含する四角柱を仮 定する。また容器側面からの放熱については、四角柱の2面からの放熱のみ考慮し、 また上蓋及び床からの放熱は考慮しない。
- ・吸着塔内は保守的に均一の発熱体と仮定し、保守的に円柱形上よりも発熱体の体積が大きい条件とする。また容器内の伝熱は空気の熱伝導のみを考慮し、空気の対流及び輻射による放熱は考慮しない。
- ・吸着塔外面において、熱輻射による放熱は考慮しない。
- ・外気温度は保守的に40℃とする。

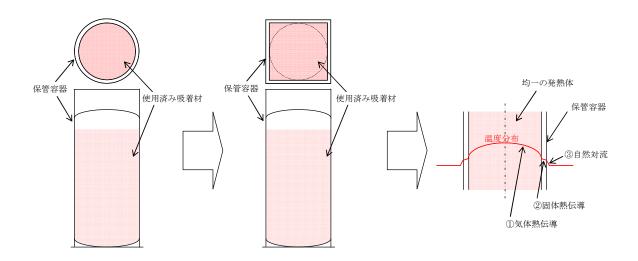


図-2 吸着塔の評価体系概念図 (一次元定常温度評価モデル)

表-3 考慮した伝熱機構及び温度評価に用いた熱伝導率等(吸着塔1)

No.	伝熱箇所	伝熱機構	伝熱距離	熱伝導率等
1	保管容器内(空	気体熱伝導	約 673mm	熱伝導率
	気)			約 0.028[W/(m・K)]
2	保管容器(炭素	固体熱伝導	約 25mm	熱伝導率
	鋼)			約 43[W/(m・K)]
3	保管容器から空	自然対流	*1	熱伝達率
	気			約 0.199[W/(m²·K]]

3. 2 評価結果

評価の結果、吸着塔1の温度上昇は約0.02 $\mathbb C$ であり、吸着材の耐熱温度である600 $\mathbb C$ を超えることはなく、材料の健全性に影響を与えるものではないことを確認した。

以上

サブドレン他浄化装置における水素発生量評価の結果を以下に示す。使用する前処理フィルタ及び吸着塔のうち、水素発生速度が最も大きい前処理フィルタ1、2を収容する保管容器の評価結果を以下に示す。

1. 評価概要

使用済前処理フィルタの保管容器内では、前処理フィルタが吸着した放射性物質によって前処理フィルタ中の水分が放射線分解されることにより、水素が発生する。前処理フィルタは保管容器のベントを行わずに保管することから、本評価では発生した水素が全て容器内に滞留するものとして、保管を開始してから20年後における水素濃度の評価を行う。なお、放射性物質は核種崩壊により減衰するため水素の発生量は次第に低下し、水素濃度は一定値に収束することから、長期間保管した場合の水素濃度の収束値を参考として評価する。

2. 水素発生量評価

水素発生量Hは次式により求める。なお、前処理フィルタは可燃性ガスの発生抑制を目的として水抜きを実施後に保管するが、前処理フィルタ1、2については、15時間の水抜きを行うことにより含水率が0.3以下となることを確認している。

$H = G \times \alpha \times E \div A$

H: 水素発生量[mo1]

G: 水が100eVのエネルギーを吸収した際に発生する水素分子の個数, 0.45

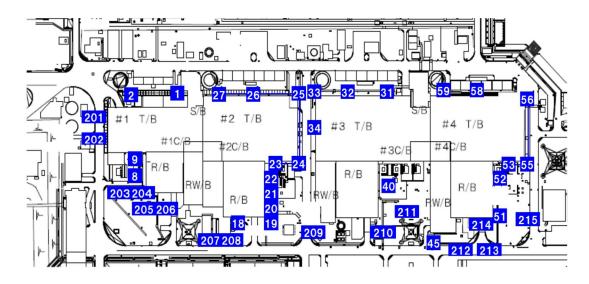
 α :含水率, 0.3

E:水が吸収するエネルギー:8.47×10¹⁹ (MeV)

A:アボガドロ数 (6.02×10²³個/mol)

水が吸収するエネルギーの算出にあたり使用した線源条件を表1に示す。前処理フィルタ1,2は,2塔に分布する放射能の全量が前処理フィルタ2に吸着していると保守的に設定する。

表1 前処理フィルタ及び吸着塔の線源条件

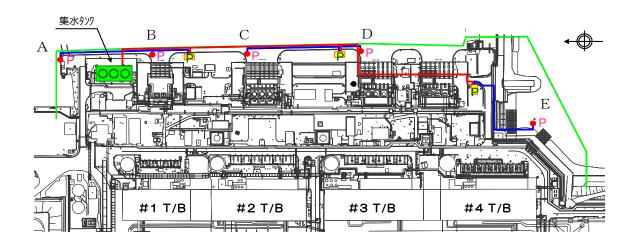

機器名称	核種	線源強度 (Bq/体)
前処理フィルタ 2	Cs	2.5×10^{11}

3. 評価結果

評価の結果,使用済前処理フィルタ1,2の保管を開始してから20年後における水素濃度は約0.7%となる。なお,長期間保管した場合には水素濃度は約1.7%に収束する。

以上

水質調査結果一覧



単位:Bq/L

ピット	Cs-134	Cs-137	全β	H-3
1	2.5×10^{1}	1.3×10^{2}	1.5×10^{2}	9.1 \times 10 ³
2	ND(10)	ND(16)	1.8×10 ¹	1.5×10 ²
8	1.8×10 ²	8.2×10 ²	1.1×10^{3}	1.3×10 ²
9	1.4×10^{1}	1.2×10 ²	1.3×10 ²	1.1×10^{3}
18	3.3×10^{2}	1.6×10^{3}	1.8×10³	6.3×10 ²
19	4.7×10 ²	2.4×10^{3}	3.1×10^{3}	6.5×10 ²
20	ND(13)	ND(18)	1.9×10 ¹	1.2×10^{3}
21	1.3×10 ¹	5.9×10^{1}	6.6×10 ¹	1.6×10³
22	ND(12)	2.4×10^{1}	4.8×10 ¹	8.6×10 ²
23	1.3×10 ¹	7.6×10^{1}	9.1×10 ¹	2.7×10 ²
24	2.5×10^{1}	1.1×10 ²	1.9×10 ²	2.0×10 ²
25	3.2×10^{1}	1.1×10 ²	2.0×10 ²	1.3×10 ²
26	8.9×10 ¹	3.5×10^{2}	5.0×10 ²	ND (130)
27	3.1×10^{1}	1.7×10 ²	3.1×10^{2}	ND (100)
31	2.2×10^{1}	7.5×10^{1}	1.2×10 ²	1.8×10 ²
32	ND(12)	ND(16)	ND (15)	ND (100)
33	ND(12)	3.1×10^{1}	3.2×10^{1}	3.8×10 ²
34	7.4×10^{1}	3.1×10^{2}	4.3×10 ²	5.5×10 ²
40	6.8×10 ²	3.1×10^{3}	3.8×10^{3}	2.2×10 ²

- ※ 「ND」は検出限界値未満を表し, ()内に検出 限界値を示す。
- ※ H27年8月~H28年1月に採取したデータを示す。※ 新設ピット表記は、従前使用していたN1~N15からNo. 201~215に見直す。

ピット	Cs-134	Cs-137	全β	H-3
45	ND (9. 5)	ND(16)	ND(13)	ND (120)
51	ND(10)	ND(18)	ND(13)	ND (120)
52	ND (8. 9)	ND(15)	ND(18)	ND (130)
53	ND (9. 3)	ND(18)	ND(11)	ND (130)
55	ND(10)	ND(16)	ND(11)	ND (130)
56	ND(10)	ND(19)	2.0×10^{1}	ND (100)
58	ND(10)	1.8×10 ¹	ND(12)	ND (130)
59	ND(10)	ND(18)	3.8×10^{1}	7.7×10^{2}
201	ND (9.8)	ND(16)	ND(11)	ND (130)
202	ND(11)	ND(18)	ND(11)	ND (130)
203	ND (9.4)	ND(16)	ND(13)	ND (130)
204	ND(12)	ND(19)	7.4×10^{1}	ND (130)
205	ND(12)	ND(16)	2.1×10^{1}	3.2×10^{2}
206	ND(11)	ND(17)	ND(15)	ND (100)
207	ND(10)	ND(18)	ND(15)	1.3×10 ²
208	ND (9. 2)	ND(15)	ND(18)	ND (130)
209	ND(14)	ND(18)	ND(15)	2.5×10^{2}
210	ND (9. 6)	ND(16)	ND(13)	ND (120)
211	2.1×10^{1}	7.5 \times 10 ¹	1.9×10^{2}	ND (130)
212	ND (9.7)	ND (16)	ND(18)	ND (130)
213	ND (9.8)	ND(18)	ND(13)	ND (120)
214	ND(11)	ND(18)	ND(12)	1.7×10 ²
215	ND(11)	ND(14)	ND(18)	ND (130)

(単位: Bq/L)

地下水ドレンポンド	Cs-134	Cs-137	全β	H-3
A	ND (6.8)	ND (6. 4)	8. 1×10^3	5. 8×10^3
В	ND (7. 9)	8. 9×10^{0}	2.2×10^3	4.6×10^{3}
С	3.0×10^{1}	1.5×10^{2}	9. 0×10^2	4.6×10^{3}
D	ND (7. 3)	ND (6. 4)	2.7×10^2	9. 4×10^2
Е	ND (7. 0)	ND (7. 1)	6. 9×10^{1}	3.6×10^{2}

※採取日:2016年1月25日

サブドレン及び建屋滞留水水位への測量結果の反映について

サブドレン及び建屋滞留水の水位は、それぞれサブドレンピット上端及び建屋1階床を 基準として、それらが震災前の図面レベルにあるものとして表示してきたが、震災による 地盤変動を踏まえ、より正確に水位差を管理することを目的に測量結果をもとに算出した 値を用いることとする。測量に関する特記事項を以下に示す。

- (1) サブドレン及び建屋滞留水水位は、表-1及び表-2に示す測量結果を反映した基準点から水位を計測する。但し、R/B、Rw/B滞留水水位の基準点は、測量が完了するまでは、構内基準点の測量結果を用いる。なお、線量環境により測量が困難な R/B、Rw/Bは、4号機を先行して測量を行い、T/Bとの相対関係を確認し、必要により換算値を見直す。
- (2) 今後,定期的にサブドレン及び建屋の代表箇所での測量を行い,相対関係の変動状況や地盤の不均一な隆起の有無を確認していく。前回測量結果からの相対関係のずれが点検計算の許容範囲※1以内となるように測量頻度を適切に定める。
 - %1 3級水準測量における点検計算の許容範囲は、15mm \sqrt{S} (S は観測距離(片道、km 単位))

表-1 1~4号機建屋及びサブドレンピットの測量結果一覧

	双 1			
		震災前図面	測量日	備考
		との差異[mm]		•
構内基	基準点(物揚場)	-709	H26.3	
	1 号機 T/B	-730		
	2 号機 T/B	-725	H27.2	
	3 号機 T/B	-710	1121.2	
	4 号機 T/B	-712		
建屋				測量が完了するまでは, 構内基準点測量結果
/	1∼4 号機 R/B	_	_	(-709mm)で換算
	1∼4 号機 Rw/B	_	_	測量が完了するまでは,構内基準点測量結果
	,			(-709mm)で換算
	1	-840		
	2	-700		
	8	-610		
	9	+890		震災後, ピット上端の嵩上げを実施
	18	-682		
	19	-714		
	20	-710		
	21	-788		
	22	-742		
	23	-677		
	24	-715		
サ	25	-707		
サブドレンピット	26	-687	H26.7	
ン	27	-740	~9	
ツ	31	-780	- 3	
	32	-707		
	33	-905		
	34	-738		
	40	-515		
	45	-672		
	51	+215		震災後, ピット上端の嵩上げを実施
	52	+238		震災後, ピット上端の嵩上げを実施
	53	-735		
	55	-657		
	56	-745		
	58	-700		
	59	-790		

^{※2} T. P. 表記された水位を震災前図面レベル (0.P. 表記) と比較する場合は、上記震災前図面との差異と 0.P. から T. P. への換算値 (-727mm) の和により 0.P. 表記へ換算する。 (震災後にピット上端の嵩上 げを実施した No. 9,51,52 を除く)

^{※3} 上記はH27.9時点における測量結果であり、今後測量を実施し水位に反映する必要が生じた場合は、見直すものとする。

表-2 集中環境施設周り建屋及びサブドレンピットの測量結果一覧

		震災前図面		
			測量日	備考
	T	との差異[mm]		
	プロセス主建屋	-635		
	焼却工作建屋	CCE		
	(焼却建屋)	-665		
建屋	焼却工作建屋	-667	H27.7	
	(工作建屋)	-007		
	サイトバンカ建屋	-711		
	HTI建屋	-719		
	112	-708		
	116	-719		
	119	-716		
	120	-854		
サブ	121	-671		
サブドレンピット	122	-653	H27.7	
ンピッ	125	-911	1127.7	
F	133	-673		
	150	-897		
	151	-911		
	152	-898		
	153	-916		

^{※2} T. P. 表記された水位を震災前図面レベル (0.P. 表記) と比較する場合は、上記震災前図面との差異と 0.P. から T. P. への換算値 (-727mm) の和により 0.P. 表記へ換算する。

^{※3} 上記はH27.9 時点における測量結果であり、今後測量を実施し水位に反映する必要が生じた場合は、見直すものとする。

サブドレン他水処理施設に係る確認事項

サブドレン他水処理施設に係る主要な確認事項を表 $-1\sim8$ に示す。サブドレン他水処理施設で扱う液体の放射能濃度は $37kBq/cm^3$ 未満である。

なお、寸法許容範囲については製作誤差等を考慮の上、確認前に定める。

表-1 確認事項(中継タンク,集水タンク,処置装置供給タンク,サンプルタンク,地下水ドレン中継タンク)

確認事項	確認項目	確認内容	判定基準
	材料確認	実施計画に記載した主な材料について記録を確認する。	実施計画のとおりであること。
	寸法確認	実施計画に記載した主要寸 法について記録を確認する。	寸法が許容範囲内である こと。
	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
構造強度 • 耐震性	据付確認	機器の据付位置、据付状態について確認する。	実施計画のとおり施工・据 付されていること。
	耐圧・漏えい確認	確認圧力で保持した後、確認 圧力に耐えていることを記録で確認する。 耐圧確認終了後、耐圧部分か	確認圧力に耐え、かつ構造物の変形等がないこと。 また、耐圧部から漏えいがないこと。
		らの漏えいの有無も確認する。	
機能	警報確認	液位「高高」側*1の信号により警報が発生することを確認する。	液位「高高」側*1の信号に より警報が発生すること。

^{※1} タンクにより信号名称は異なる。

表-2 確認事項(前処理フィルタ,吸着塔)

確認事項	確認項目	確認内容	判定基準
	材料確認	実施計画に記載した主な材料について記録を確認する。	実施計画のとおりであること。
	寸法確認	実施計画に記載した主要寸 法について記録を確認する。	寸法が許容範囲内である こと。
	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
構造強度 • 耐震性	据付確認	機器の据付位置,据付状態に ついて確認する。	実施計画のとおり施工・据 付されていること。
	耐圧・漏えい確認	確認圧力で保持した後,確認 圧力に耐えていることを記録で確認する。 耐圧確認終了後,耐圧部分からの漏えいの有無も確認する。	確認圧力に耐え、かつ構造物の変形等がないこと。 また、耐圧部から漏えいがないこと。
性能	運転性能 確認	定格容量を通水する。	実施計画に記載した容量 を通水できること。 また,異音,異臭,振動等 の異常がないこと。

表-3 確認事項(サブドレン他浄化装置)

	·		
確認事項	確認項目	確認内容	判定基準
		設計流量 (50m³/h) 以上で処	実施計画に記載した容量
		理対象水を通水し, サブドレ	を通水でき, Cs-134,
		ン他浄化装置の処理前水及	Cs-137, Sr-90 ^{※1} の放射能
		び処理済水の水質について	濃度が低減すること**2。処
	YEAT NH 45	確認条件で分析する。	理前水の Ge 半導体検出器
性能	運転性能		にて Cs-137 を検出できる
	確認		計測を行った結果として
			確認された核種*3の放射
			能濃度が低減すること。
			また, 異音, 異臭, 振動等
			の異常がないこと。

- $\frac{1}{2}$ Sr-90 は、分析値若しくは全 β での評価値とする。
- ※2 告示に定める周辺監視区域外の水中の濃度限度との比がそれぞれ 0.1 を十分下回ること。
- ※3 Cs-137 が検出されない場合は Cs-137 で 1Bq/L まで確認することとし、それでも検出されない場合は他に確認される核種はないものとする。

表-4 確認事項(揚水ポンプ,中継タンク移送ポンプ,集水タンク移送ポンプ, 集水移送加圧ポンプ,処理装置供給ポンプ,処理装置加圧ポンプ,浄化水移送ポンプ, 攪拌ポンプ,地下水ドレンポンド揚水ポンプ,地下水ドレン中継タンク移送ポンプ)

確認事項	確認項目	確認内容	判定基準
	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
構造強度	据付確認	機器の据付位置, 据付状態に	実施計画のとおり施工・据
• 耐震性	% 1, % 2, % 3	ついて確認する。	付されていること。
	漏えい確認	運転圧力で耐圧部分からの	耐圧部から漏えいがない
	% 1, % 2, % 3	漏えいの有無を確認する。	こと。
		ポンプの運転確認を行う。	実施計画に記載した容量
\/ \ \	運転性能		を満足すること。
性能	確認		また, 異音, 異臭, 異常振
			動等がないこと。

- ※1 揚水ポンプについては、サブドレンピット内部の水中に設置されており、据付確認及び漏えい 確認が困難であり、対象外とする。
- ※2 地下水ドレンポンド揚水ポンプについては、地下水ドレンポンド内部の水中に設置されており、 据付確認及び漏えい確認が困難であり、対象外とする。
- ※3 地下水ドレン中継タンク移送ポンプについては、地下水ドレン中継タンク内部の水中に設置されており、据付確認及び漏えい確認が困難であり、対象外とする。

表-5-1 確認事項(サブドレン集水設備主配管(鋼管), サブドレン他浄化設備主配管(鋼管),サブドレン他移送設備主配管(鋼管), 地下水ドレン集水設備主配管(鋼管))

確認事項	確認項目	確認内容	判定基準
	材料確認	実施計画に記載した主な材料について記録を確認する。	実施計画のとおりであること。
		実施計画に記載した外径、厚	寸法が許容範囲内である
	寸法確認	さについて記録を確認する。	こと。
	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
構造強度 ・耐震性	据付確認	機器の据付状態について確認する。	実施計画のとおり施工・据 付されていること。
		確認圧力で保持した後,確認	確認圧力に耐え、かつ構造
		圧力に耐えていることを確	物の変形等がないこと。
	耐圧・	認する。	また, 耐圧部から漏えいが
	漏えい確認	耐圧確認終了後,耐圧部分か	ないこと。
		らの漏えいの有無も確認す	
		る。*1	

^{※1} 現地で施工するフランジ部のうち処理対象水を使用せずに確認できる範囲については、運転圧 で漏えいがないことを確認する。

表-5-2 確認事項(サブドレン集水設備主配管(PE 管), サブドレン他浄化設備主配管(PE 管),サブドレン他移送設備主配管(PE 管), 地下水ドレン集水設備主配管(PE 管))

確認事項	確認項目	確認内容	判定基準
	材料確認	主な材料について記録を確認する。	当該材料規格の規定のとおりであること。
	寸法確認	主要寸法について記録を確認する。	製造者寸法許容範囲内であること。
構造強度 ・耐震性	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
III) AX LL	据付確認	配管の据付状態について確認する。	実施計画のとおり施工・据 付されていること。
	耐圧・漏えい確認	現場状況を考慮し製造者指 定方法・圧力による漏えい有 無を確認する。**1	耐圧部から漏えいがないこと。

^{※1} 現地で施工するフランジ部のうち処理対象水を使用せずに確認できる範囲については、運転圧で漏えいがないことを確認する。

表-5-3 確認事項(サブドレン集水設備主配管(伸縮継手),サブドレン他浄化設備主配管(伸縮継手))

確認事項	確認項目	確認内容	判定基準
	材料確認	主な材料について記録を確認する。	当該材料規格の規定のとおりであること。
	寸法確認	指定のサイズ (呼び径) で あることを確認する。	指定のサイズ (呼び径) で あること。
	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
構造強度 • 耐震性	据付確認	配管の据付状態について 確認する。	実施計画のとおり施工・据付されていること。
	耐圧・漏えい確認	確認圧力で保持した後,確認圧力に耐えていることを確認する。 耐圧確認終了後,耐圧部分からの漏えいの有無も確認する。**1	確認圧力に耐え、かつ構造物の変形等がないこと。また、耐圧部から漏えいがないこと。

^{※1} 現地で施工するフランジ部のうち処理対象水を使用せずに確認できる範囲については、運転圧で漏えいがないことを確認する。

表-5-4 確認事項(サブドレン他移送設備主配管(伸縮継手))

確認事項	確認項目	確認内容	判定基準
		実施計画に記載した主な	実施計画のとおりであるこ
	材料確認	材料について記録を確認	と。
		する。	
		指定サイズ (呼び径) であ	指定サイズ (呼び径) である
	寸法確認	ることを確認する。	こと。
	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
	据付確認	配管の据付状態について	実施計画のとおり施工・据付
構造強度 • 耐震性		確認する。	されていること。
110472212		①最高使用圧力による耐	①耐圧部から漏えいがない
		圧漏えい確認を行う。	こと。
		②確認圧力で保持した後、	②確認圧力に耐え,かつ構造
	耐圧・	確認圧力に耐えているこ	物の変形等がないこと。
	漏えい確認*1	とを確認する。	また, 耐圧部から漏えいがな
		耐圧確認終了後, 耐圧部分	いこと。
		からの漏えいの有無も確	
		認する。 ^{※2}	

- ※1 ①または②にて実施する。
- ※2 現地で施工するフランジ部のうち処理対象水を使用せずに確認できる範囲については、運転圧 で漏えいがないことを確認する。

表-6 確認事項 (漏えい検出装置及び警報装置)

確認事項	確認項目	確認内容	判定基準
	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
構造強度	据付確認	装置の据付位置,据付状態に	実施計画のとおり施工・据
		ついて確認する。	付されていること。
機能	漏えい	設定通りに警報が作動する	許容範囲以内で警報が作
	警報確認	ことを確認する。	動すること。

表-7 確認事項(堰その他の設備*1)

確認事項	確認項目	確認内容	判定基準
構造強度	寸法確認	主要寸法について記録を確認する。	寸法が許容範囲内であること。
・耐震性	外観確認	各部の外観を確認する。	有意な欠陥がないこと。

^{※1} サブドレン他浄化装置建屋内堰を除く、屋外に設置したタンク堰。

表-8-1 確認事項(サブドレン他浄化装置建屋基礎)

確認事項	確認項目	確認内容	判定基準
			構造体コンクリート強度
		 構造体コンクリートの圧縮	が,実施計画に記載されて
		強度を確認する。	いる設計基準強度に対し
	材料確認	1年次で1年時の9つ。	て, JASS 5N の基準を満足
			すること。
		鉄筋の材料,強度,化学成分	JIS G 3112 に適合するこ
		を確認する。	と。
	寸法確認	構造体コンクリート部材の 断面寸法を確認する。	構造体コンクリート部材
構造強度			の断面寸法が,実施計画に
			記載されている寸法に対
			して, JASS 5N の基準を満
			足すること。
			鉄筋の径が実施計画に記
			載されている通りである
	据付確認	 鉄筋の径、間隔を確認する。	こと。鉄筋の間隔が実施計
	7/四个八个任命公		画に記載されているピッ
			チにほぼ均等に分布して
			いること。

表-8-2 確認事項 (サブドレン他浄化装置建屋内堰)

確認事項	確認項目	確認内容	判定基準
	++\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	実施計画に記載されている	実施計画のとおりである
	材料確認	主な材料について確認する。	こと。
	寸法確認	実施計画に記載されている	寸法が許容範囲内である
漏えい防止		主要寸法を確認する。	こと。
INN Z. V PJ II.	外観確認	各部の外観を確認する。	有意な欠陥がないこと。
	据付確認	堰その他の設備の据付位置,	実施計画のとおり施工・据
		据付状態について確認する。	付されていること。

RO 濃縮水処理設備から用途変更する機器に関する確認事項を表-9に示す。

RO 濃縮水処理設備から他設備へ用途変更する機器は、用途変更に伴い、構造強度・耐震性、機能及び性能について変更はないことから、用途変更後も機器を継続使用する。なお、用途変更する機器に係わる確認事項については、継続使用しながら確認を実施する。

表-9-1 確認事項 (RO 濃縮水処理水中継タンク)

	1 3 1	作的事员(HO 版相外及经外)	小型ノマノノ
確認事項	確認項目	確認内容	判定基準
	材料確認	実施計画に記載した主な材料について記録を確認する。	実施計画のとおりであること。
	寸法確認	実施計画に記載した主要寸 法について記録を確認する。	寸法が許容範囲内である こと。
	外観確認	各部の外観を確認する。 **1	有意な欠陥がないこと。
構造強度 ・耐震性	据付確認	機器の据付位置、据付状態について確認する。	実施計画のとおり施工・据 付されていること。
	耐圧・漏えい確認	確認圧力で保持した後,確認 圧力に耐えていることを記 録で確認する。 耐圧確認終了後,耐圧部分か らの漏えいの有無も確認す る。	確認圧力に耐え、かつ構造物の変形等がないこと。また、耐圧部から著しい漏えいがないこと。
機能	警報確認	液位「高高」側*2の信号により警報が発生することを確認する。	液位「高高」側**2の信号により警報が発生すること。

^{※1} 現地では実施可能な範囲とし、必要に応じて記録を確認する。

^{※2} タンクにより信号名称は異なる。

表-9-2 確認事項 (RO 濃縮水処理水移送ポンプ)

確認事項	確認項目	確認内容	判定基準
	外観確認	各部の外観を確認する。**1	有意な欠陥がないこと。
構造強度	据付確認	機器の据付位置, 据付状態に	実施計画のとおり施工・据
・耐震性	7/百十7 4年中心	ついて確認する。	付されていること。
	\/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	運転圧力で耐圧部分からの	耐圧部から著しい漏えい
	漏えい確認	漏えいの有無を確認する。	がないこと。
		ポンプの運転確認を行う。	実施計画に記載した容量
性能	運転性能		を満足すること。
	確認		また、異音、異臭、異常振
			動等がないこと。

^{※1} 現地では実施可能な範囲とし、必要に応じて記録を確認する。

表-9-3 確認事項(主配管(鋼管))

確認事項	確認項目	確認内容	判定基準
	材料確認	実施計画に記載した主な材料について記録を確認する。	実施計画のとおりであること。
	寸法確認	実施計画に記載した外径,厚	寸法が許容範囲内である
	7.1774年的0	さについて記録を確認する。	こと。
	外観確認	各部の外観を確認する。※1	有意な欠陥がないこと。
L#\\4\7\C			
構造強度	+₽ <i>(_\range rh-</i> → 27	配管の据付状態について確	実施計画のとおり施工・据
• 耐震性	据付確認	認する。*1	付されていること。
		確認圧力で保持した後、確認	確認圧力に耐え、かつ構造
		圧力に耐えていることを確	物の変形等がないこと。
	耐圧・	認する。	また, 耐圧部から著しい漏
	漏えい確認	耐圧確認終了後, 耐圧部分か	えいがないこと。
		らの漏えいの有無も確認す	
		る。	

※1 現地では実施可能な範囲とし、必要に応じて記録を確認する。

表-9-4 確認事項 (主配管 (PE 管))

確認事項	確認項目	確認内容	判定基準
	材料確認	主な材料について記録を確認する。	実施計画のとおりであること。
	寸法確認	主要寸法について記録を確認する。	製造者寸法許容範囲内であること。
構造強度 ・耐震性	外観確認	各部の外観を確認する。**1	有意な欠陥がないこと。
1000 灰江	据付確認	配管の据付状態について確認する。**1	実施計画のとおり施工・据 付されていること。
	耐圧・漏えい確認	現場状況を考慮し製造者指 定方法・圧力による漏えい有 無を確認する。	耐圧部から著しい漏えい がないこと。

^{※1} 現地では実施可能な範囲とし、必要に応じて記録を確認する。

表-9-5 確認事項(主配管(伸縮継手))

	I		
確認事項	確認項目	確認内容	判定基準
	材料確認	実施計画に記載した主な 材料について記録を確認 する。	実施計画のとおりであること。
	寸法確認	指定サイズ (呼び径) であることを確認する。	指定サイズ (呼び径) である こと。
構造強度 • 耐震性	外観確認	各部の外観を確認する。※	有意な欠陥がないこと。
	据付確認	配管の据付状態について 確認する。*1	実施計画のとおり施工・据付 されていること。
	耐圧・ 漏えい確認	最高使用圧力による耐圧 漏えい確認を行う。	耐圧部から著しい漏えいが ないこと。

※1:現地では実施可能な範囲とし、必要に応じて記録を確認する。

表-9-6 確認事項(堰その他の設備※1)

確認事項	確認項目	確認内容	判定基準
構造強度	寸法確認	主要寸法について記録を確認する。	寸法が許容範囲内であること。
・耐震性	外観確認	各部の外観を確認する。	有意な欠陥がないこと。

^{※1} サブドレン他浄化装置建屋内堰を除く、屋外に設置したタンク堰。

表-9-7 確認事項(主配管(閉止部))

確認事項	確認項目	確認内容	判定基準
構造強度	外観・据付	配管閉止部の外観, 据付状態	実施計画の通りであるこ
• 耐震性	確認	について確認する。	と。
機能	機能確認	配管が実施計画の通り施工さ	実施計画の通りであるこ
		れていることを確認する。	と。