2.6 滞留水を貯留している(滞留している場合を含む)建屋

- 2.6.1 基本設計
- 2.6.1.1 設置の目的

既設1~4号機の原子炉建屋,タービン建屋(コントロール建屋及び,2,3号機海水 配管トレンチ・立坑*1を含む),廃棄物処理建屋には,高レベル放射性汚染水(以下,

「滞留水」という。)が滞留している。また,集中廃棄物処理建屋のうち,プロセス主建 屋,雑固体廃棄物減容処理建屋(以下,「高温焼却炉建屋」という。)は、1~4号機の タービン建屋の滞留水を移送するための受け入れ先とするものであることから,各建屋の 滞留水の状況を適切に監視し,放射性物質の建屋外への漏えいを防止するための機能を満 足する設備とする。

※1:立坑とは、規模の大きな地中構造物のうち、比較的深い(10m 程度)「縦の坑道」をいう。

- 2.6.1.2 要求される機能
 - (1) 建屋等に滞留する滞留水の状況を監視できる機能を有し、建屋等の外への漏えいを防止できる機能を有すること。
 - (2) 汚染水処理設備の長期間の停止及び豪雨等があった場合にも、建屋等の外への漏えい を防止できるよう水位を管理できること。
 - (3)滞留水に起因する気体状の放射性物質の環境への放出を抑制・管理できる機能を有す ること。
 - (4) 建屋等周辺の地下水の放射性物質濃度を監視できる機能を有すること。

2.6.1.3 設計方針

(1) 建屋等の滞留水の状況を監視できる機能を有し、建屋等の外への漏えいを防止できる 機能を有する設計とする。

具体的には、建屋等の滞留水の状況を監視できる機能として、水位計を設置する。また、各建屋からの滞留水の漏えいを防止するために、建屋に滞留する滞留水の水位が地下水の水位よりも低くなるように管理する必要があること、地下水の水位は、サブドレン水^{*2}の水位により確認していることから、建屋近傍の適切なサブドレンに水位計を設置する。

※2:サブドレン水とは、建屋周辺の地下水をいう。

(2) 汚染水処理設備の長期間の停止,豪雨等があった場合にも,建屋等の外への漏えいが

防止できるよう水位を管理する。

具体的には、汚染水処理設備の長期間の停止及び豪雨等に備え、タービン建屋等の水位 を余裕のある水位に維持することにより管理する。また、プロセス主建屋、高温焼却炉建 屋については、受け入れを停止すれば問題とならない。また、1~4号機の滞留水が急激 に増加した場合、高濃度滞留水受タンク等に貯留する。

(3)滞留水に起因する気体状の放射性物質の環境への放出を抑制・管理できる機能を有す る設計とする。

具体的には、滞留水に起因する気体状の放射性物質の環境への放出低減のため、可能な 限り地下開口部の閉塞を行い、必要に応じて各建屋についてダストサンプリングを実施 する。

(4) 建屋等周辺の地下水の放射性物質濃度を監視できる機能を有する設計とする。

具体的には、サブドレン水のサンプリングの測定箇所を適切に設定し、定期的に測定す る。

(5) 必要に応じて, 貯留または滞留している滞留水から発生する可燃性ガスの検出, 管理 及び処理が適切に行える機能を有する設計とする。

具体的には,滞留水を建屋内に貯蔵した後に水素濃度測定を実施し水素の滞留のない ことを確認する。また,念のため,必要に応じて換気口を設けるなど水素の滞留を抑制す る。

(6) 環境条件に対する設計上の考慮は、次の通りとする。

海水による影響については, 「Ⅲ.3.1.3.1.2(5) 1~4号機原子炉建屋の点検について及び, 同 添付資料-6 コメント回答③」に記載している。

(7) 電源停止に対する設計上の考慮は、次の通りとする。

全電源喪失による水位の遠隔監視機能が喪失の場合でも、これまでの実績から地下水 の流入及び原子炉注水による水位の上昇は緩慢なものであり、水位のシミュレーション も可能である。また、交流電源を使用しない別の水位計により電源復旧までの間、手動 での水位計測も可能である。以上のことから、漏えい防止の水位監視機能は喪失しない ことから、安全上の問題は生じない。

(8) 信頼性に対する設計上の考慮は、次の通りとする。

建屋等の外への漏えいを防止できる機能については、多重性を持たないが、滞留水を貯 留する機能については、1~4号機各建屋の滞留水をプロセス主建屋、高温焼却炉建屋に 移送することができ、更に、高濃度滞留水受けタンクにも移送が可能であり、それぞれ独立した設備であることから多重性、独立性を有している。

(9) 検査可能性に対する設計上の考慮は、次の通りとする。

建屋そのものの構造・強度の健全性については,直接的には,水没部が高線量であり確認することは出来ないが,類似箇所からの類推評価や解析により健全性を評価することが可能である。

また,建屋の滞留水を貯留する能力については,滞留水の水位制御により担保されてい ることから,水位が規定の値に制御されていることにより能力が保たれていることを確認 することが可能である。また,建屋周囲のサブドレン水の放射能濃度を計測することによ り,漏えいがないことを確認でき,滞留水の地下水への漏えいのないことを確認可能であ る。

(10) 建屋等内に滞留する滞留水の増加抑制及び滞留水漏えいリスク低減にかかる方針は, 次の通りとする。

滞留水の増加抑制及び滞留水漏えいリスク低減を図るためには、今後,地下水位を管理 し地下水の流入を抑制し滞留水の水位を下げタービン建屋,原子炉建屋,廃棄物処理建屋 内にある滞留水を処理する必要がある。このため、地下水バイパス、トレンチ止水等の方 策を検討する。

2.6.1.4 供用期間中に確認する項目

(1) 建屋等の外への滞留水の漏えいを防止できる機能を有すること

- 2.6.1.5 主要な機器
- (1) 設備概要

滞留水を貯留している建屋等は,集中廃棄物処理建屋のうち,滞留水を貯留するプロ セス主建屋,高温焼却炉建屋と,滞留水が滞留する1~4号機の原子炉建屋,タービン 建屋,廃棄物処理建屋で構成する。

各号機の建屋等について設計内容を目標ごとに以下に記載する。

(2) プロセス主建屋

プロセス主建屋に貯留する滞留水は、1号機、2号機、3号機及び4号機から滞留水 移送装置(移送ポンプ,ポリエチレン管等)で移送され、汚染水処理設備で処理される ことにより水位調整を行う。移送については、移送元の1~4号機の水位や移送先とな る集中廃棄物処理建屋の水位の状況を考慮し実施する。

プロセス主建屋について,以下のとおり設計する。

a. 滞留水の監視及び建屋外への漏えい防止

建屋等にある滞留水の状況を監視できる機能として,水位計を設置し,建屋内水 位を監視する。

また、建屋からの漏えいを防止する機能として、以下について実施する。

(a) 貫通部の止水

漏えいの経路となり得る当該建屋の系外への貫通部に適切な止水を実施する。 (b) 外壁、床面等の亀裂からの漏えい対策

- 観察等からの漏えい対策として、外壁、床面等の亀裂や浸潤などにひび割れ補 修を実施する。
- (c)建屋に貯留する滞留水の水位管理 建屋に貯留する滞留水の水位がサブドレン水の水位よりも低くなるように管理 するため、建屋近傍の適切なサブドレンに水位計を設置する。
- (d) コンクリート壁中における放射性物質の拡散について
 建屋のコンクリート壁中を放射性物質が拡散し、漏えいする可能性があるため、拡散評価を行う。
- (e) サイトバンカ建屋における滞留水の対応について

プロセス主建屋に隣接するサイトバンカ建屋においては、地下に滞留している 水に放射能が検出されていることから、プロセス主建屋に貯留する滞留水が両建 屋間を繋ぐ階段室を介し流入した可能性は否定できない。

このため、サイトバンカ建屋の滞留水は適宜プロセス主建屋へ移送する。 また、サイトバンカ建屋近傍のサブドレン水の水位及び放射能濃度を監視する。

b. 汚染水処理設備の長期間の停止及び豪雨等があった場合における建屋等の外への漏 えい防止

汚染水処理設備の長期間の停止及び豪雨等に備え、受け入れ元であるタービン建 屋等の水位を余裕のある水位に維持する。このことから、プロセス主建屋への受け 入れを停止すれば問題とならない。また、1~4号機の滞留水が急激に増加した場 合、高濃度滞留水受タンク等に貯留する。

c. 気体状の放射性物質の放出抑制・管理

滞留水に起因する気体状の放射性物質の環境への放出低減のため,可能な限り地 下開口部の閉塞を行う。また,必要に応じてプロセス主建屋についてもダストサン プリングを実施する。

なお,水の放射線分解により建屋内に水素が発生した場合の対策として設置する 局所排風機は,チャコールフィルタ,高性能粒子フィルタを通して排気するものと する。 d. 地下水の放射性物質濃度の監視

建屋等周辺の地下水の放射性物質濃度を監視できる機能として,サブドレン水の サンプリングの測定箇所を適切に設定し,定期的に測定する。

e. 滞留水から発生する可燃性ガスの検出,管理及び処理

滞留水を建屋内に貯蔵した後に水素濃度測定を実施し,水素の滞留のないことを 確認する。また念のため,水の放射線分解により建屋内に水素が発生した場合の対 策として,建屋上部より吸気して排気する局所排風機を設置する。

なお、滞留水に起因する気体状の放射性物質の環境への放出低減のため地下開口 部を閉塞する部位については、可燃性ガスが滞留する可能性がある閉塞部の付近に て水素濃度について上昇傾向のないことの確認のためサンプリングを実施する。そ れにより水素の滞留が確認された場合、対策を実施する。

(3) 高温焼却炉建屋

高温焼却炉建屋に貯留する滞留水は、1号機、2号機、3号機及び4号機から滞留水 移送装置(移送ポンプ,ポリエチレン管等)で移送することにより受け入れ、汚染水処 理設備により処理することにより水位調整を行う。移送については、移送元の1~4号 機の水位や移送先となる集中廃棄物処理建屋の水位の状況を考慮し実施する。

高温焼却炉建屋について、以下のとおり設計する。

a. 滞留水の監視及び建屋外への漏えい防止

建屋等にある滞留水の状況を監視できる機能として,水位計を設置し,建屋内水 位を監視する。

また、建屋からの漏えいを防止する機能として、以下について実施する。

- (a) 貫通部の止水 漏えいの経路となり得る当該建屋の系外への貫通部に適切な止水工事を実施す る。
- (b) 外壁,床面等の亀裂からの漏えい対策

亀裂等からの漏えい対策として,外壁,床面等の亀裂や浸潤などにひび割れ補 修を実施する。

(c) 建屋に貯留する滞留水の水位管理

建屋に貯留する滞留水の水位がサブドレン水の水位よりも低くなるように管理 する。そのため、建屋近傍の適切なサブドレンに水位計を設置する。

(d) コンクリート壁中における放射性物質の拡散について
 建屋のコンクリート壁中を放射性物質が拡散し、漏えいする可能性があるため、拡散評価を行う。

(e) 隣接する地下通路への滞留水の漏えい対応について

高温焼却炉建屋の滞留水は,隣接する地下通路に漏えいしていることが確認さ れたが地下通路部の水位の方が高いことから漏えいは抑制されていると考える。 念のため,高温焼却炉建屋近傍のサブドレン水の水位及び放射能濃度を監視する。

b. 汚染水処理設備の長期間の停止及び豪雨等があった場合における建屋等の外への漏 えい防止

汚染水処理設備の長期間の停止及び豪雨等に備え、受け入れ元であるタービン建 屋等の水位を余裕のある水位に維持する。このことから、高温焼却炉建屋への受け 入れを停止すれば問題とならない。また、1~4号機の滞留水が急激に増加した場 合、高濃度滞留水受タンク等に貯留する。

c. 気体状の放射性物質の放出抑制・管理

滞留水に起因する気体状の放射性物質の環境への放出低減のため,可能な限り地 下開口部の閉塞を行う。また,必要に応じてプロセス主建屋についてもダストサン プリングを実施する。

なお,水の放射線分解により建屋内に水素が発生した場合の対策として設置する 局所排風機は,チャコールフィルタ,高性能粒子フィルタを通して排気するものと する。

d. 地下水の放射性物質濃度の監視

建屋等周辺の地下水の放射性物質濃度を監視できる機能として,サブドレン水の サンプリングの監視箇所を適切に設定し,定期的に測定する。

e. 滞留水から発生する可燃性ガスの検出,管理及び処理

滞留水を建屋内に貯蔵した後に水素濃度測定を実施し,水素の滞留のないことを 確認する。また念のため,水の放射線分解により建屋内に水素が発生した場合の対 策として,建屋上部より吸気して排気する局所排風機を設置する。

なお、滞留水に起因する気体状の放射性物質の環境への放出低減のため地下開口 部を閉塞する部位については、可燃性ガスが滞留する可能性がある閉塞部の付近に て水素濃度について上昇傾向のないことの確認のためサンプリングを実施する。そ れにより水素の滞留が確認された場合、対策を実施する。

(4) 1号機

1号機の滞留水については,原子炉建屋,タービン建屋,廃棄物処理建屋に滞留しており,原子炉建屋から主に廃棄物処理建屋を通って2号機廃棄物処理建屋へ流出するとと

もに、タービン建屋にも流出する場合があると考えられる。これらの滞留水は、1号機原 子炉建屋・タービン建屋から3号タービン建屋または集中廃棄物処理建屋へ滞留水移送 装置(移送ポンプ,ポリエチレン管等)を通じて移送することにより水位調整を行う。ま た、1号機タービン建屋の滞留水については、水位状況に応じて1号機廃棄物処理建屋へ 滞留水移送装置(移送ポンプ,ポリエチレン管等)を通じて2号機タービン建屋に移送す る。移送については、移送元の各建屋の水位及び移送先の各建屋水位を考慮し実施する。 1号機の各建屋について、以下のとおり設計する。

a. 滞留水の監視及び建屋外への漏えい防止

建屋等にある滞留水の状況を監視できる機能として,原子炉建屋,タービン建 屋,廃棄物処理建屋に水位計を設置し滞留水の水位を監視する。

また、建屋からの漏えいを防止する機能として、以下について実施する。

(a) 建屋内滞留水の水位管理

建屋内滞留水の水位がサブドレン水の水位よりも低くなるように管理するため, 原子炉建屋,タービン建屋,廃棄物処理建屋の滞留水と適切な測定箇所のサブドレ ンに水位計を設置する。

また,地下水バイパスにより建屋周辺の地下水の水位を低下させる場合におい ても,建屋内滞留水の水位がサブドレン水位よりも低くなるように管理する。

さらに、地下水による海洋汚染拡大防止を図るため1~4号機の既設護岸の前 面に遮水壁を設置した場合においても、建屋内滞留水の水位がサブドレン水位よ りも低くなるように管理する。

(b) コンクリート壁中における放射性物質の拡散

建屋のコンクリート壁中を放射性物質が拡散し,漏えいする可能性があるため,拡散評価を行う。

b. 汚染水処理設備の長期間の停止及び豪雨等があった場合における建屋等の外への漏 えい防止

汚染水処理設備の長期間の停止及び豪雨等に備え、1号機の滞留水が流入する2 号機タービン建屋等の水位を、余裕のある水位に維持する。また、1~4号機の滞 留水が急激に増加した場合、高濃度滞留水受タンク等に貯留する。

c. 気体状の放射性物質の放出抑制・管理

滞留水に起因する気体状の放射性物質の環境への放出低減のため,タービン建屋 及び廃棄物処理建屋について,可能な限り地下開口部の閉塞を行い,原子炉建屋上 部及び必要に応じてタービン建屋,廃棄物処理建屋についてダストサンプリングを 実施する。 d. 地下水の放射性物質濃度の監視

建屋等周辺の地下水の放射性物質濃度を監視できる機能として,サブドレン水の サンプリングの測定箇所を適切に設定し,定期的に測定する。

e. 滞留水から発生する可燃性ガスの検出,管理及び処理

滞留水に起因する気体状の放射性物質の環境への放出低減のため地下開口部を閉 塞の後,滞留する可能性がある閉塞部の付近にて水素濃度について上昇傾向のない ことの確認のためサンプリングを実施する。それにより水素の滞留が確認された場 合,対策を実施する。

(5) 2号機

2号機の滞留水については,原子炉建屋,タービン建屋,廃棄物処理建屋に滞留して おり,各建屋間において水位状況に応じた滞留水の連動があり,2号機原子炉建屋・タ ービン建屋・廃棄物処理建屋から3号機タービン建屋または集中廃棄物処理建屋へ滞留 水移送装置(移送ポンプ,ポリエチレン管等)を通じて移送することにより水位調整を 行う。移送については,移送元の各建屋の水位及び移送先の各建屋水位を考慮し実施す る。2号機の各建屋について,以下のとおり設計する。

a. 滞留水の監視及び建屋外への漏えい防止

建屋等にある滞留水の状況を監視できる機能として,原子炉建屋,タービン建 屋,廃棄物処理建屋に水位計を設置し滞留水の水位を監視する。

また、建屋からの漏えいを防止する機能として、以下について実施する。

(a) 建屋内滞留水の水位管理

建屋内滞留水の水位がサブドレン水の水位よりも低くなるように管理するため, 原子炉建屋,タービン建屋,廃棄物処理建屋の滞留水と適切な測定箇所のサブドレ ンに水位計を設置する。

また,地下水バイパスにより建屋周辺の地下水の水位を低下させる場合におい ても,建屋内滞留水の水位がサブドレン水位よりも低くなるように管理する。

T.P.2,564mm^{**}(0.P.4,000mm)に開口部を有する立坑については閉塞する。

さらに、地下水による海洋汚染拡大防止を図るため1~4号機の既設護岸の前 面に遮水壁を設置する場合においても、建屋内滞留水の水位がサブドレン水位よ りも低くなるように管理する。

- (b) コンクリート壁中における放射性物質の拡散 建屋のコンクリート壁中を放射性物質が拡散し、漏えいする可能性があるた め、拡散評価を行う。
- b. 汚染水処理設備の長期間の停止及び豪雨等があった場合における建屋等の外への漏

えい防止

汚染水処理設備の長期間の停止及び豪雨等に備え、タービン建屋等の水位を、余裕のある水位に維持し、滞留水が急激に増加した場合の海洋への放出リスクの高まる T.P.2,564mm^{**}(0.P.4,000mm)までの余裕を確保する。また、1~4号機の滞留水が急激に増加した場合、高濃度滞留水受タンク等に貯留する。

c. 気体状の放射性物質の放出抑制・管理

滞留水に起因する気体状の放射性物質の環境への放出低減のため,タービン建屋 及び廃棄物処理建屋について,可能な限り地下開口部の閉塞を行い,原子炉建屋上 部及び必要に応じてタービン建屋,廃棄物処理建屋についてもダストサンプリング を実施する。

d. 地下水の放射性物質濃度の監視

建屋等周辺の地下水の放射性物質濃度を監視できる機能として,サブドレン水の サンプリングの測定箇所を適切に設定し,定期的に測定する。

- e.滞留水から発生する可燃性ガスの検出,管理及び処理
 滞留水に起因する気体状の放射性物質の環境への放出低減のため地下開口部を閉塞の後,滞留する可能性がある閉塞部の付近にて水素濃度について上昇傾向のないことの確認のためサンプリングを実施する。それにより水素の滞留が確認された場合,対策を実施する。
- (6) 3号機

3号機の滞留水については、原子炉建屋、タービン建屋、廃棄物処理建屋に滞留してお り、3/4号機の各建屋間において水位状況に応じた滞留水の連動がある。また、1号機 および2号機から滞留水移送装置で移送された滞留水が流入する。これらの滞留水は3 号機原子炉建屋・タービン建屋・廃棄物処理建屋から4号機タービン建屋、集中廃棄物処 理建屋へ滞留水移送装置(移送ポンプ、ポリエチレン管等)で移送することにより水位調 整を行う。移送については、移送元の各建屋の水位及び移送先の各建屋水位を考慮し実施 する。3号機の各建屋について、以下のとおり設計する。

a. 滞留水の監視及び建屋外への漏えい防止

建屋等にある滞留水の状況を監視できる機能として,原子炉建屋,タービン建 屋,廃棄物処理建屋に水位計を設置し滞留水の水位を監視する。

- また、建屋からの漏えいを防止する機能として、以下について実施する。
- (a) 建屋内滞留水の水位管理

建屋内滞留水の水位がサブドレン水の水位よりも低くなるように管理するた

め,原子炉建屋,タービン建屋,廃棄物処理建屋の滞留水と適切な測定箇所のサ ブドレンに水位計を設置する。

また,地下水バイパスにより建屋周辺の地下水の水位を低下させる場合においても,建屋内滞留水の水位がサブドレン水位よりも低くなるように管理する。 T.P.2,564mm*(0.P.4,000mm)に開口部を有する立坑については閉塞する。

さらに、地下水による海洋汚染拡大防止を図るため1~4号機の既設護岸の前 面に遮水壁を設置する場合においても、建屋内滞留水の水位がサブドレン水位よ

りも低くなるように管理する。

- (b) コンクリート壁中における放射性物質の拡散 建屋のコンクリート壁中を放射性物質が拡散し、漏えいする可能性があるた め、拡散評価を行う。
- b. 汚染水処理設備の長期間の停止及び豪雨等があった場合における建屋等の外への漏 えい防止

汚染水処理設備の長期間の停止及び豪雨等に備え、タービン建屋等の水位を、余裕のある水位に維持し、滞留水が急激に増加した場合の海洋への放出リスクの高まる T.P.2,564mm^{**}(0.P.4,000mm)までの余裕を確保する。また、1~4号機の滞留水が急激に増加した場合、高濃度滞留水受タンク等に貯留する。

c. 気体状の放射性物質の放出抑制・管理

滞留水に起因する気体状の放射性物質の環境への放出低減のため,タービン建屋 及び廃棄物処理建屋について,可能な限り地下開口部の閉塞を行い,原子炉建屋上 部及び必要に応じてタービン建屋,廃棄物処理建屋についてもダストサンプリング を実施する。

d. 地下水の放射性物質濃度の監視

建屋等周辺の地下水の放射性物質濃度を監視できる機能として,サブドレン水の サンプリングの測定箇所を適切に設定し定期的に測定する。

e. 滞留水から発生する可燃性ガスの検出,管理及び処理

滞留水に起因する気体状の放射性物質の環境への放出低減のため地下開口部を閉 塞の後,滞留する可能性がある閉塞部の付近にて水素濃度について上昇傾向のない ことの確認のためサンプリングを実施する。それにより水素の滞留が確認された場 合,対策を実施する。 (7) 4号機

4号機の滞留水については,原子炉建屋,タービン建屋,廃棄物処理建屋に滞留して おり、3/4号機の各建屋間において水位状況に応じた滞留水の連動があり、3号機タ ービン建屋または4号機原子炉建屋・タービン建屋・廃棄物処理建屋から滞留水移送装 置(移送ポンプ,ポリエチレン管等)で集中廃棄物処理建屋へ移送することにより水位 調整を行う。移送については,移送元の各建屋の水位及び移送先の各建屋水位を考慮し 実施する。4号機の各建屋について,以下のとおり設計する。

a. 滞留水の監視及び建屋外への漏えい防止

建屋等にある滞留水の状況を監視できる機能として,原子炉建屋,タービン建 屋,廃棄物処理建屋に水位計を設置し滞留水の水位を監視する。

また、建屋からの漏えいを防止する機能として、以下について実施する。

(a) 建屋内滞留水の水位管理

建屋内滞留水の水位がサブドレン水の水位よりも低くなるように管理するため,原子炉建屋,タービン建屋,廃棄物処理建屋の滞留水と適切な測定箇所のサ ブドレンに水位計を設置する。

また,地下水バイパスにより建屋周辺の地下水の水位を低下させる場合におい ても,建屋内滞留水の水位がサブドレン水位よりも低くなるように管理する。

T.P.2,564mm[※](0.P.4,000mm)に開口部を有する立坑については閉塞する。

さらに、地下水による海洋汚染拡大防止を図るため1~4号機の既設護岸の前 面に遮水壁を設置する場合においても、建屋内滞留水の水位がサブドレン水位よ りも低くなるように管理する。

- (b) コンクリート壁中における放射性物質の拡散 建屋のコンクリート壁中を放射性物質が拡散し、漏えいする可能性があるため 拡散評価を実施する。
- b. 汚染水処理設備の長期間の停止及び豪雨等があった場合における建屋等の外への漏 えい防止

汚染水処理設備の長期間の停止及び豪雨等に備え、タービン建屋等の水位を、余裕のある水位に維持し、滞留水が急激に増加した場合の海洋への放出リスクの高まる T.P.2,564mm^{**}(0.P.4,000mm)までの余裕を確保する。また、1~4号機の滞留水が急激に増加した場合、高濃度滞留水受タンク等に貯留する。

c. 気体状の放射性物質の放出抑制・管理

滞留水に起因する気体状の放射性物質の環境への放出低減のため,タービン建屋 及び廃棄物処理建屋について,可能な限り地下開口部の閉塞を行い,必要に応じて 原子炉建屋,タービン建屋,廃棄物処理建屋についてもダストサンプリングを実施

II-2-6-11

する。

d. 地下水の放射性物質濃度の監視

建屋等周辺の地下水の放射性物質濃度を監視できる機能として,サブドレン水の サンプリングの測定箇所を適切に設定し,定期的に測定する。

e. 滞留水から発生する可燃性ガスの検出,管理及び処理

滞留水に起因する気体状の放射性物質の環境への放出低減のため地下開口部を 閉塞の後,滞留する可能性がある閉塞部の付近にて水素濃度について上昇傾向のな いことの確認のためサンプリングを実施する。それにより水素の滞留が確認された 場合,対策を実施する。

※構内基準点沈下量(-709mm, 平成26年3月測量)と0.P.からT.P. への換算値(-727mm)の和(-1,436mm)により換算。 水位は、「2.35 サブドレン他水処理施設 添付-11 別紙-7 サブドレン及び建屋滞留水水位への測量結果の反映 について」に基づき、計測する。

- 2.6.1.6 自然災害対策等
- (1) 津波
 津波対策は、「Ⅲ.3.1.3.2 津波への対応」に記載している。
- (2) 豪雨·台風

豪雨・台風対策は、「Ⅲ.3.1.4.1 台風・豪雨について」に記載している。

(3) 竜巻

竜巻対策は、「Ⅲ.3.1.4.2 竜巻について」に記載している。

(4) 火災

建屋内の各設備においては,設備毎に必要な火災対策を実施している。また,滞留水を 貯留・滞留している建屋地下エリアは,火気作業が無いため火災が発生するリスクが低く, 仮に火災が発生したとしても,滞留水の貯留機能に影響はないことから,追加の火災対策 は不要である。

- 2.6.1.7 構造強度及び耐震性
 - (1) プロセス主建屋
 - a. 東北地方太平洋沖地震後の地震応答解析,点検による確認

プロセス主建屋は耐震 B クラスであり、今回の東北地方太平洋沖地震及びその余 震を経験したものの、弾性範囲の挙動を示したものと考えられるが、構造物として の健全性が維持されていることについて、地震応答解析、点検により確認を行う。

b. 地下階への貯水後における耐震安全性評価

大量(満水)の滞留水を貯蔵する荷重条件に対し、参考に基準地震動Ssに対して、構造強度を満足することを確認する。

- (2) 高温焼却炉建屋
 - a. 東北地方太平洋沖地震後の地震応答解析,点検による確認
 高温焼却炉建屋は耐震Bクラスであり,今回の東北地方太平洋沖地震及びその余
 震を経験したものの,弾性範囲の挙動を示したものと考えられるが,構造物としての健全性が維持されていることについて、地震応答解析,点検により確認を行う。
- b. 地下階への貯水後における耐震安全性評価

大量(満水)の滞留水を貯蔵する荷重条件に対し、参考に基準地震動Ss対して、構造強度を満足することを確認する。

- (3) 1~4号機
- a. 東北地方太平洋沖地震後の地震応答解析

原子炉建屋は耐震Sクラス、タービン建屋、廃棄物処理建屋は耐震Bクラスであ り、今回の東北地方太平洋沖地震及びその余震を経験したものの、弾性範囲の挙動 を示したものと考えられるが、原子炉建屋とタービン建屋は構造物としての健全性 が維持されていることについて、地震応答解析により確認を行う。

b. 地下階への貯水後における耐震安全性評価

大量(満水)の滞留水を貯蔵する荷重条件に対し,原子炉建屋について,基準地 震動Ssに対して,構造強度を満足することを確認する。

また、参考に、タービン建屋、廃棄物処理建屋について、基準地震動Ssに対して、構造強度を満足することを確認する。

2.6.2 添付資料

添付資料-1 系統概略図

- 添付資料-2 構造強度及び耐震性
- 添付資料-3 地下水バイパスによる地下水流入量の低減
- 添付資料-4 プロセス主建屋の貫通部の止水措置
- 添付資料-5 プロセス主建屋の健全性 ひび割れ等の漏えい対策
- 添付資料-6 プロセス主建屋の建屋外への放射性物質移行量の評価
- 添付資料-7 高温焼却炉建屋の貫通部の止水措置
- 添付資料-8 高温焼却炉建屋の健全性 ひび割れ等の漏えい対策
- 添付資料-9 高温焼却炉建屋の建屋外への放射性物質移行量の評価
- 添付資料-10 1~4号機の各建屋外への放射性物質移行量の評価
- 添付資料-11 建屋等内に滞留する滞留水の増加抑制及び滞留水漏えいリスク低減に かかる方針
- 添付資料-12 汚染水処理対策委員会で議論された汚染水処理問題の抜本対策
- 添付資料-13 汚染された地下水の港湾への流出抑制策等について
- 添付資料-14 陸側遮水壁設置による地下水流入量の低減
- 添付資料-15 陸側遮水壁の閉合について
- 添付資料-16 陸側遮水壁(山側ライン)の試験凍結の実施

添付資料-15

陸側遮水壁の閉合について

1. 概要

汚染水処理対策委員会で議論された汚染水処理問題の抜本対策(添付資料-12)に 基づき,汚染源に水を「近づけない」重層的な対策の一つとして,高レベル放射性汚染 水が滞留している1~4号機の原子炉建屋,タービン建屋,廃棄物処理建屋(以下「1 ~4号機のタービン建屋等」という)の周囲に陸側遮水壁(汚染水処理対策委員会の 「凍土方式の陸側遮水壁」を「陸側遮水壁」とする)を造成する。

陸側遮水壁の閉合は以下の3段階で進める。

- 第一段階:海側全面閉合+山側部分閉合する段階
- 第二段階:第一段階と第三段階の間の段階
- 第三段階:完全閉合する段階

なお、陸側遮水壁は、「汚染源である建屋に水を近づけない」ことが必要な期間に限 り凍結を行い、その必要がなくなった場合には速やかに解凍する。陸側遮水壁解凍後の 凍結管等の処理方法については解凍時期に近づいた段階で検討する。

2. 申請範囲

<既認可範囲>

- ○山側ライン上の埋設物との干渉箇所での貫通施工による凍結管設置工事
- ○海側ライン上の埋設物との干渉箇所での貫通施工による凍結管設置工事
- ○陸側遮水壁造成後の基礎地盤沈下検討
- ○山側ライン上の運用中の設備の損傷防止対策
- ○海側ライン上の運用中の設備の損傷防止対策
- ○不明埋設物への対応
- ○陸側遮水壁(山側ライン)における試験凍結の実施
- ○陸側遮水壁海側全面閉合及び山側部分閉合(第一段階)
- ○陸側遮水壁未凍結箇所の一部閉合(Ⅰ)(第二段階)
- ○陸側遮水壁未凍結箇所の一部閉合(Ⅱ)(第二段階)

<今回の申請範囲>

○陸側遮水壁の完全閉合(第三段階)

第三段階は、サブドレンが稼働していることを前提に、建屋周りの地下水位が低下し

Ⅱ-2-6-添 15-1

た際にも、サブドレンを停止することで迅速かつ確実に地下水位が回復でき、建屋滞留 水水位と地下水位が逆転しないよう、未凍結箇所(西側③)を閉合し、陸側遮水壁を完 全閉合していく段階である。

図-1 陸側遮水壁全体図

3. 計画上考慮すべき事項

陸側遮水壁閉合開始後,遮水性の発現に伴って,閉合範囲内の地下水位は全体に変 化することが想定される。その際にも,建屋滞留水の水位を周辺地下水の水位よりも 低く維持し,水位逆転を生じさせないとの前提のもと,下記を考慮し,陸側遮水壁の 閉合を計画する。

(1) 絶対下限水位

万が一,地下水位が絶対下限水位(これ以上低下することのない水位:平均 潮位)まで低下した場合でも,いずれの建屋からも滞留水を移送することが可 能であり,地下水位と建屋滞留水水位の逆転は生じない。なお,建屋滞留水の 移送先については,移送状況により貯蔵設備容量は変動する。今後も,上記の 緊急時に必要な移送量を考慮し,貯蔵設備の増設等により必要な容量を確保し ていく。(別紙-1)

- (2) 周辺状況
 - 地質構造と地下水環境

1~4号機建屋周辺の各透水層の水位・水頭の実測データによれば、中粒砂 岩層の水位に対して、互層部、細粒・粗粒砂岩の水頭は同等または高く、陸側 遮水壁範囲内の各透水層間に介在する泥質部は難透水性を有している。従っ て、中粒砂岩層の地下水が難透水層を抜けて深部に移動することは考え難い。 (別紙-2)

② 海側遮水壁の遮水性能

閉合後の海側遮水壁は,海の潮汐変動と遮水壁内の地下水位変動の実測値の 比較によれば、1×10⁻⁶ cm/sec程度の遮水性を有している。(別紙-3)

- 4. 陸側遮水壁閉合における実施事項と確認事項
 - (1) 第一段階の実施事項
 - 閉合範囲

陸側遮水壁(海側):全面的に閉合(別紙-4)

陸側遮水壁(山側):山側総延長の約95%以下を閉合(閉合率※1約95%以下)

※1:山側総延長に対して閉合する長さの割合

山側の段階的閉合を進めていくと、山側からの地下水流入の減少にともない、陸側遮水壁内の地下水位は低下し、サブドレンの汲み上げ量が減少する (図-2)。

建屋周辺地下水位(サブドレン水位)の関係 ※2:山側からの地下水流入量に対する減少量の割合

実測に基づく地下水収支計算(別紙-5)によれば,年間平均降雨(4mm/ 日)相当の降水量があれば,地下水遮断率を100%とした場合でもサブドレンは 停止することなく稼働を続け,緊急時にはサブドレンの稼働を停止することで 地下水位の回復が可能であり,建屋との水位差を維持できる。降雨の条件を最 小降雨^{*3}(2mm/日)とした場合,地下水遮断率約95%までサブドレンは稼働す る。無降雨の状態を想定しても,地下水遮断率約80%までサブドレンは稼働す る。

解析では、山側の閉合率95%に対し地下水遮断率は約50~60%の結果を得て おり(別紙-6),無降雨の状態でサブドレンが停止し水位が低下する変曲点 である約80%よりも十分低い値となっている。第一段階は、サブドレンが稼働し ていることを前提とし、建屋周りの地下水位が低下した際にも、サブドレンを 停止することで迅速かつ確実に地下水位が回復でき,建屋滞留水水位と地下水 位の逆転リスクが極めて低い段階であることから,十分余裕を持ってサブドレ ンが稼働を継続できるように山側の閉合率を95%以下とする。

> ※3: 浪江地点の過去30年間における12ヶ月間累積最小降雨実績 (気象庁HP)から設定(763mm/365日≒2mm/日)

未凍結箇所の配置に当たり留意すべき事項

(ア)陸側遮水壁閉合範囲内への地下水流入量の確保

陸側遮水壁閉合範囲内への一定の地下水流入を確保するために,現状の 地下水の流れをもとに未凍結箇所を配置する。

地下水の等水位線は汀線と平行に分布し、地下水は山側(西)から海側 (東)の流れが支配的であり、建屋山側に局所的に特異な地下水の流れは 認められない(図-3)。未凍結箇所は可能な限り山側(西)に配置する ことで地下水流入を確保する。念のため、南北にも未凍結箇所を設けるこ とで1号機建屋北側周辺、4号機建屋南側周辺への地下水流入を確保す る。

図-3 中粒砂岩層の地下水位(2016年1月17日時点)

(イ)地下水管理への配慮

陸側遮水壁閉合範囲内の地下水位のばらつきが少なくなるように,未凍 結箇所を均等に配置する。また,未凍結箇所からの地下水流入量を評価す るため,観測井近傍に未凍結箇所を配置する。

(ウ)凍結状態管理への配慮

未凍結長さを適切に管理するため,測温管の近傍に未凍結箇所を配置す る。

(エ)陸側遮水壁(海側)閉合による影響への対処

陸側遮水壁(海側)閉合によりせき止められた地下水が南北方向へ移動 することによる周辺環境への影響(別紙-7)を考慮して未凍結箇所を配 置する。

(オ)第二段階における施工性への配慮

第二段階以降に未凍結箇所を凍結する際には,地下水流速が速くなり, 凍結しにくい状態となる可能性がある。地下水流速を低減させて凍結させ るために計画している補助工法(地盤改良により地下水流速を低減させて 凍結し易くする方法)の施工性や揚水機能付観測井の位置を考慮して未凍 結箇所を配置する。

③ 未凍結箇所の配置

上記留意事項に基づき設定した未凍結箇所の配置と長さを図-4と表-1 に、各未凍結箇所の凍結管等の具体的な配置を図-5~11に示す。

未凍結箇所では、凍結管のバルブを閉として、ブライン(冷凍液)を循環さ せないことで未凍結状態を保持する。また、隣接する凍結管による凍土の造成 を考慮し、ブラインを循環させない凍結管を未凍結長さの範囲外に設定するこ とで、表-1に示す未凍結長さ以上を確保する。

図-4 観測井・未凍結箇所の配置(第一段階の実施範囲)

北側	約4m	
西側①	約6m	
西側2	約9m	
西側③	約7m	
西側④	約8m	
西側⑤	約7m	
南側	<u></u>	
合計	約45m (山側総延長約860mの約5%)	

表-1 各未凍結箇所の未凍結長さ

N 🔿

図-6 未凍結箇所の配置(西側①)

図-7 未凍結箇所の配置(西側②)

N \varTheta

図-8 未凍結箇所の配置(西側③)

図-10 未凍結箇所の配置(西側⑤)

図-11 未凍結箇所の配置(南側)

④ 第一段階の閉合手順

第一段階では更に段階的に2つのフェーズを設け、フェーズ毎の凍結状況を 確認しながら慎重に閉合を進める。

(ア)フェーズ1

- フェーズ1では、陸側遮水壁の「海側全面」、「北側一部」、「山側の部分 先行凍結箇所(凍結管間隔が広く凍りにくい箇所等)」を同時に凍結する。 (図-12)
- 海側全面:山側より先行させることにより,水位逆転リスクを低減するため
- 北側一部:1号機建屋周辺の地下水の拡散を抑制するため(別紙-7)
- 部分先行凍結箇所:凍結管間隔が広く凍りにくい箇所等を先行し,確実に 凍結するため*4

※4:凍結管間隔が広い箇所(複列施工箇所など)等は、陸側遮水壁(山側)一般部(凍結管間隔:約1m)と比較して、凍結に時間を要するため、一般部と同時に凍結開始した場合、地下水流が集中し、さらに凍結しにくくなる事象が想定される。これを避けるため、そのような部位を一般部に先行して凍結する。

(イ)フェーズ2

フェーズ2では、海側の遮水効果発現開始に併せて第一段階の「未凍結 箇所」を除く山側の残りの部位を凍結する。山側の閉合範囲は山側総延長 の95%以下となる。(図-13)

※ 図中の数値は各未凍結箇所の未凍結長さ

Ⅱ-2-6-添 15-14

⑤ フェーズ1からフェーズ2への移行

陸側遮水壁(海側)凍結開始後は,隣接する凍結管周りの凍土柱が成長し, 陸側遮水壁(海側)内外で地下水位差が生じ,その後,陸側遮水壁(海側)か ら離れた建屋周りや4m盤の地下水位に変化が現われる。遮水状況の管理上, 「陸側遮水壁(海側)内外の地下水位差の変化」が観測され始める時点を以 て,効果発現開始とする。

フェーズ1において陸側遮水壁(海側)の効果発現開始を確認し,フェーズ 2へ移行する。

効果発現開始は、陸側遮水壁(海側)内外の地下水位差が拡大することを確認する。但し、海水配管トレンチ下部の非凍結箇所の影響範囲は除く。地下水 位差の拡大については、必要に応じ一定期間確認を継続する。なお、降雨の影響は、凍結開始前の降雨時の挙動で評価する。

ー定期間確認を継続しても地下水位差の拡大が明瞭でない場合は、陸側遮水 壁(海側)内側・外側それぞれにおいて一つ以上の確認項目(表-2)が有意 な変化^{*5}を示し、一定期間変化した状態を継続していることを確認すること

で、地下水位差による確認を補完する。

上記の確認は、別途定めた手順に基づいて実施する。

※5:実測値に基づき,降雨の影響を考慮した地下水位の変動幅を評価し,変動幅を超えて地下水位が 上昇した場合 等

	確認項目	確認内容
	建屋周りの地下水位	・陸側遮水壁(海側)とタービン建屋間の地下水位の上昇傾向
内側	建屋周りのサブドレン稼働状況	・サブドレンの汲み上げ量の増加傾向
	建屋流入量	・建屋流入量の増加傾向
外側	陸側遮水壁(海側)より 海側の地下水位	・陸側遮水壁(海側)より海側の地下水位の低下傾向
	地下水ドレン稼働状況	・地下水ドレンの汲み上げ量の減少傾向
	ウェルポイント稼働状況	・ウェルポイントの汲み上げ量の減少傾向

表-	2	陸側遮水壁	(海側)	効果発現開始に関する確	認項目(水位差が明瞭でない場合)
----	---	-------	------	-------------	------------------

⑥ 第一段階の確認事項

・第一段階を通じて、陸側遮水壁の効果発現状況を遮水壁内外の水位差およびサブ ドレン・ウェルポイント・地下水ドレンの汲み上げ量等の変化により確認する。 なお、凍結管周辺に設置した測温管(海側は約4.8mに1箇所,深度方向約30m) で地中温度を測定し、凍結状況を把握する。(図-14)

[※]現場の状況により、基本配置通りに測温管を配置していない箇所がある。 図-14 測温管の基本配置(海側の例)

・陸側遮水壁(山側)の閉合率と地下水遮断率の関係の不確実性を考慮して、第一 段階を通じて、全体的な地下水収支を見ていくことで、「地下水遮断率」を総合 的に評価し、過大となっていないことを確認していく。また、第一段階において はサブドレンが稼働していることを前提としていることから、サブドレンの稼働 状態や周辺の観測井等の水位変動から地下水挙動を確認していく。

第一段階の途中において、下記のいずれかの状態に対して、十分余裕を持って凍 結(冷却ブラインの供給)の停止^{**6}を行うことで、それ以上第一段階の閉合を進 めないこととする。その後、地下水の状況や凍結状態を踏まえ、以降の対応を検 討する^{**7}。(別紙-8)

- 「地下水遮断率が80%^{※8}」以上であると評価した場合
- サブドレンの広範囲な停止^{*9}が発生した場合
- ※6:フェーズ2で凍結開始した凍結管へのブライン供給を停止する。
- ※7:原因究明や必要に応じて対策を実施し、再開の可否を検討する。
- ※8:図-2に示した評価において降雨なしの状態でサブドレンが停止し水位が低下する変曲点 が地下水遮断率約80%である。
- ※9:「サブドレンの広範囲な停止」に至る前においても、地下水位が低下することにより局所 的にサブドレン水位が低下し、サブドレンポンプ停止水位(L値)を連続的に下回った状態と なった場合、周辺の地下水位変動状況等を確認し、注水井への注水等の必要な対策を行う。(水 質・機器メンテナンス等の理由により人為的に停止しているサブドレンは除く。)
- 第一段階を通じて、サブドレンや陸側遮水壁内外の水位観測孔により地下水位を 測定し、地下水挙動や北側一部凍結による海洋への流出抑制効果等を確認する。
 また、フェーズ毎で想定される地下水挙動と比較して状況を確認する。

- (2) 第二段階(未凍結箇所の一部閉合)の実施事項
 - 閉合範囲

陸側遮水壁(山側)における第一段階の未凍結箇所の一部を閉合する。

未凍結箇所の閉合に当たっては,一部を閉合した後においても,サブドレンが稼働を継続し,建屋の内外水位が逆転しないことを前提として,実測の 地下水収支等に基づき閉合箇所を選定する。

一部閉合後に関する事前評価は、保守的な評価として閉合箇所から陸側遮水壁へ流入していた地下水が他へ回り込むことなく全て減少するという仮定 条件の下、地下水収支により行う。(別紙-10, 11)

② 未凍結箇所の一部閉合に当たり留意すべき事項

(ア)陸側遮水壁閉合範囲内への地下水流入量の確保

地下水の等水位線は汀線と平行に分布し、地下水は山側から海側への流れ が支配的であり、建屋山側に局所的に特異な地下水の流れは認められない。 (図-15)

未凍結箇所は,第一段階における陸側遮水壁内への一定の地下水流入確保 の観点から主に建屋山側に配置されており,山側の未凍結箇所からの流入が 陸側遮水壁内への地下水流入に対し支配的であることから,山側の未凍結箇 所の一部を残すことで,一定の地下水流入を確保し,建屋周辺における急激 な地下水位低下へ配慮する。

(イ)地下水管理への配慮

一部閉合前の観測井水位等の計測結果を用いて、未凍結箇所を通じた地下 水流入量や閉合範囲内の地下水位状況を確認しながら閉合箇所を選定する。 また、一部閉合後の未凍結箇所を通じた地下水流入量や閉合範囲内の地下

水位状況を確認し、次の一部閉合に反映する。

- ③ 一部閉合箇所の選定
 - (ア) 一部閉合(I)

上記留意事項に基づき図-16に示す2箇所(西側①, 西側⑤)を一部閉 合箇所として選定する。

(イ) 一部閉合(Ⅱ)

上記留意事項に基づき図-16に示す4箇所(北側,西側②,西側④,南 側)を一部閉合箇所として選定する。

Ⅱ-2-6-添 15-19

- ④ 第二段階(未凍結箇所の一部閉合)の確認事項
- 陸側遮水壁の効果発現状況を陸側遮水壁(山側)内外の地下水位差およびサ ブドレンのくみ上げ量の変化等により確認する。また、凍結管周辺に設置し た測温管で地中温度を測定し、凍結状況を把握する。
- サブドレンが稼働していることを前提としていることから、陸側遮水壁内の
 地下水収支に基づいて、サブドレンの稼働が継続することを随時評価し、未
 凍結箇所の一部閉合によって山側からの地下水流入が過剰に減少していない
 ことを確認していく。(別紙-10, 11)

ー部閉合の途中において、下記のいずれかの状態に対して、十分余裕を持って凍結(冷却ブラインの供給)の停止^{※10}を行うことで、それ以上閉合を進めないこととする。その後、地下水の状況や凍結状態を踏まえ、以降の対応 を検討する^{※7}。

- 将来サブドレンの停止が想定されると評価した場合
- サブドレンの広範囲な停止^{*9}が発生した場合

※10:一部閉合で凍結開始した凍結管へのブライン供給を停止する。

- (3) 第三段階(完全閉合)の実施事項
 - 閉合範囲

陸側遮水壁(山側)における未凍結箇所(西側③)を閉合する。 完全閉合後に関する事前評価は,保守的な評価として山側から陸側遮水壁 へ流入していた地下水が全て減少するという仮定条件の下,地下水収支によ り行う。(別紙-13)

- ② 第三段階(完全閉合)の確認事項
- 陸側遮水壁の効果発現状況を陸側遮水壁(山側)内外の地下水位差およびサ ブドレンのくみ上げ量の変化等により確認する。また、凍結管周辺に設置し た測温管で地中温度を測定し、凍結状況を把握する。
- サブドレンが稼働していることを前提としていることから、陸側遮水壁内の
 地下水収支に基づいて、サブドレンの稼働が継続することを随時評価していく。(別紙-13)

完全閉合の途中において、下記のいずれかの状態に対して、十分余裕を持って凍結(冷却ブラインの供給)の停止^{*10}を行うことで、それ以上閉合を進めないこととする。その後、地下水の状況や凍結状態を踏まえ、以降の対応 を検討する^{*7}。

● 将来サブドレンの停止が想定されると評価した場合

● サブドレンの広範囲な停止^{*9}が発生した場合

- 5. 建屋内外水位差等の管理
 - (1) 建屋内外水位差の管理

建屋滞留水水位の管理方法は「2.6 滞留水を貯留している(滞留している場合 を含む)建屋」本文に記載の通り。

サブドレン水位の管理方法は「2.35 サブドレン他水処理施設 添付資料-11」に記載の通り。

既認可の「建屋滞留水とサブドレン間の水位差の確保」「建屋滞留水水位管 理」「サブドレン水位管理」の運用は変わることなく、陸側遮水壁閉合の各段階 において同様の管理を行う。

既認可に基づく上述の運用に加え、サブドレンの「ポンプ停止バックアップ位置(LL値)の警報」が発報した場合には、「建屋-サブドレン水位差」を確保するため、地下水挙動を分析・評価し、早急な対応の要否を判断し対応する

局所的な地下水位低下の場合

局所的な地下水位低下の場合には,当該サブドレン周辺の注水井への注水 (本申請では申請対象外)を行い,状況が改善されない場合には更に注水範囲 を拡大する。

上記を行っても状況が改善されない場合には「②早急な対応が必要な場合」 に記載の通り対応する。

② 早急な対応が必要な場合(別紙-9)

上記①で状況改善されない場合や, 広範囲のサブドレンで「ポンプ停止バッ クアップ位置(LL値)の警報」が発報した場合等には,下記の対策について 実測データ等から総合的に判断し, 必要な対策を実施する。これらの対策を複 合的に実施することで,余裕を持って水位差確保あるいは水位回復が可能で ある。

- ・建屋滞留水の移送※11
- ・陸側遮水壁(山側)へのブライン供給停止
- ・陸側遮水壁(山側)の部分撤去

・その他緊急対策(注水量・注水範囲の拡大,建屋周辺地盤面への散水,原因 に対する対策実施(止水・地盤改良 等))

※11:別紙-1参照

また,「注水井への注水」については上記に限らず,降雨が少ない時期が継続 する等の際には実施する場合がある。散水は構内に常備されている散水車等を用 いて,必要箇所へ実施する。(別紙-12)

(2) 未凍結長さの管理

未凍結箇所外側に配置した管理用測温管の温度を確認することで,未凍結長さ が計画値を下回らないように未凍結箇所単位で管理する。

管理用測温管の深さ方向の平均温度^{*12} で0℃未満が確認された場合,凍結箇所 の一番外側に位置する凍結管からバルブを閉止し,ブラインの供給を停止して温 度を回復する。(図-17)

※12:地表付近で外気温の影響を受ける範囲を除く。

図-17 未凍結長さの管理図(例:西側③)

6. 第一段階, 第二段階および第三段階で主に用いる観測データ

陸側遮水壁閉合の第一段階,第二段階および第三段階で蓄積していく地下水位等の主 な実測データについて表-3に示す。「4.陸側遮水壁閉合における実施事項と確認事 項」「5.建屋内外水位差等の管理」の各項の確認・評価等に用いる実測データを表-4 に示す。なお,確認・評価の方法や用いるデータは地下水環境の実態にあわせて適宜見 直す場合がある。
表-3 第一段階, 第二段階および第三段階で蓄積する地下水位等主な観測データ

① 中粒砂岩層水位, 互層部,細粒・粗粒砂岩水頭	①-1 陸側遮水壁(海側)	閉合範囲外側	一般部		
	①-2 陸側遮水壁(海側)	閉合範囲内側	一般部		
	①-3 陸側遮水壁(海側)	閉合範囲外側	海水配管トレンチ下部非凍結部近傍		
	①-4 陸側遮水壁(海側)	閉合範囲内側	海水配管トレンチ下部非凍結部近傍		
	①-5 陸側遮水壁(山側)	閉合範囲外側	一般部		
	①-6 陸側遮水壁(山側)	閉合範囲内側	一般部		
	①-7 陸側遮水壁(山側)	閉合範囲外側	未凍結部近傍		
	①-8 陸側遮水壁(山側)	閉合範囲内側	未凍結部近傍		
② サブドレン汲上量					
③ サブドレン稼働状況					
④ サブドレン水位					
⑤ 建屋流入量					
⑥ 地下水ドレン汲上量 ウェルポイント汲上量					
⑦ 地中温度 ⑦-1 一般部					
⑦-2 未凍結箇所近傍					
8 降雨量					

表-4 「4.陸側遮水壁閉合における実施事項と確認事項」「5.建屋内外水位差等の管理」の各項の確認・評価等に用いる観測データ

項目		主に使用するデータ			
【4.(1)】	】第一段階フェーズ1からフェーズ2への移行	1-1, 2, 2, 5, 6, 8			
【4.(1),	(2)】陸側遮水壁の凍結状況の把握	1-1, 2, 5~8, 2, 5, 6, 7, 8			
【4.(1),	(2)】地下水遮断率の評価	①-3, 4, 7, 8, 2, 5, 7, 8			
【4.(1),	(2)】サブドレンの継続稼働	2, 3, 4, 8			
【4.(1),(2)】地下水挙動と北側一部凍結状況の把握		1-1~8, 2, 3, 4, 5, 6, 8			
【5.(1)】 建屋内外水位差等の管理		4, 8			
[5.(2)]	未凍結長さの管理	⑦-2			
陸側遮水壁閉合範囲周辺の地下水位・水頭全体変化傾向の把握		1-1~8, 2, 3, 4, 5, 6, 8			
その他	中粒砂岩層と深部(互層部、細粒・粗粒砂岩)の水頭比較	1-1~8, 8			
	地盤安定性の評価	1-3, 4, 7, 8			

7. 概略工程

8. 別紙

- 別紙-1 : 周辺地下水位が絶対下限水位まで低下する際の建屋内外の水位管理について 【第一~第三段階共通】絶対下限水位を想定した建屋内外水位差管理の安全性
- 別紙-2 : 発電所建屋周辺の地質構造・地下水位【第一~第三段階共通】地下水位変化想定に関する地盤境界条件の設定根拠
- 別紙-3 : 海側遮水壁の遮水性能の評価【第一~第三段階共通】地下水位変化想定に関する海域部境界条件の設定根拠
- 別紙-4 : 陸側遮水壁(海側)の閉合範囲 【第一段階】陸側遮水壁(海側)の閉合範囲と海水配管トレンチ下部非凍結箇所 の影響
- 別紙-5 : 地下水収支と地下水位低下挙動 【第一~第三段階】遮断率毎の地下水収支及び地下水位低下挙動
- 別紙-6 : 陸側遮水壁(山側)の閉合率と地下水遮断率の関係
 【第一段階】陸側遮水壁(山側)の閉合率と地下水遮断率の関係(パラメータス タディ)等
- 別紙-7 : 陸側遮水壁(海側)のみを閉合した場合の影響評価 【第一段階】フェーズ1にて陸側遮水壁(山側)の北側一部の閉合を実施しない 場合の環境影響評価
- 別紙-8 : 地下水遮断率の評価とサブドレン稼働状態 【第一段階】第一段階の確認事項として地下水遮断率を評価
- 別紙-9 : 地下水位の回復方策 【第一〜第三段階共通^{*}】地下水位低下時の早急な対応方策とその妥当性

※ 妥当性検討では最も厳しい条件(第三段階)を設定

別紙-10: 第二段階における陸側遮水壁(山側)の未凍結箇所の一部閉合(I)の 評価 【第二段階】第二段階の未凍結箇所一部閉合(I)による陸側遮水壁内への地下 水流入量を評価

- 別紙-11: 第二段階における陸側遮水壁(山側)の未凍結箇所の一部閉合(Ⅱ)の 評価 【第二段階】第二段階の未凍結箇所一部閉合(Ⅱ)による陸側遮水壁内への地下 水流入量を評価
- 別紙-12: 注水・散水用水の確保【第二~第三段階】注水・散水における用水の確保
- 別紙-13: 陸側遮水壁(山側)の完全閉合の評価 【第三段階】完全閉合後における建屋周辺の地下水位変動を評価

周辺地下水位が絶対下限水位まで低下する際の建屋内外の水位管理について

敷地周辺の地下水位は全て海水面以上であり、地下水の流出先として最も低い水位は海水面である。そのため、地下水位が海水面を超えて低下することは考えにくい。なお、参考2に示す通り、潮汐の変動が、建屋周辺の地下水位に与える影響は軽微であることから、海水面の平均である平均潮位を絶対下限水位として設定した。

「陸側遮水壁(山側)により地下水供給が遮断される」条件下で,「海側遮水壁の遮水性 を喪失」,かつ,「無降雨の状態が継続」した場合に,建屋周辺の地下水位は低下を続け, 最終的に海水面(平均潮位:絶対下限水位(これ以上低下することのない水位)と設定)ま で低下する想定外の異常事象を対象に,建屋内外の水位管理に関する安全性を確認する。

1. 建屋内外の水位管理

各建屋に設置している滞留水移送ポンプにて排水できる水位は,表-1に示すとおり,設置床面より 0.2~0.3m 高い位置である。これを考慮して,絶対下限水位(平均潮位 T.P.-0.098m^{*})に対する各建屋の滞留水の移送可能なレベル(ポンプによる最低排水レベル)を 確認した結果,絶対下限水位よりも最低排水レベルが高い建屋は,1号機タービン建屋だけである。

1号機タービン建屋において建屋滞留水を最低排水レベル: T.P. +0.74m (0.P. +2.20m)まで移送した場合,主に復水器エリア・復水ポンプピット等に200m³程度の滞留水が残留する。

この状況においては、仮設ポンプ(約10m³/h)を床面上に追加設置し、残留する滞留水を 他の建屋へ移送することにより、1日程度で排水することが可能である。

※ 気象庁 HP より小名浜地点の平均潮位は T. P. -0.098m (2010~2014 年平均)

延	建屋	ポンプの最低排水レベル ^{※1} T.P.+m(O.P.+m)	最低床レベル ^{※1} T.P.+m(O.P.+m)	【参考】水位計測下限レベル T.P.+m(O.P.+m)			
	R/B	-0.40 (1.04)	-2.67 (-1.23)	-2.54 (-1.10)	変換器		
1号	T/B	0.74 (2.20)	0.44 (1.90)	0.56 (2.02)			
	Rw/B	-0.04 (1.40) **2	-0.04 (1.40)	-0.04 (1.40) **2			
	R/B	-0.08 (1.36) **3	-4.80 (-3.36)	-0.26 (1.18)	1		
2号	T/B	-1.40 (0.05)	-1.75 (-0.30)	0.57 (2.02)			
	Rw/B	-1.43 (0.01)	-1.74 (-0.30)	-1.61 (-0.18)			_1 階床
	R/B	-2.09 (-0.65)	-4.80 (-3.36)	-3.40 (-1.96)			
3号	T/B	-1.34 (0.10)	-1.74 (-0.30)	0.58 (2.02)			
	Rw/B	-1.43 (0.01)	-1.74 (-0.30)	-1.58 (-0.15)			
	R/B	-3.20 (-1.76)	-4.80 (-3.36)	-0.15 (1.29)			
4号	T/B	-1.44 (0.00)	-1.74 (-0.30)	-1.62 (-0.18)			
	Rw/B	-1.44 (0.00)	-1.74 (-0.30)	-1.59 (-0.15)			満空水
【注】T/	/B:タービ	ン建屋,R/B:原子炉建屋,Rw/B:	廃棄物処理建屋		ポンプ		
×1	: 各建屋の7	k位は、滞留水移送ポンプの吸い込	み高さ等の関係から	床面より約20~30cmの高さまで		L	,水位計

表-1 各建屋の滞留水移送ポンプの最低排水レベル(2016年2月現在)

ピット内に少量(数m³程度)。 ※3:2号R/Bは2号T/BとT.P.-1.75(O.P.-0.3m)付近で連通しているため、2号T/B水位を低下させる

ことで、2号R/B水位を連通高さまでは低下可能と評価している。

📕 検出器

♦約20~ 30cm

地下階成了

図-1 1号タービン建屋で最低排水レベルまで移送した場合の建屋内滞留水の残水量 (2016年2月現在)

1~4 号建屋の滞留水水位を絶対下限水位(平均潮位)まで低下させる場合の低下可能な 速度について,滞留水移送設備や水処理設備の設備容量による律速条件を検討した。

- ・滞留水水位を低下させるために定常的に移送可能な量は、移送設備の移送可能な量が最大約 1,920m³/日であるが、その後の水処理設備の処理容量約 1,200m³/日に律速される(図-2参照)。なお、水処理設備の点検等を実施している状態で発生した場合、速やかに移送できる状態に復旧させる。
- ・300m³/日程度の原子炉注水量,200m³/日程度の建屋流入量および400m³/日程度の4m盤から建屋への移送量がある場合,0.013m/日程度の建屋滞留水水位低下(300m³/日の滞留水移送)が可能である(表-2のケース1)。
- ・至近の実績(2016年2月11~17日の平均値)の場合の原子炉への注水量・建屋流入 量・4m盤から建屋への移送量の実績に基づいて算定すると、0.022m/日程度(515m³/日 程度の滞留水移送)の建屋滞留水水位低下が可能である(表-2のケース1')。
- ・海側遮水壁の遮水性喪失時などを想定した場合には、0.03m/日(700m³/日程度の滞留水 移送)程度の水位低下が可能である。ただし、建屋への地下水流入量が現状から減らな いなど、算出条件は保守的に設定しており、実際にはこれ以上の建屋滞留水水位低下が 可能である(表-2のケース2)。

なお、建屋滞留水の移送先については、移送状況により各貯留設備容量が変動する。

今後も、上記の緊急時に必要な移送量を考慮し、貯留設備の増設等により、必要な容量を 確保していく。また、上記の緊急時において淡水化装置(図-2参照)中の逆浸透膜装置の 廃水を移送する際には溶接タンクへの貯留を基本とするが、止むを得ずフランジタンクへ 貯留した場合は、緊急移送による貯留量増加分については、1年間を目途に処理作業を進め ていく。さらに、漏えいリスクを低減させるために、水位計による監視・巡視点検等による 監視強化を図る。

なお,万が一のフランジタンクからの漏えいを想定して,補修材を準備し,漏えい拡散の 抑制を図る。

図-2 建屋滞留水の移送可能量

表-2 建屋滞留水の水位低

	建屋への流入量			神戸道を		*****	海巴港のよ
	原子炉への注水量 (m ³ /日)	建屋流入量 ^{※3} (m ³ /日)	4m盤から 建屋への移送量 (m ³ /日)	建座滞留水 移送可能量 ^{*4} (m ³ /日)	水位低下の ための移送分 (m ³ /日)	建座有划面積 (下表参照) (m ²⁾	建屋滞留水 水位低下速度 (m/日)
ケース1	300	200	400		300		0.013
ケース1'*1	315	220	150	1,200	515	23,470	0.022
ケース2 ^{※2}	300	200	0		700		0.030

※1:2016年2月11~17日の原子炉注水量・建屋流入量・0.P.4m盤から建屋への移送量の各実績の平均値に基づいて算定した。 ※2:海側遮水壁の遮水性喪失時などにO.P.4m盤の地下水位が低下し、O.P.4m盤のくみ上げ量はOm³/日になったと仮定した。 ※3:建屋流入量が縦続すると使定した。 ※4:建屋ボ四量は7月まで、「またるズェッマの地での地であります。20日により減少すると考えられるが、保守的な検討条件として、現状程度の建屋流入量が継続すると仮定した。 ※4:建屋滞留水移送可能量は、律速となる滞留水処理設備の処理量1,200m3/日とした。

主	2	建民右动声症
11 —	J	建崖角게囲傾

	1号	2号	3号	4号	計
建屋有効面積 ^{※5} (m ²)	1,750	6,840	7,730	7,150	23,470

※5:建屋有効面積は、建屋構造上の平面積(壁等で囲まれた範囲)から、機器類の専有面積を除いて算出した。

(参考:平均潮位まで建屋滞留水水位を低下させるのに必要な建屋滞留水移送量:約 36,000m³に対して,滞留水移送先の空き容量:約71,500m³(2016年2月4日現在))

貯留設備(滞留水移送先)	空き容量 (m ³)
プロセス主建屋・高温焼却炉建屋	約 5,400
高濃度滞留水受タンク	約 2,800
貯留設備(処理水貯蔵タンク:溶接タンク)	約 2,900
貯留設備(処理水貯蔵タンク:フランジタンク(*))	約 54,400
貯留設備(多核種処理水貯槽)	約 6,000
合計	約 71,500

表-4 滞留水移送先の空き容量(2016年2月4日現在)

(*)Sr 処理水・濃縮塩水貯槽のフランジタンク空き容量。但し、H5/H6 エリアのタンク容量 (約55,600m³) については、上記に含んでいない。

以上を踏まえ,陸側遮水壁(山側)閉合後,地下水位の予期せぬ低下が発生する想定外の 異常事象を対象に,建屋内外の水位変動を評価した。なお,評価は保守的に,陸側遮水壁(海 側)の遮水性が無い条件で実施した。

【検討条件】

- ・地下水位の予期せぬ低下の発生要因:海側遮水壁の遮水性喪失※
 - ※ 海側遮水壁の継手の一部が損傷し,遮水性が失われた状態を想定した。遮水壁内から海への地下水流出量は, 海側遮水壁閉合作業進捗に伴い生じた遮水壁内側の地下水位低下時の実測データを基に設定した。
- ・陸側遮水壁: (山側)遮水性100%, (海側)遮水性0%
- ・降雨:無降雨期間が継続
- ・建屋滞留水水位:1 号タービン建屋最低排水レベル(T.P.+0.74m(0.P.+2.2m))まで滞留水移送による低下実施(低下速度:0.01m/日)

【評価結果】

地下水位は、初期は建屋滞留水水位低下速度を上回る速度で低下するものの、地下水位の 低下に伴い低下速度は徐々に小さくなり、建屋滞留水水位低下速度を下回る。建屋滞留水を 適切に移送することにより、建屋滞留水水位と地下水位には余裕がある水位差を確保した 状態を維持して建屋滞留水水位を低下させることができることから、地下水位が1 号機タ ービン建屋最低排水レベルに達するまでには約4.5 ヶ月の時間的余裕がある*(図-3参 照)。この間、仮設ポンプによる残水処理(約10m³/h)を行うことで、建屋内外の水位逆転 を回避することが十分可能である。

また,地下水位は最終的に絶対下限水位(平均潮位)に漸近するが,1号機タービン建屋 以外の建屋における最低排水レベルは絶対下限水位(平均潮位)以下である。1号機タービ ン建屋以外の建屋においても建屋滞留水水位と地下水位には余裕がある水位差を確保した 状態を維持して建屋滞留水水位を低下させることができることから,水位逆転することは ない。

[※] 現状(2016年3月現在)のサブドレン運用で認可されているポンプ停止位置(L値)はT.P.+2.464m(0.P.+3.9m) であり、LL値はT.P.+2.264 m(0.P.+3.7m)である。これを考慮し、地下水位低下前の建屋周辺地下水位を T.P.+2.264 m(0.P.+3.7m)とした場合には、地下水位が1号機タービン建屋最低排水レベルに達するまでの 期間は約3.5ヶ月となるが、上記と同様、仮設ポンプによる残水処理(約10m³/h)を行うことで、建屋内外の 水位逆転を回避することが十分可能である。

【参考1】1号機原子炉建屋の水位低下状況

図-4に1号機原子炉建屋の建屋滞留水水位低下状況の実績を示す。滞留水移送ポンプ による移送により、2015年12月において、約0.03m/h程度で建屋滞留水水位を低下するこ とができている。

図-4 1号機原子炉建屋の建屋滞留水水位低下状況(実績)

【参考2】絶対下限水位を平均潮位とすることの妥当性

現在は、海側遮水壁が閉合されているため、潮汐の変動が建屋周辺の地下水位に与える影響は極めて小さいと考えられる。しかし、安全側の観点から、海側遮水壁閉合前のデータを 用いて、絶対下限水位を平均潮位とすることの妥当性を検討する。検討にあたっては、海側 遮水壁閉合前の小名浜地点潮位データと建屋海側の地下水位データを用いた。

【使用データ】

・小名浜地点潮位データ: 2015年4月1日~9月1日(気象庁 HPより取得)

・地下水位データ: 2015年4月1日~9月1日

地下水ドレンA~Dを起点とし、山側に向かうライン上の 中粒砂岩層地下水観測井、注水井、サブドレン(図-5参照)

図-5 検討位置図

地下水ドレンA~Dの各ライン上の地下水位と小名浜地点潮位の経時変化を図-6~9 に示す。

地下水ドレンA~Dでは,潮汐と同様の周期での水位変動が明瞭であるが,海から遠い地 点では,潮汐と同様の周期での水位変動が明瞭ではない。

◆ 潮汐と地下水位の経時変化図② (Bライン:地下水ドレンB~SD2 間)

地下水位への潮汐の影響をより詳しく把握するために、周波数分析を実施した。結果を 図-10~24に示す。

小名浜地点潮位,地下水ドレンA~Dでは,明瞭な卓越周期(0.52日,1.00日,0.50日,1.08日)が認められる。

Ⅱ-2-6-添 15-37

図-12 周波数分析の結果(地下水ドレンB)

図-13 周波数分析の結果(地下水ドレンC)

図-15 周波数分析の結果 (Co-15)

図-17 周波数分析の結果(Co-12)

図-19 周波数分析の結果 (RW30)

図-21 周波数分析の結果 (RW24)

図-23 周波数分析の結果 (SD2)

表-5及び図-25に、小名浜地点潮位の卓越周期(0.52日、1.00日、0.50日、1.08日) における振幅を示す。

海から近い地点(地下水ドレンA~D)においては、小名浜地点潮位の卓越周期における 振幅は大きいままであるが、海から 100m 以上離れた建屋周辺(RW31, SDN1, RW30, SD2, RW28, RW24, SD31)においては、卓越周期1(0.52日)で4.0%以下、卓越周期2(1.00日) で6.1%以下、卓越周期3(0.50日)で3.8%以下、卓越周期4(1.08日)で4.3%以下に 減衰し、振幅は0.011m以下であることが確認できる。

以上から,潮汐の変動が建屋周辺での地下水位に与える影響は軽微であり,絶対下限水位 を平均潮位とすることは妥当と判断している。

なお,仮に,朔望平均満潮位(T.P.+0.764m)及び朔望平均干潮位(T.P.-0.736m)の潮位 振幅が継続した場合でも,上記の減衰を考慮すると,建屋周辺での地下水位の振幅は0.05m 以下になると考えられる。これは,現状の建屋内外水位差の運用目標(サブドレン稼働時 0.8m,非稼働時0.45m)内に包含される。

		海からの	振幅 (m)				
	地点名		卓越周期1	卓越周期2	卓越周期3	卓越周期4	
		此内比(111)	(0.52日)	(1.00日)	(0.50日)	(1.08日)	
	小名浜湾潮位	0	0.277	0.184	0.136	0.121	
地下水ドレンハライン	地下水ドレンA	3	0.182	0.147	0.078	0.096	
地下小ドレンスノイン	RW31	124	0.003	0.002	0.001	0.001	
	SDN1	152	0.002	0.009	0.004	0.003	
	小名浜湾潮位	0	0.277	0.184	0.136	0.121	
	地下水ドレンB	6	0.187	0.147	0.083	0.094	
地下水ドレンBライン	Co-15	93	0.019	0.018	0.008	0.013	
	RW30	116	0.006	0.006	0.005	0.005	
	SD2	132	0.001	0.004	0.001	0.002	
地下水ドいっこく、	小名浜湾潮位	0	0.277	0.184	0.136	0.121	
	地下水ドレンC	7	0.165	0.135	0.074	0.085	
	Co-14	102	0.003	0.009	0.004	0.004	
	RW28	116	0.003	0.011	0.005	0.003	
地下水ドレンDライン	小名浜湾潮位	0	0.277	0.184	0.136	0.121	
	地下水ドレンD	7	0.259	0.193	0.130	0.124	
	Co-12	96	0.001	0.002	0.002	0.001	
	RW24	124	0.011	0.003	0.005	0.001	
	SD31	142	0.003	0.003	0.000	0.001	

表-5 海からの距離と小名浜地点潮位の卓越周期における振幅の関係

図-25 海からの距離と小名浜地点潮位の卓越周期における振幅の関係

以上

発電所建屋周辺の地質構造・地下水位

1. 発電所周辺の地形

発電所の敷地は、周囲を川に挟まれた海抜35m程度の台地であり、海側を掘削し海抜約 10mの地盤に、発電所建屋を設置している。

図-1 発電所周辺の地形

2. 発電所周辺の地質構造

敷地を中心とする半径約 30km の範囲及びその周辺について,文献調査,地表地質調査, 海上音波探査等を実施し,敷地内について,地表地質調査,ボーリング調査等を実施してい る。

発電所敷地に分布する富岡層は,発電所の西方約 8km から海岸部までの範囲に広く分布 し,海で堆積した泥岩及び砂岩が主体である。凝灰岩を多く挟在し良好な鍵層(地層の生成 年代を対比し連続性を判断する際に目印となる地層)が認められ,敷地内の地層でもこの鍵 層が確認できる。

- 因 2 光电灯向起9地真情
- 3. 発電所敷地内でのボーリング

発電所の調査・建設時以降に建屋付近を中心に構内で実施した約200孔(平均孔長約170m) のボーリングについて地質の判別を行い,周辺露頭調査結果と合わせて発電所周辺の三次 元地質モデルを構築している。

100 200 300 400 60

図-3 発電所敷地内でのボーリング位置図

Ⅱ-2-6-添 15-48

4. 発電所敷地内の地質構造(東西断面)

発電所敷地内の地層は、地表面付近の段丘堆積物より下層が、富岡層(T3部層)の砂岩・ 泥岩主体の地層であり、上から中粒砂岩層(中粒砂岩を主体としシルト岩を挟在)、泥質部、 互層部(数 cm~の間隔で中粒砂岩とシルト岩が交互に分布),泥質部(2層の連続性のよ い砂層(細粒砂岩・粗粒砂岩)を挟在)が敷地内に連続し、傾斜角約2度で海側に傾いてい る。西側で台地が切れることから、中粒砂岩層・互層部の地下水は主に台地への降雨により 涵養されている。

富岡層(T3 部層)の下部には,砂岩・泥岩主体で厚さ約 100m の富岡層(T2 部層)が分布 する。

図-4 発電所敷地内の地質構造(東西断面)

5. 発電所敷地内の地質構造(南北断面)

地層は南北方向にほぼ水平に分布している。中粒砂岩層と互層部を隔てる泥質部は厚さ数m,互層部下側の泥質部は厚さ30~40mで連続して分布する。

図-5 発電所敷地内の地質構造(南北断面)

6. 発電所内の地下水

地層の透水性は、ボーリング孔内における透水試験の結果をもとに、段丘堆積物・中粒砂 岩層・互層部・細粒砂岩・粗粒砂岩を透水層(水の通りやすい層),泥質部を難透水層(水 の通りにくい層)としている。

地表に近い地下水は不圧地下水(地下水面を有する地下水)で,段丘堆積物・中粒砂岩層 を流れ,地形の低下に伴い台地から建屋付近に向かって大きく水位が低下する。

難透水層に上下を挟まれた透水層(互層部・細粒砂岩・粗粒砂岩)の地下水は被圧地下水 (水面を持たず圧力がかかっている)となっていて,それぞれの層の中を海側に向かって流 れており,4号機建屋付近を除き,不圧地下水とは隔てられている。

中粒砂岩層の地下水が,建屋内・建屋海側に流入することで汚染水増加の主要因となって いる。

図-6 発電所内の地下水(イメージ)

7. 中粒砂岩層と互層部および細粒・粗粒砂岩の水頭比較

地下水位観測井位置を図-7,中粒砂岩層,互層部及び細粒・粗粒砂岩のエリア毎の水頭 比較を図-8.1~8.12に示す。

建屋山側1・2号機周辺での互層部の水頭は、中粒砂岩層の地下水位よりも水頭差で約2 ~5m 高くなっている(図-8.1~8.3)。このことから、中粒砂岩層と互層部間の泥 質部は難透水層であると評価される。細粒・粗粒砂岩の水頭は、互層部の水頭と同程度であ る(図-8.1,8.3~8.4)。

互層部の水頭と中粒砂岩層の地下水位との差は、南側に行くほど小さくなり、4号機付近 では両者の差がなくなる(図-8.2~8.5)。建屋基礎が互層部に達していることによ り、地下水が連通していると考えられる。

建屋山側と同様に,建屋海側においても互層部の水頭と中粒砂岩層の地下水位の差は,南 側に行くほど小さくなる(図-8.6~8.9)。細粒・粗粒砂岩の水頭は,南側に行くほ ど互層部水頭より大きくなる(図-8.7~8.8)。細粒・粗粒砂岩と互層部に水頭差が あることから,その間にある泥質部は難透水層であると評価される。

4号機建屋南側では、中粒砂岩層の地下水位、互層部の水頭、細粒・粗粒砂岩の水頭に差 異が認められ(図-8.10)、中粒砂岩層と互層部、互層部と細粒・粗粒砂岩それぞれの 間にある泥質部は難透水層であると評価される。

4 m盤の中粒砂岩層の水位はウェルポイントによる汲上げ等の影響を受け、変動している(図-8.11~8.12)。互層部の水頭は海側遮水壁閉合後、上昇が確認され、現時 点では、中粒砂岩層の水位よりも安定して高くなっており、中粒砂岩層と互層部の泥質部は 難透水層であると評価される。

以上より、中粒砂岩層/互層部/細粒・粗粒砂岩間の泥質部の存在により、中粒砂岩層と

深部間の地下水の連通性は小さい。また,互層部,細粒・粗粒砂岩の水頭はいずれも T.P. ±0mを上回っており,平均潮位まで下がることは考えにくい。

Ⅱ-2-6-添 15-53

Ⅱ-2-6-添 15-55

Ⅱ-2-6-添15-57

図-8.10 中粒砂岩層/互層部,細粒・粗粒砂岩の水頭比較(南側)

以上

Ⅱ-2-6-添 15-59

海側遮水壁の遮水性能の評価

1. 概要

海側遮水壁の遮水性は,既往の文献等を勘案して,建屋周辺の難透水層と同等程度である, 1×10⁻⁶ cm/sec 程度の透水係数を有していると想定しており,同値を陸側遮水壁の検討にお ける地下水収支や地下水シミュレーションの計算条件に用いている。

なお,海側遮水壁閉合後の鋼管矢板の透水係数を直接測定することは困難であることか ら,潮位変動と地下水ドレンポンドの水位変動の関係から海側遮水壁閉合後の透水係数を 試算し,1×10⁻⁶cm/sec 程度を有していると評価した。

2. 既往の文献に基づく海側遮水壁の透水係数の想定

『土木学会第56回年次学術講演会 鋼管矢板継手の遮水性能評価試験』に基づいて,海 側遮水壁に採用している鋼管矢板の継手形式である,P-T 継手(ベロ式ゴム+止水ゴム) の透水係数を確認した。なお,上記試験では,試験実施前に継手の曲げひずみが250µと なるよう変形を与えた状態で実施している。

地下水ドレンポンド揚水ポンプ起動水位(H 値)が T. P. +約 1.8m (0. P. +約 3.3m)であ り、平均潮位 T. P. 約 0m (0. P. +約 1.5m) との水位差が約 1.8m であることから、載荷水圧 を 0.02MPa (≒1.8m×9.8kN/m³×10⁻³) とした時の試験結果より、透水係数は 1×10⁻⁸cm/sec 程度を有すると確認出来る(図-1参照)。

以上より保守性を考慮して、海側遮水壁の透水係数を1×10⁻⁶ cm/secと想定した。

図-1 鋼管矢板継手の遮水性能試験結果

(土木学会第56回年次学術講演会 鋼管矢板継手の遮水性能評価試験)

3. 海側遮水壁閉合後の遮水性能の評価

海側遮水壁閉合後の鋼管矢板の透水係数を直接測定することは困難であることから,潮 位変動と地下水ドレンポンドの水位変動の関係から透水係数の試算を行った。

「海の潮汐変動による湾岸地下水の水位変動(周期変動の伝播)」については,『土と基礎実用数式・図表の解説/土質工学会編』において,図-2の(式7.15)のとおり示されている。

図-2 海の潮汐変動による海岸地下水の水位変動

(土と基礎 実用数式・図表の解説/土質工学会編)

海側遮水壁閉合後の降雨や地下水ドレン稼働の影響を受けていない期間(2015年10月29日~11月1日)における海側遮水壁内の地下水位は、約0.9cm(図-3赤文字①~⑮)の変動を伴いながら上昇しているが、2周期/日の潮汐変動(約88cm;図-3青文字①~⑮)との明瞭な同調は見られない。従って、海側遮水壁の透水係数は極めて小さいと考えられる。

海側遮水壁の透水係数を大きめに評価するため、潮汐変動と明瞭な同調が見られていな い図-3中の地下水位の変動(赤文字①~⑮)が全て潮汐(青文字①~⑮)の影響による ものと仮定し、式 7.15 に基づき海側遮水壁の透水係数を算定すると、約 1×10⁻⁶ cm/sec (換算厚 0.5m)となった。

以上より,陸側遮水壁の検討において用いた海側遮水壁の遮水性の想定に対して,同等 以上の遮水性を有していると評価した。

以上

陸側遮水壁(海側)の閉合範囲

1. 概要

陸側遮水壁(海側)は1~4号機海水配管トレンチ下部は非凍結とし,残りの部分を凍結する。

そのため,第一段階の海水配管トレンチ下部の非凍結箇所における地下水流の影響に よる地盤安定性を評価することを目的として以下の検討を行った。

2. 陸側遮水壁(海側)における海水配管トレンチ下部の非凍結箇所

1~4号機海水配管トレンチ(海水配管トレンチ)部においては,削孔ビットがトレン チ内部の配管架台(H鋼等)等と干渉し,削孔に長時間を要することから,まず,海水配 管トレンチ下部の地盤を除いた範囲を凍結することとする。その後,海水配管トレンチ近 傍で地下水位のモニタリングを実施し,周辺地下水位との比較や建屋流入量への影響な どを評価して,海水配管トレンチ下部の施工時期を決める。

従って,第一段階の海側の閉合時には,図-1に示す海水配管トレンチ下部を非凍結 (海側ライン全体面積の約1.6%,海側ライン透水層全体面積の約1.0%)とする。

なお,非凍結箇所の透水層面積は中粒砂岩層:約27m²,互層部:約33m²,細粒・粗粒砂 岩:約66m²,計126m²となっている(図-2)。

Ⅱ-2-6-添 15-65

図-2 海水配管トレンチ下部の非凍結範囲(詳細)

3.海水配管トレンチ下部の非凍結箇所を通じた陸側遮水壁外への地下水移動量の評価 海水配管トレンチ下部の非凍結箇所を通じた陸側遮水壁外への地下水移動量を確認す るため、陸側遮水壁(海側)西側の地下水位が上昇し、移動量が大きくなる第一段階フェ ーズ1を対象とし、評価を実施した。なお、評価に使用した物性値を表-1に示す。 陸側遮水壁(海側)西側の地下水収支計算(図-3)を、海水配管トレンチ下部の非凍 結箇所(中粒砂岩層,互層,細粒・粗粒砂岩)を通じた地下水の移動を考慮して実施し、 地下水収支がバランスする地下水位および非凍結箇所を通じた移動量を算定した。ただ し、フェーズ1で南北方向へ地下水が移動しないとした。

① 中粒砂岩層·互層

上述の計算により,フェーズ1での中粒砂岩層の地下水位はT.P.+3.5m(0.P.+5.0m), 最大上昇量は1.0mとなった。互層は陸側遮水壁(海側)内外で中粒砂岩層の上昇量相 当の1.0mの水頭差が生じるとした。海水配管トレンチ下部の非凍結箇所を通じた地下 水移動量は、中粒砂岩層が約60m³/日,互層が約20m³/日となった(図-4)。

但し, 互層を通じて流出した地下水は, 以下の②と同様の経路により, 全量, 海へ流 出すると考えた。

② 細粒·粗粒砂岩

建屋周辺の下部に存在する泥質部は遮水性が高いことから、4 号機建屋周辺を除き、 下部への地下水の流れは生じ難く、陸側遮水壁(海側)の海水配管トレンチ下部の細粒・ 粗粒砂岩に一部非凍結の箇所があっても遮水壁内の地下水の移動は考え難い。しかし、 ここでは保守的に、海側遮水壁近傍で細粒・粗粒砂岩の圧力が抜けた場合を仮定して、 海水配管トレンチ下部の細粒・粗粒砂岩を通じて海へと移動する地下水量を算定した。

①で示した通り,フェーズ1での中粒砂岩層の地下水位は T.P.+3.5m (0.P.+5.0m) となった。移動経路を図-5に示す通り,陸側遮水壁(海側)西側の互層部→泥質部→ 細粒・粗粒砂岩→泥質部→互層部→泥質部→海域として算定すると,海水配管トレンチ 下の非凍結箇所(細粒・粗粒砂岩)を通じた移動量は約30m³/日となった(図-5)。

地展区八		震災	と前	震災	從後	古 大山 医肌的 中市	
地層区力		透水係数	(cm/sec)	透水係数	(cm/sec)	有劝剧腺华	備考
地層名	1	水平	鉛直	水平	鉛直	(実流速換算時)	
盛土	1	2.8E-03	2.8E-03	2.8E-03	2.8E-03	0.46	
段丘堆積物	1	3.0E-03	3.0E-03	3.0E-03	3.0E-03	0.41	中粒砂岩層同様
沖積層	1	1.0E-03	1.0E-03	1.0E-03	1.0E-03	0.41	文献値
中粒砂岩	1	3.0E-03	3.0E-03	3.0E-03	3.0E-03	0.41	
中粒砂岩(南側、上部)	1	1.0E-04	1.0E-04	1.0E-04	1.0E-04	0.41	
泥岩	1	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54	35m盤の号測線以南範囲
中粒砂岩(南側、下部)	1	1.0E-04	1.0E-04	1.0E-04	1.0E-04	0.41	
泥岩	i .	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54	
互層	1	1.0E-03	1.1E-06	1.0E-03	1.1E-06	0.41	異方性考慮
泥岩	1	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54	
細粒砂岩	1	2.3E-03	2.3E-03	2.3E-03	2.3E-03	0.41	
泥岩	I.	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54	
粗粒砂岩	1	2.0E-03	2.0E-03	2.0E-03	2.0E-03	0.41	
泥岩	1	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54	
建 屋 基 礎 および MMR		1.0E-06	1.0E-06	1.0E-06	1.0E-06	0.30	コンクリート相当
建屋側壁		1.0E-06	1.0E-06	5.0E-06	5.0E-06	0.30	感度解析から設定※1
既設矢板		1.0E-06	1.0E-06	1.0E-04	1.0E-04	0.30	感度解析から設定、施工幅0.8m ^{※2}
ポンプ室およびピット		1.0E-06	1.0E-06	1.0E-06	1.0E-06	0.30	コンクリート相当
4m盤グラウチング		_	-	3.0E-05	3.0E-05	0.30	中粒砂岩層の1/100相当、施工幅2m
砕石	•	_	_	1.0E-01	1.0E-01	0.41	埋立部
鋼管矢板		-	_	1.0E-06	1.0E-06	0.30	海側バウンダリ、施工幅2m
》陸側遮水壁		-	-	0.0E+00	0.0E+00	-	施工幅2m

表-1 物性值

※1:建屋への流入量が400m³/日を再現できる透水係数 ※2:地下水位(C-3, C-4, C-5)が再現できる透水係数

沖積層の透水係数については実測データがないため、日本の地盤を対象とした地下水データベース(梅田浩司,柳澤孝一,米田茂夫(1995):日本の地盤を対象とした透水係数データベースの作成,地下水学会誌,第37巻,第1号,1995)の第四紀更新世(平均値:1.2E-O3 cm/sec)と第四紀完新世(平均値:5.6E-O4 cm/sec)の透水係数の平均値(8.1E-4 cm/sec)から1E-3(cm/sec)と設定した。

 4m 盤のフェーシングエリアに おける降雨浸透率は0%と仮定.
 ()内の数字は降雨浸透率を 30%とした場合の参考値.

	地下水供給量 (m3/日) ①	降雨浸透量 (m3/日) ②	供給量計 (m3/日)*1 (3=1+2)	SD水位 (O.P.+m)	SD汲み上 げ量 (m3/日) ④	建屋流入 量 (m3/日) ⑤	4m盤汲み 上げ量 (m3/日) ⑥	港湾内へ の移動量 (m3/日) ⑦	系外への 移動量 (m3/日) ⑧	支出量計 (m3/日) ⑨= Σ④~⑧
海側閉合 平均降雨	860	190 (250)	1,050 (1,110)	5.0	700	190	80 (140)	30	50	1,050 (1,110)

図-3 陸側遮水壁(海側)のみ閉合した場合の地下水収支想定

図-4 海水配管トレンチ下部の非凍結箇所を通じた地下水移動量の想定

(第一段階フェーズ1 中粒砂岩層)

- 4.海水配管トレンチ下部の非凍結箇所における地下水流速増加に対する地盤の安定性 陸側遮水壁(海側)の閉合後,海水配管トレンチ下部の非凍結箇所では,地下水流速が 速くなり,地盤中の土粒子が動いて地盤に損傷を与える懸念があることから,地下水流速 に対する地盤安定性について評価する。ここでは海水配管トレンチ下部の非凍結箇所の 地下水流速による地盤損傷を確認するため,地下水流速が厳しい,第一段階(フェーズ1) を対象とする。
 - (1) 評価方法

3次元浸透流解析等を用いて,陸側遮水壁(海側)の海水配管トレンチ下部の非凍結 箇所の地下水流速を想定し,地盤中の土粒子が地下水の流れにより動き出す時の地下 水流速(限界実流速)よりも小さいことを確認する。

具体的には、地盤中の土粒子が動く限界実流速の算定にあたっては、土粒子付近に発生する渦や摩擦等の影響を考慮した「多粒子限界流速の算定式」(杉井他 1997)(図-6)を用いて算定した平均粒径(D50)および 20%粒径(D20)における限界実流速が、 非凍結箇所の実流速(3次元浸透流解析結果)よりも大きいことを確認する。

なお,評価に用いる土粒子の粒径は,土質試験を複数実施している 5 号機南側付近 (5 試料)の試験結果を用いる。

図-6 多粒子限界流速の算定式フロー

Ⅱ-2-6-添 15-70

(2) 非凍結箇所における地下水実流速の想定

海側のみを閉合した条件で、3次元浸透流解析を用いて海水配管トレンチ下部の透水層における流速を基に、実流速を算定した。解析モデルを図-7に、物性値は表-1 に、解析条件を表-2に、解析により算定した地下水分布を図-8、9に示す。その結 果、表-3に示す通り、1号機海水配管トレンチ下部の互層部において地下水実流速が 最大となり3.6m/day (4.2×10⁻³ cm/s) 程度になった。

上記解析では,陸側遮水壁(山側)の北側一部を未閉合の状態で評価している。この 影響を保守的に考慮するため,「3.②」で述べた建屋周辺地下水位の地下水収支計算 上における最大上昇量(約1.0m)を,上記3次元浸透流解析により得られた陸側遮水 壁(海側)内外の水位差に考慮し,地下水実流速を求めた。その結果,1号機海水配管 トレンチ下部の互層部における地下水実流速は,7.2m/day(8.3×10⁻³cm/s)程度になっ た。

図-7 解析モデル

Ś	る設備	解析条件
ß	和量	年平均降雨量1,545mm(建屋以外の領域に降雨)
降雨	习浸透率	55%
海側(釒	岡管)遮水壁	閉合
	地盤改良	海側のみ
100	揚水工(ウェルポイント)	O.P.+3.4m
→ 111⊞	地下水ドレン	O.P.+3.4m
	フェーシング	100%
4~10m盤	フェーシング	0%
	フェーシング	0%
10	1~4号建屋水位	OP+3m
	サブドレン	O.P.+4m
(陸側遮水壁内)	陸側遮水壁	海側:閉合 山側:O%
	注水井からの注水	無
35m盤	地下水バイパス	稼働

表-2 3次元浸透流解析に用いた計算条件

図-8 3次元浸透流解析結果による地下水位分布(中粒砂岩層)

図-9 3次元浸透流解析結果による地下水位分布(互層部)

表-3 非凍結箇所の最大流速(3次元浸透流解析結果)

	中粒砂岩層	互層部	細粒砂岩	粗粒砂岩
最大流速が発生する箇所	4号機下	1号機下	1 号機下	1号機下
ダルシー流速(cm/day)	27.4	42.8	54	39.1
実流速①(cm/day)	66.8	261	132	95.4
実流速②(cm/day)	91.3	357	180	130

①有効間隙率:41%,②有効間隙率:30%

互層部内のうち砂岩のみ地下水が流れるものと仮定(砂岩:泥岩=4:6)

(3) 互層部の土質試験結果

土質試験結果(5号機南側,5試料)による互層部(互層部中の砂岩)の粒度試験結 果は表-4に示す通り,20%粒径は0.205mm,平均粒径は0.306mmであった。

表-4 粒度試験結果(5号機南側付近 互層部内の砂岩)

	(単位:mm)
20%粒径	平均粒径
0.190	0.300
0.180	0.300
0.220	0.320
0.235	0.310
0.200	0.300
0.205	0.306
	20%粒径 0.190 0.180 0.220 0.235 0.200 0.205

20%粒径をD20,平均粒径をD50とした

(4) 陸側遮水壁(海側)の非凍結箇所の地盤安定性の評価

地盤中の土粒子が動き出す時の最大流速(限界実流速)と土粒子の関係,想定最 大実流速を図-10に示す。20%粒径および50%粒径の限界実流速は,間隙率が30% (砂層の有効間隙率),41%(室内試験値)のいずれの条件でも,想定最大実流速 の方が小さい結果となった。

以上より,陸側遮水壁の海側の非凍結箇所は,地盤安定上は問題ないものと評価する。

※ 水平方向における土粒子の抵抗を考慮して多粒子限界実流速は「多粒子限界実流速の算定式」の算出結果に摩擦係数(内部摩擦角38.5°) を乗じた値としている。内部摩擦角は、「福島第一原子力発電所 原子炉変更許可申請書」を参照。

図-10 限界実流速と土粒子の粒径の関係および想定最大実流速

以上

別紙-5

地下水収支と地下水位低下挙動

1. 陸側遮水壁閉合前の建屋周辺への地下水供給量

陸側遮水壁閉合前の建屋周辺への地下水供給量については、地下水ドレンの汲み上げを 開始した 2015 年 11 月 6 日から 2016 年 1 月 7 日までの間の建屋流入量・各種汲み上げ量の 実績等から、1,050m³/日程度(下式)と評価した。

図-1 陸側遮水壁閉合前の建屋周辺への地下水供給量の評価結果

2. 陸側遮水壁閉合後の地下水収支と地下水位低下挙動

陸側遮水壁山側の段階閉合時における地下水遮断率ごとの地下水収支,地下水位低下挙 動を評価する。

(1) 評価の考え方と仮定

①地下水収支

陸側遮水壁閉合域内の地下水収支は、下式で表せる(図-2参照)。

降雨浸透による地下水涵養量【E】+ 山側からの地下水流入量【F】= サブドレン汲み上げ量【A】+ 建屋流入量【B】+ 4m盤への地下水移動量【C】 + 陸側遮水壁閉合範囲外(深部地盤等)への移動量【D】

上流からの地下水流入量が減少すると、閉合域内の地下水位が低下するとともに、A、 B、C、D各々が減少する。ここで、Eは定数、Fは地下水遮断率のみに、B、C、D は、地下水位のみに依存すると仮定すると、Aは、E+FとB+C+Dの差分で示すこ とができる。下記のように地下水遮断率を設定し、収束計算により、地下水位、並びに A、B、C、Dを算定する。

- なお、ここでは、以下を仮定する。
- ・地下水遮断率:50%,90%,100%
- •降雨浸透率:4m盤以外:55%,4m盤:0%*,(参考)30%*
 - ※段階閉合時の地下水位低下量に関して,降雨による地下水涵養量を少なく評価するために,4m盤のフェーシング効果を100%見込み,降雨浸透率を0%と仮定した。

なお、参考として、浸透率を30%とした場合の評価も併せて示す。

- ・降雨量:12ヶ月間累積最小降雨(【参考】参照)にもとづき,2mm/日(≒763mm/365 日)とする。
- ・地下水位:閉合域内の地下水位は一様に変動する
- ・建屋流入量:建屋滞留水水位と 10m盤地下水位(サブドレン水位) との水位差に 比例する
- ・4m盤への地下水移動量:10m盤地下水位(サブドレン水位)と4m盤地下水位との 水位差に比例する。但し、互層を通じた地下水の移動は考慮しない。(別紙-4 図 -4参照)
- ・陸側遮水壁閉合範囲外(深部地盤等)への移動量:深部地盤への地下水の移動が存 在すると仮定し,10m盤地下水位(サブドレン水位)と潮位との水位差に比例する (別紙-4 図-5参照)
- ・陸側遮水壁閉合範囲内の地下水位(サブドレン水位)の初期値: T.P.+2.5m

(0. P. +4. 0m)

・7.5m~4m 盤の地下水位の初期値:T.P.+1.9m (0.P.+3.4m)

②地下水位低下举動

設定した遮断率の状態が,長期間継続すると仮定し,その期間の地下水位低下量の時 間的変動を評価する。評価は地下水遮断率を 50% (ケース1),90% (ケース2),100% (ケース3)の3ケースについて行う。①の考え方をもとに,建屋滞留水水位を固定し, 降雨浸透による涵養量および建屋流入量等の地下水収支に基づき,地下水位の変化量 を算出する。変化後の地下水位を基に地下水収支を算出し,地下水位変化量を算出する 繰り返し計算により地下水位低下量の時間的変動を評価する。

ここでは、①の仮定のうち、以下を変更する。

・降雨量:1~12ヶ月間の累積最小降雨(【参考】参照)にもとづき,各月の降雨量から,1日あたりの降雨量を評価。

•降雨浸透率:4m 盤以外:55%,4m 盤:0%

図-2 地下水収支・地下水位変動量の時間的変動の算定に関わる各種項目

(2) 評価結果

①地下水収支(図-3)

地下水遮断率を 50%とした場合において建屋流入量は現状より減少するものの, サブ ドレン汲み上げ量は現状とほぼ変わらない結果であった。

地下水遮断率を 90%とした場合においても,サブドレン汲み上げ量は約 30m³/日程度 であり,サブドレン水位は 0. P. +4. 0m を維持している。

地下水遮断率	山側から の地下水 流入量① (m ³ /日)	降雨浸透によ る地下水涵養 量② (m ³ /日)	供給量計 ③=①+② (m ³ /日)	サブドレ ン水位 (OP.+m)	サブドレン汲 み上げ量④ (m ³ /日)	建屋流入量 (5) (m ³ /日)	4m盤汲み 上げ量⑥ (m ³ /日)	港湾内への 移動量? (m ³ /日)	支出量計 (m³/日) ⑧=Σ④~⑦
0%現成	860	190	1050	5.0	420	190	410	30	1050
50%。假」。降雨	430	100(130)	530(560)	4.0	370	90	40(70)	30	530(560)
90%。殿山峰雨	90	100(130)	190(220)	4.0	30	90	40(70)	30	190(220)
100%局小師	0	100(130)	100(130)	35	0	50	20(50)	30	100(130)

図-3 山側からの地下水流入の遮断率に応じた地下水収支イメージ

②地下水位低下举動(図-4)

ケース1(遮断率50%)では、上流からの地下水の流入および降雨浸透が日平均で約 530m³/日あり、サブドレンの稼働が継続し、地下水位は平均的に0.P.+4mに維持される。

ケース2(遮断率90%)では、供給量が日平均で約190m³/日あり、少雨時期にはサブドレン稼働水位以下まで地下水位が低下するものの、降雨とともに徐々に水位が回復し、サブドレンが稼働すると評価できる。

一方,ケース3 (遮断100%)では、山側からの流入が完全に遮断されるため、地下 水位は低下するが、その地下水位低下量(最大約0.007m/日)は建屋滞留水水位制御能 カ(約0.01m/日)以下であり、建屋内外水位差が逆転することはないと評価している。 なお、降雨とともに水位が回復し、建屋との水位差を保持した状態で推移する。

図-4 山側からの地下水流入の遮断率に応じた地下水変動の想定

【参考】 浪江地点の 1~12 ヶ月累積最小降雨

降雨条件については、地域気象観測システム(アメダス)浪江地点の30年間の降水実績 (気象庁 HP より)から、下表のように1~12ヶ月累積最小降雨(対象月は表-1のとおり) および、降水量の月間差分を算出し、設定した。なお、サイトが位置する大熊地点(福島第 一原子力発電所構内)の降水量とほぼ同程度であることを確認済みであり、長期間のデータ の信頼性(欠測期間の有無・長さ)を考慮し、浪江地点の降水量実績を用いることとした。

月間	時期	降水量 (mm)	降水量月間差分 (mm)
1	1985 年 1 月 1995 年 12 月	2	2
2	1977 年 1~2 月	11	9
3	1995年12月~1996年2月	25	14
4	1998年11月~1999年2月	54	29
5	1995年10月~1996年2月	105	51
6	1995年10月~1996年3月	200	95
7	1995年10月~1996年4月	262	62
8	1995年10月~1996年5月	369	107
9	1995年10月~1996年6月	421	52
10	1995年10月~1996年7月	569	148
11	1995年10月~1996年8月	619	50
12	1983年10月~1984年9月	763	144

表-1 浪江地点の1~12ヶ月の累積最小降雨の設定

以上

陸側遮水壁(山側)の閉合率と地下水遮断率の関係

1. 閉合率と地下水遮断率の関係

未凍結箇所では地下水の流れが集中して流速が大きくなり流入量が増加することか ら,陸側遮水壁(山側)閉合による山側からの地下水流入の減少の割合(地下水遮断 率)は,陸側遮水壁(山側)総延長に対する凍結長さの割合(閉合率)より小さくな る。

ここでは、閉合率と地下水遮断率の関係について、解析を用いて評価する。

(1) 評価方法

陸側遮水壁(山側)を段階的に凍結した場合の,閉合率と地下水遮断率の関係について,3次元浸透流解析を用いて評価した。

解析モデルを図-1に、物性値を表-1に、解析条件を図-2に示す。

解析ケースは、ケース1が陸側遮水壁(山側)の閉合率が0%の場合、ケース2と2'で「未凍結箇所の中粒砂岩の透水係数(現地透水試験結果の平均値と最小値)」を、ケース2と3で「未凍結箇所の配置(南北面への配置の有無)」をパラメータとして設定した。

山側からの地下水流入量は、①建屋流入量、②サブドレンくみ上げ量、③海水配管トレンチ下の未凍結箇所を通じた4m盤への地下水流出量から、陸側遮水壁内の降雨浸透量(④)を除いた量(①+②+③-④)と算定した。地下水遮断率は、陸側遮水壁(山側)の閉合率が0%の場合(ケース1)の地下水流入量に対する、閉合率が約95%の場合(ケース2,2',3)の地下水流入量の減少率として算定した。

(2) 評価結果

陸側遮水壁(山側)の閉合率 95%の場合の地下水遮断率は、約 50~60%であった。

図-1 解析モデル

林展区八		震災	炎前	震	從後	士 大山田田 四北 中国		
地層区方		透水係数	(cm/sec)	透水係數	(cm/sec)	有劝国限华	備考	
地層名		水平	鉛直	水平	鉛直	(実流速換算時)		
盛土		2.8E-03	2.8E-03	2.8E-03	2.8E-03	0.46		
段丘堆積物	1	3.0E-03	3.0E-03	3.0E-03	3.0E-03	0.41	中粒砂岩層同様	
沖積層		1.0E-03	1.0E-03	1.0E-03	1.0E-03	0.41	文献值	
中粒砂岩		3.0E-03	3.0E-03	3.0E-03	3.0E-03	0.41		
中粒砂岩(南側、上部)		1.0E-04	1.0E-04	1.0E-04	1.0E-04	0.41		
泥岩	1	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54	35m盤の号測線以南範囲	
中粒砂岩(南側、下部)	1	1.0E-04	1.0E-04	1.0E-04	1.0E-04	0.41		
泥岩	1	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54		
互層		1.0E-03	1.1E-06	1.0E-03	1.1E-06	0.41	異方性考慮	
泥岩	1	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54		
細粒砂岩	1	2.3E-03	2.3E-03	2.3E-03	2.3E-03	0.41		
泥岩	1	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54		
粗粒砂岩		2.0E-03	2.0E-03	2.0E-03	2.0E-03	0.41		
泥岩	1	1.1E-06	1.1E-06	1.1E-06	1.1E-06	0.54		
建屋 基礎 および MMR		1.0E-06	1.0E-06	1.0E-06	1.0E-06	0.30	コンクリート相当	
建屋側壁		1.0E-06	1.0E-06	5.0E-06	5.0E-06	0.30	感度解析から設定※1	
既設矢板		1.0E-06	1.0E-06	1.0E-04	1.0E-04	0.30	感度解析から設定、施工幅0.8m ^{※2}	
ポンプ室およびピット		1.0E-06	1.0E-06	1.0E-06	1.0E-06	0.30	コンクリート相当	
4m盤グラウチング		-	-	3.0E-05	3.0E-05	0.30	中粒砂岩層の1/100相当、施工幅2m	
砕石		-	-	1.0E-01	1.0E-01	0.41	埋立部	
鋼管矢板		-	-	1.0E-06	1.0E-06	0.30	海側バウンダリ、施工幅2m	
陸側遮水壁		-	-	0.0E+00	0.0E+00	-	施工幅2m	

表-1 物性値

※1:建屋への流入量が400m³/日を再現できる透水係数 ※2:地下水位(C-3, C-4, C-5)が再現できる透水係数

沖積層の透水係数については実測データがないため、日本の地盤を対象とした地下水データベース(梅田浩司,柳澤孝一,米田茂夫(1995):日本の地盤を対象とした透水係数データベースの作成、地下水学会誌、第37巻、第1号、1995)の第四紀更新世(平均値:1.2E-O3 cm/sec)と第四紀完新世(平均値:5.6E-O4 cm/sec)の透水係数の平均値(8.1E-4 cm/sec)から1E-3(cm/sec)と設定した。

<u>検討ケース</u>

	陸側遮水壁 (山側)の閉合率	未凍結箇所配置	未凍結箇所 中粒砂岩層の透水係数 ^{※1}
ケース1	0%		
ケース2		西側4箇所	3.0×10 ⁻³ cm/s
ケース2'	95%	西側4箇所	1.4×10 ⁻³ cm/s
ケース3	23/0	西側3箇所,南北各1箇所	3.0×10 ⁻³ cm/s
ケース2' ケース3	95%	西側4箇所 西側3箇所,南北各1箇所	1.4×10 ⁻³ cm/s 3.0×10 ⁻³ cm/s

※1 透水係数は、現地透水試験結果の平均値(3.0×10-3cm/s)と最小値(1.4×10-3cm/s)とした。

解析条件設定

	各		解析条件		
海側(鋼	海側(鋼管)遮水壁			閉合	
		地盤改良		海側のみ	
		揚水工			
4m盤		(ウェルホ゜イント)		0.P.+3.4m	
		地下水ドレン		0.P.+3.4m	
		フェーシング		100%	
4~10m	盤	フェーシング		0%	
		フェーシング		0%	
		1~4号建屋水位		OP+3m	
10m盤		サブドレン		0.P.+4m	
(陸側遮	水壁内)	は、自じたったのな		海側:閉合	
	- <u>-</u> ,	座側遮水壁		山側:検討ケース参照	贸
		注水井からの	注水	無	
35m盤		地下水バイパ	ス	稼働	
降雨量	約4mm (建屋以タ	m/日 一定 トの領域に降雨) 年		均降雨量1,545mm	
降雨 浸透率		55%	汚染水	処理対策委員会報告より	

図-2 閉合率と地下水遮断率に関する解析条件

--3 1.5 --2 0.5 中粒砂岩層の --1 -0.5 地下水位分布 --0 -1.5

1号機 2号機 3号機 4号機

※2 陸側遮水壁内の面積を64,000m2として算定 浸透流解析の結果 ※2 ケーフィージオマゼディングス ヨーングルナ

2.5

4

						- ※3 クニストに刈りる地下	小爪八里の減少半
	閉合率	建屋流入量 ①	サブドレン 汲上げ 量 ②	海水配管トレンチ下の 4m盤への流出③	降雨浸透量 ④ ^{※2}	地下水流入量 ⑤=①+②+③-④	地下水 遮断率 ^{※3}
ケース1	0%	230	370	5	140	465	—
ケース2	95%	180	170	5	140	215	54%
ケース2'	95%	170	150	5	140	185	60%
ケース3	95%	170	170	5	140	205	56%

図-3 閉合率と地下水遮断率に関する解析結果

2. 地下水流速増加に対する地盤の安定性

未凍結箇所では、地下水流速が速くなり、地盤中の土粒子が動いて地盤に損傷を与える懸念があることから、地下水流速に対する地盤安定性について評価した。

(1) 評価方法

別紙-4 3. (1)と同様とした。

(2) 未凍結箇所の実流速の想定

「1. 閉合率と地下水遮断率の関係」についての解析結果のうち,地下水流速が最も大きい「ケース2」を検討対象として,実流速を想定した。その結果,表-2に示す通り,

1 号機西側の互層部において地下水実流速が最大となり 2.6m/day (3.0×10⁻³cm/s) 程度 になった。

	中粒 砂岩層	互層部※	細粒砂岩	粗粒砂岩						
ダルシー流速(cm/day)	74	31	40	55						
実流速①(cm/day)	180.5	189.0	97.6	134.1						
実流速②(cm/day)	246.7	258.3	133,3	183.3						

表-2 未凍結箇所の最大流速(3次元浸透流解析結果)

①間隙率41%、②有効間隙率30%

※互層部内のうち砂岩のみ地下水が流れるものと仮定(砂岩:泥岩=4:6)

(3) 互層部の土質試験結果

土質試験結果(5号機南側,5試料)による互層部(互層部中の砂岩)の粒度試験結果は表-3に示す通り。20%粒径は0.205mm,平均粒径は0.306mmであった。

表-3 粒度試験結果(5号機南側付近 互層部内の砂岩)

		(単位:mm)
ボーリング名	20%粒径	平均粒径
ow5c-8	0.190	0.300
ow5c-10	0.180	0.300
ow6c-8	0.220	0.320
ow6c-9	0.235	0.310
ow7c-10	0.200	0.300
平均值	0.205	0,306

20%粒径をD20,平均粒径をD50とした

(4) 陸側遮水壁(山側)の未凍結箇所の地盤安定性の評価

地盤中の土粒子が動き出す時の最大流速(限界実流速)と土粒子の関係,想定最大実流 速を図-4に示す。20%粒径および50%粒径の限界実流速は,間隙率が30%(砂層の有効間 隙率),41%(室内試験値)のいずれの条件でも,想定最大実流速より1オーダー程度大 きい結果となった。

以上より、陸側遮水壁(山側)の未凍結箇所は、地盤安定上問題ないものと評価した。

図-4 限界実流速と土粒子の粒径の関係と想定最大実流速

以上

別紙-7

陸側遮水壁(海側)のみを閉合した場合の影響評価

1. 概要

ここでは、仮に第一段階(フェーズ1)において、陸側遮水壁(山側)の北側一部を閉合 しない場合、山側から流れ込む地下水は、建屋近傍の汚染されたエリアを通過し、陸側遮水 壁(海側)の南北両脇から護岸付近に到達する可能性があることから、その影響を評価する。

図-1 第一段階(フェーズ1)において陸側遮水壁(山側)の北側一部を 閉合しない場合の建屋周辺の地下水の流れの概要

2. 建屋周辺の観測井における放射性物質濃度測定結果

建屋周辺の地下水の放射性物質濃度測定結果(2016年1月28日時点)を図-2~4に示す。

測定の結果,セシウム-137 については、2 号機建屋山側において 10³Bq/L オーダー、1, 2 号機建屋海側において 10²Bq/L オーダーが検出されている。トリチウムについては、1, 2 号機建屋海側において 10⁴Bq/L オーダーが検出されている。ストロンチウム-90 について は、1 号機タービン建屋海側において 10³Bq/L オーダーが検出されている。

図-2 建屋周辺(海側)の観測井における放射性物質濃度測定結果(2016年1月28日時点) (セシウム-137)

図-3 建屋周辺(海側)の観測井における放射性物質濃度測定結果(2016年1月28日時点) (トリチウム)

Ⅱ-2-6-添15-91

(ストロンチウム-90)

3. 評価方法

測定結果(図-2~4)より地下水中の放射性物質濃度が高く護岸に近い1,2号機タ ービン建屋海側を対象として,陸側遮水壁(海側)を閉合,陸側遮水壁(山側)を閉合し ない条件で,建屋近傍の汚染されたエリアを通過した地下水が,護岸に到達した場合の核 種の到達時間,濃度上昇幅を一次元核種移流分散解析により評価する。解析条件を表-1 に,設定値を表-2に示す。検討ケースは,表-3に示す通り,1,2号機建屋海側の放 射性物質濃度を平均値とした場合(ケース1)と放射性物質濃度を最大値とした場合(ケ ース2)の2ケースを実施する。

表-1 解析条件

概要	・評価エリアから護岸までの流速を求めて、評価地点での地下水の放射性物質濃度の濃度変化を一次元移流 分散解析を用いて評価する			
評価エリア	 ・放射性物質濃度が高く護岸に近い建屋海側の北側エリア(1,2号機タービン建屋海側) ※南側エリアは放射性物質濃度が低く、また、陸側遮水壁(海側)ラインの配置上、護岸に到達しにくいため、評価対象外とした 			
流出経路	・観測井から護岸まで構造物を迂回しながら最短距離となる経路			
条件	 「海側閉合+山側段階的閉合」の場合,陸側遮水壁(山側)が閉合後は陸側遮水壁(海側)の両脇の流れは 抑制されるが、本検討では陸側遮水壁(山側)を運用しないと仮定し、継続して流出した場合を想定した。 			
解析対象 核種	• Cs-137 • H-3 • Sr-90			

表-2 設定値

項目		設定値		備考		
投入期間		継続		・観測井の初期の放射性物質濃度に対して放射壊変の影響を考慮した		
建屋海側近傍の 地下水位		T.P.+5.6m		・建屋周り地下水位は陸側温水壁(海側)のダムアップ効果により上昇 し、サブドレン稼働前の建屋山側の地下水位(O.P.+6~7m(T.P.+4.6 ~5.6m)程度まで上昇するものと仮定		
平均潮位		T.P.Om		-		
透水係数(k)		3.0x10 ⁻³ cm/sec		・中粒砂岩層の透水係数を適用		
地盤の間隙率 (<i>q</i>)		0.41		 ・中粒砂岩相当(『福島第一原子力発電所 原子炉設置変更許可申請書 』1993年4月(1993年7月一部補正)) ・比重:2.65 		
地盤の真密度(r)		2,650 kg/m ³				
地盤間隙の屈曲度(<i>t</i>)		1.414		・Kozeny-Carmanの式での定数		
分散長(<i>a</i>)		RW30	12m	・対象とする注水井から護岸付近までの移行距離の1/10として設定 ・ 文献		
		1T-3	1 6m	Gelhar et al., 1992. A critical review of date on field-scale		
		SD26	35m	oispersion in water Resources Research, Voi,∠8(7) ,pp.1955-1974.		
半減期	Cs-137	30.17年		-		
	H-3	12.32年		-		
	Sr-90	28.90年		_		
分配係数 (<i>K</i> d)	Cs-137	0.4m ³ /Kg		・現地で採取した砂岩を用いた室内試験結果		
	Sr-90	7×10⁻³m³/Kg				
水中拡散係数 (Dw)	Cs-137	2.02×10 ⁻⁹ m ² /sec 7.94×10 ⁻¹⁰ m ² /sec		・文献 (Gray, 1972)からの引用		
	Sr-90					

表3 検討ケース

	初期濃度				
	データ	対象核種	放射性物質濃度 (Bq/L)	護岸付近までの移動距離	
ケース1	北側(1,2号機建屋海 側)の平均値	Cs-137	47	120m	・建屋海側近傍のうち, 最 も護岸に近い観測井から護
		H-3	8,600		岸までの距離
		Sr-90	700		
ケース2	北側(1,2号機建屋海 側)の最大値	Cs-137 (SD26)	350	350m	・核種ごとに最大の放射性 物質濃度が測定された観測 井から護岸までの距離
		H-3 (1T-3)	80,000	160m	
		Sr-90 (RW30)	2,300	120m	

4. 評価結果

解析の結果,護岸での放射性物質濃度の上昇幅は、以下の通りであった。

(ケース1)

- Cs-137:護岸での濃度上昇幅は、10年後で0.1Bq/L未満である。
- H-3 :護岸での濃度上昇幅は、3年後に7,000Bq/L程度である。
- Sr-90 : 護岸での濃度上昇幅は、10年後に1 Bq/L 程度である。
- (ケース2)
- Cs-137:護岸での濃度上昇幅は、10年後でも 0Bq/L である。
- H-3 :護岸での濃度上昇幅は、4~5年後に59,000Bq/L程度である。
- Sr-90 : 護岸での濃度上昇幅は、10年後に4Bq/L程度である。

以上
地下水遮断率の評価とサブドレン稼働状態

1. 第一段階のフェーズ2における地下水遮断率の評価方法

実測値等を用いて地下水遮断率を下式に基づき評価し、「地下水遮断率が80%」以下で あることを確認する。

·		-,
【第一段階のフェーズ2における地下	「水遮断率の評価方法】	
$\mathbf{E}_{0} = \mathbf{E}_{1}$	F ₀ :陸側遮水壁(山側)設置前の状態での地下水流入量	1
$\frac{10011}{F_0} \leq 80\%$	F ₁ :フェーズ2における山側からの地下水流入量	i

F₀は凍結を開始する前の地下水環境を評価するために必要な期間を設定し、建屋流入 量や各種汲み上げ量の実績等をもとに統計的な処理を行い,評価を行う。なお,降雨や現 場の状況などが地下水流入量に影響を与える場合には,必要に応じて見直しを行う。

参 考	地下水遮断率の評価例

地下水遮断率の評価は、【方法1:地下水収支に基づく評価】と【方法2:未凍結 箇所からの流入量に基づく評価】を併用して評価していくことで、「地下水遮断率が 80%」以下であることを確認する。【方法1】は、フェーズ2の期間を通じて適用性が 高い、また【方法2】は、閉合がある程度進み、未凍結箇所からの流入が支配的にな っている状態での適用性が高いため、凍結状況に応じて両者を総合的に評価すること で、地下水遮断率が過大になっていないことを確認する。

なお,計算条件や算定方法などは地下水環境の実態に合わせて適宜修正を行ってい く。

(次頁に続く)

(前頁の続き)

【方法1】 地下水収支に基づく評価

フェーズ2の初期段階など,陸側遮水壁(山側)の遮水効果が発現途中の場合は,7 箇所の未凍結箇所以外からの流入も大きく,未凍結箇所以外からの流入量を考慮した地 下水遮断率を,以下により評価する。

図-1に示すように地下水収支は下式で表される。

降雨浸透による地下水涵養量【E】+ 山側からの地下水流入量【F】= サブドレン汲み上げ量【A】+ 建屋流入量【B】+ 4m盤への地下水移動量【C】 + 陸側遮水壁閉合範囲外(深部地盤等)への移動量【D】

この時,山側からの地下水流入量(F)は7箇所の未凍結箇所からの流入(イ),遮水壁の他部位からの流入(ロ),深部地盤からの流入(ハ)から成る。

7箇所の未凍結箇所からの流入量(イ)を F_{1a} とすると、A、B、C、Eが既知であることから、他の部位からの地下水流入量(ロ、ハ)はDに含まれることになる。そこで、山側からの地下水流入量(F_{1a})を7箇所の未凍結箇所からの流入量(F_{1a})及び他からの流出入量(D')の合計として、地下水遮断率を評価する。

 $F_{1a}' = F_{1a} - D' = A + B + C - E$

F_{1a}':7箇所の未凍結箇所以外からの流入量を含めた山側からの地下水流入量等
 F_{1a}:7箇所の未凍結箇所からの流入量

D':「陸側遮水壁閉合範囲外(深部地盤等)への移動量【D】」

+「ロ. 遮水壁の他部位からの流入」+「ハ. 深部地盤からの流入」

(次頁に続く)

Ⅱ-2-6-添 15-96

【方法2】 未凍結箇所からの流入量に基づく評価 閉合がある程度進み,7箇所の未凍結箇所からの流入が支配的になっている状態で は、地下水遮断率を以下により評価する。この方法では、フェーズ2の初期段階などで は地下水流入量を過小評価し、地下水遮断率を過大評価するため、利用には注意が必要 である。 ① 各未凍結箇所からの地下水の流入量(Q_i)を下式に示す通り算定する。 開口箇所面積(m²) k∶ $Q_{i} = \mathbf{A}(\mathbf{m}^{2}) \times \mathbf{k}(\mathbf{m}/\Box) \times \frac{\Delta H(\mathbf{m})}{L(\mathbf{m})}$ 透水係数(m/日) △H: 内外水位差(m)
 L: 陸側遮水壁厚さ(m) L: A:開口箇所面積 (m²) 未凍結箇所の開口部幅と開口部高さの積を開口箇所面積とする。 k:透水係数(m/日) 既往の透水試験結果に基づいて設定する。 ∠H:内外水位差(m) 未凍結箇所近傍における陸側遮水壁の内側と外側に位置する地下水位観測井 の水位差により算定する。 L:陸側遮水壁厚さ(m) 陸側遮水壁の計画厚さとする。 ② ①で求めた各未凍結箇所からの地下水流入量を合計(7箇所)して、地下水流入 量(F_{1b})を算出し、地下水遮断率を評価する。 $F_{1b} = \Sigma$ (Q_i) (i=1~7) i:未凍結箇所

(前頁の続き)

Ⅱ-2-6-添 15-97

2. サブドレンの広範囲な停止について

「サブドレンの広範囲な停止」の発生とは、建屋周辺毎(図-2)に過半数のサブドレンにおいて、水位が低下することによりサブドレンポンプ停止水位(L値)を連続的に下回った状態となった場合とする。但し、水質・機器メンテナンス等の理由により人為的に停止しているサブドレンは除く。

図-2 建屋周辺サブドレン位置図

以上

別紙-9

地下水位の回復方策

1. 概要

「サブドレンのポンプ停止バックアップ位置(LL値)の警報」が発報した場合において, 「建屋-サブドレン水位差」を確保するため,早急な対応が必要と判断された場合の実施方 策及びその妥当性を示す。

2. 注水による地下水位の回復・維持

陸側遮水壁内に設置した注水井から注水することで、建屋周辺地下水位の低下を抑制する。

注水による地下水位の回復・維持を目的に陸側遮水壁内に 33 孔注水井を設けている。注 水設備の構造について、図-1に示す。

注水井は,内径 450mm, 深さ 10~20m 程度で中粒砂岩層および埋戻し土を対象に全体で最 大約 360m³/日の水を供給できる構造となっている。

注水配管は、本管から分岐した枝管を通じて各注水井に水を供給する構造となっている。 各注水井に対して電磁流量計・電磁弁・水位計を設置しており、注水井1孔毎の計測デー タを取り込み、免震重要棟にて遠隔監視・操作が可能となっている。また、電磁弁が故障し た等の場合には、手動バルブで注水井に水を供給する。

注水井は図-2のように配置し、注水を行う。全ての注水井において、設計最大量(10L/ 分以上)の注水が可能であることを確認している。

図-1 注水設備 構造概要

※サブドレンの配置は参考であり、H28.3時点のもの

図-2 注水井の配置

- >
 3.陸側遮水壁(山側)へのブライン供給の停止
 陸側遮水壁(山側)へのブライン供給を停止し,陸側遮水壁(山側)の凍土を融解させる

 ことで、山側からの地下水流入を回復する。
- 4. 陸側遮水壁(山側)の部分撤去

陸側遮水壁(山側)の一部分を強制的に撤去することで,山側からの地下水流入を回復す る。陸側遮水壁(山側)の部分撤去方法を以下に示す。

- ・撤去方法:ボーリングマシーンによる削孔後,削孔箇所に砕石等を充填
- ・撤去期間: (準備作業)約0.7ヶ月, (撤去作業)約1ヶ月

準備作業

5. 地下水位回復方策の妥当性

【検討内容】

陸側遮水壁(山側)閉合後,地下水位の予期せぬ低下が起きた場合に,地下水位を回復さ せるのに要する期間について,想定外の最悪の条件(山側からの地下水流入がない第三段階 を想定)で検討した。

- ・地下水位の予期せぬ低下の発生要因:海側遮水壁の遮水性喪失
- ·陸側遮水壁: (山側) 遮水性 100% (初期状態), (海側) 遮水性 0% (継続)
- ・降雨:降雨がない期間が継続
- ・建屋滞留水水位:1号タービン建屋最低排水レベル(T.P.+0.7m (0.P.+2.2m))まで滞留水移送による低下実施(低下速度:0.01m/日)
- ・目標地下水位回復レベル: T.P.+1.7m

(0. P. +3. 2m, 1号機タービン建屋最低排水レベル+1m)

- ・異常時に以下の対策を施した場合の地下水位回復期間を評価
 - (1) 注水井からの注水
 - (2) 凍結運転停止
 - (3)陸側遮水壁(山側)の部分撤去

【検討結果】

(1) 注水井からの注水

①計算条件

- ・地下水位低下確認後、注水井への注水開始。同時に建屋滞留水水位低下開始。
- ・注水した地下水が建屋周辺まで到達、到達後サブドレン水位が上昇。

図-6 注水井への注水 計算条件

(ア) 注水量Q

・約 360m³/日 (一定流量継続)

注)総注水量のうち,3/4が10m盤水位(サブドレン水位),1/4が4m盤水位に寄与すると仮定した。

(イ) 到達期間T:約1.9ヶ月

断面積は定常状態でバランスする水位,奥行き延長は一様(約 500m)を仮定して, 陸側遮水壁(山側)~建屋周辺まで地下水が到達し,建屋周辺の地下水が上昇し始める までの期間を算定。

②計算結果

注水井からの注水により地下水位を回復させる場合,「地下水位低下前の水位(建屋 滞留水水位+1m)」まで地下水位が回復するまでに必要な期間は約3.9ヶ月(到達期間: 約1.9ヶ月 + 地下水位回復:約2ヶ月)となる。建屋周辺の地下水位(サブドレン水 位)は1号機タービン建屋最低排水レベル(T.P.+0.7m(0.P.+2.2m))以上であり,水位 は逆転しない。

図-7 注水井からの注水 計算結果

(2) 凍結運転停止

①計算条件

- ・水位低下確認後、凍結運転を停止。同時に建屋滞留水水位低下開始。
- ・凍結運転停止後,2ヶ月後に地表-2m,3ヶ月後に地表-3mの凍土が融解^{※1}(地表-3m以深の融解は考えない),融解範囲より地下水が越流。

※1 小規模凍土実証試験結果による(詳細は参考1参照)

・越流した地下水が建屋周辺まで到達、到達後サブドレン水位が上昇。

図-8 凍土の自然融解 計算条件

(ア) 越流量Q

定常一次元地下水流を仮定し、越流量を算定。

・2ヶ月後:約70m³/日(延長500m,地表-2m融解),L=9m,H=0.9(=8.9-8)m,h₀=0m
・3ヶ月後以降:約300m³/日(延長500m,地表-3m融解),L=9m,H=1.9(=8.9-7)m,h₀=0m
注)2~3ヶ月間は一定速度でG.L.-2~3mの範囲が融解し、それに応じて越流量が増加するものとした。

図-9 定常一次元地下水流における水頭と流量

(イ) 到達期間T:約1.2ヶ月

断面積は定常状態でバランスする水位,奥行き延長は一様(約 500m)を仮定して, 陸側遮水壁(山側)〜建屋周辺まで地下水が到達し,建屋周辺の地下水が上昇し始める までの期間を算定。 ②計算結果

凍結運転停止・自然融解により地下水位を回復させる場合,「地下水位低下前の水位 (建屋滞留水水位+1m)」まで地下水位が回復するまでに必要な期間は,約8.1ヶ月(自 然融解:約3ヶ月 + 到達期間:約1.2ヶ月 + 地下水位回復:約3.9ヶ月)である。建 屋周辺の地下水位(サブドレン水位)は1号機タービン建屋最低排水レベル(T.P.+0.7m (0.P.+2.2m))以上であり,水位は逆転しない。

図-10 凍土の自然融解 計算結果

(3) 陸側遮水壁(山側)の部分撤去

①計算条件

- ・水位低下確認後,部分撤去作業を準備(約0.7ヶ月),撤去作業を実施(約1ヶ月)。 同時に建屋滞留水水位低下開始。
- ・部分撤去作業開始後、撤去範囲(深度:地表より約-10m)より地下水が流入。
- ・流入した地下水が建屋周辺まで到達、到達後サブドレン水位が上昇。

図-11 凍土の部分撤去 計算条件

(ア) 流入量Q

撤去箇所からの流入を注水井からの注水時の定常地下水流と仮定し,以下の算定式 により流入量を算定。

・約470m³/日(撤去延長10m×5箇所とした場合)

h_w=8.9m, h₀=2.7m, R=109m, r_w=3.2m (撤去延長 10m に相当する井戸半径)

注) 撤去期間中は撤去延長分に相当する流入量を段階的に増加し算定。また,地下水位の回復に応じて流入量 は減少するものとした。

(イ) 到達期間T: (撤去完了後)約0.6ヶ月

撤去範囲からの流入が定常状態でバランスする体積を仮定し,陸側遮水壁(山側)~ 建屋周辺まで地下水が到達して,建屋周辺の地下水が上昇し始めるまでの期間を算定。

②計算結果

凍土の部分撤去実施により地下水位を回復させる場合,「地下水位低下前の水位(建 屋滞留水水位+1m)」まで地下水位が回復するまでに必要な期間は,約3.1ヶ月(撤去作 業準備・実施:約1.7ヶ月 + 到達期間:約0.6ヶ月 + 地下水位回復:約0.8ヶ月)と なる。建屋周辺の地下水位(サブドレン水位)は1号タービン建屋最低排水レベル (T.P.+0.7m(0.P.+2.2m))以上であり,水位は逆転しない。

図-13 凍土の部分撤去 計算結果

小規模凍土実証試験における凍土融解期間

1~4号機建屋西側(共用プール西側)で実施された小規模凍土実証試験*では、冷凍機の 運転停止後2ヶ月程度で地表から2m程度、3ヶ月程度で地表から3m程度の深さが融解した。

※ 資源エネルギー庁公募「平成25年度発電用原子炉等廃炉・安全技術基盤整備事業 (地下水の流入抑制のための凍土方式による遮水技術に関するフィージビリテ ィ・スタディ事業)」のうち①凍土方式の小規模遮水壁実証試験

図-14 小規模凍土実証試験結果

以上

第二段階における陸側遮水壁(山側)の未凍結箇所の一部閉合(I)の評価

1. 概要

第二段階において,第一段階フェーズ2で凍結対象外としていた山側の7箇所の未凍結 箇所(図-1)のうち,一部(西側①と西側⑤)を閉合する場合に,閉合後に陸側遮水壁閉 合域内への地下水流入量が確保され,建屋内外水位の逆転は生じないことについて評価した。

なお,未凍結箇所の一部閉合(I)後の地下水流況についても,本評価方法を用いて建屋 内外水位の逆転が起こらないことを確認していく。

また,一部閉合(Ⅱ)の実施期間については,別紙-11の評価方法を用いて,建屋内外 水位の逆転が起こらないことを確認していく。

図-1 第二段階 一部閉合(I)実施箇所

2. 未凍結箇所の一部閉合(I)の評価

山側からの地下水は「凍結に至っていない箇所^{*1}」と「未凍結箇所」から流入してい る。評価にあたっては、一部閉合(I)後に「凍結に至っていない箇所」が全て凍結して 地下水流入が無くなる状態を想定して、一部閉合(I)を実施した箇所以外の残りの「未 凍結箇所」からの陸側遮水壁閉合域内への地下水流入により、建屋内外水位の逆転は起こ らないことを確認する。

※1:第一段階フェーズ2で凍結対象としていた範囲で凍結に至っていない箇所

(1) 未凍結箇所を2箇所閉合した場合の地下水流入の減少割合

山側の未凍結箇所からの流入量を,実測値(2016.8~9)に基づいて評価**2した(図 -2)。その結果,未凍結箇所のうち西側①と西側⑤を閉合した場合,その閉合割合は, 想定流量比や延長比から未凍結全箇所の 30%未満になるものと想定される(表-1)。 そこで評価にあたっては,2箇所閉合後の地下水流入量の減少割合を保守的に 30%と設 定する。

※2: 通水面積(中粒砂岩層・互層部)と内外水位差・透水係数(平均値)を用いたダルシー則により評価した。

図-2 山側の未凍結箇所からの想定流入量

	未凍結区間延長	想定流入量(m³/日) 8/12時点
北側	約4m	約40
西側①	約6m	約60
西側②	約9m	約130
西側③	約7m	約30
西側④	約8m	約100
西側⑤	約7m	約40
南側	約4m	約30
言十	約45m	約430

表-1 山側の未凍結箇所の区間延長と想定流入量

西側①,西側⑤の合計 延長 :約13m 想定流入量:約100m³/日

(2) 一部閉合(I)後の建屋周辺への地下水流量の想定

ー部(西側①と西側⑤)閉合後の建屋周辺への地下水流量について,以下に示す2ケ ースで評価した。

(ケース1)第一段階フェーズ2の閉合が進み、かつ降雨が少ない期間(2016.8.1~
 8.15)の実測値に基づいて、今後4m盤への地下水移動量(C₂)が、
 閉合が進むとともに減少する場合

(ケース2)ケース1よりも山側の凍結に至っていない箇所の凍結が進んだ期間
 (2016.10.13~10.27)の実測値に基づいて、閉合後の4m盤への地下水
 移動量(C₂)が、閉合前と同程度とした場合

[ケース1]

ケース1における,一部(西側①と西側⑤)閉合後の建屋周辺への地下水流量について, 以下のように評価した。

(ア) 閉合前の山側からの地下水流入量の想定

閉合前の山側からの地下水流入量を,第一段階フェーズ2の閉合が進み,かつ降雨が 少ない期間(2016.8.1~8.15)の実測値に基づいて評価した。その結果,山側からの流 入量は 690m³/日程度と想定される(図-3)。

注) 現状の期間(2016.8.1~8.15)において,深部透水層(粗粒・細粒砂岩)の水頭が互層部と同程度で,上部の中粒砂岩層より も高いことから,深部地盤等への移動量D₁をゼロとする。

(イ)一部閉合(I)後の残りの未凍結箇所からの地下水流入量の想定

山側からの地下水流入量には、(a)凍結に至っていない箇所と、(b)7箇所の計画的な 未凍結箇所からの流入があり、(a)(b)からの流入量については、山側からの地下水流入 量のそれぞれの通水面積比より想定する。そのうち、(a)からの流入は凍結が進めばな くなることから、閉合後の残りの未凍結箇所からの地下水流入量は、(b)からの流入量 に未凍結箇所を2箇所閉じた場合の地下水流入の減少割合(約 30%)を乗じた値とし た。

図-3 一部閉合(I)前の山側からの地下水流入量の想定(ケース1)

その結果,未凍結箇所の2箇所(西側①,西側⑤)を閉合後,残り5箇所の未凍結箇 所からの地下水流入量は240m³/日程度と想定される(図-4)。

(山側からの地下水流入園所)						
				実測に基づく 面積 (m ²)	面積比	備考
			(a)凍結に至っていない箇所	480	0.51	・面積は2016.8.15時点の実測 ・中粒砂岩・埋戻土、互層部に設置
(a) 凍結に至って (b) 計画的な いない箇所 未凍結箇所		(b)未凍結箇所	470	0.49	された温度計を対象(構造物内と 地下水位以浅を除く) ・互層部の砂岩と泥岩の割合 4:6	
凍結箇所	凍結してい	ない箇所				

(山側からの地下水流を開う)

(凍結に至っていない箇所および未凍結箇所からの流入量の想定)

ι.	凍結に至っていない固所ねよび木凍結固所からの	の流入重の想定)	(単位:m ³ /日)
		現状	未凍結2箇所閉合後
	山側からの地下水流入量 F_n ((a)+(b))	690	240
(a)凍結に至っていない箇所からの流入量		350 (0.51) * ³	0
	(b)未凍結箇所からの流入量	340 (0.49) *3	240**4

※3:括弧内は面積比 ※4:現状の末凍結箇所からの流入量の30%減

図-4 一部閉合(I)後の残りの未凍結箇所からの地下水流入量の想定(ケース1)

(ウ) 一部閉合(I)後の建屋周辺への地下水流入量の想定

一部閉合(I)後に山側からの地下水流入量が240m³/日に減少した場合でも、サブド レン稼働(A₂)と建屋への地下水流入(B₂)が継続するための地下水が建屋周辺へ供 給されていることを評価し、サブドレン稼働の調整により建屋内外水位の逆転が生じ ない運用が可能であることを確認する。なお,閉合後の地下水収支の想定にあたっては, 以下の点に留意した。

- ・4m盤への地下水の移動量(C₂)は、閉合が進むとともに今後減少し、30m³/日 *5になるものとした。
- ・閉合後の降雨涵養量(E12)は、過去(1977~2015年)の年間最小降雨量に基づ き 90m³/日とした。

その結果,建屋周辺への地下水供給量(サブドレンくみ上げ量(A₂)と建屋流入量 (B₂)の合計値)は、300m³/日程度と想定される(図-5)。

※5:4m盤への地下水移動量(C2)は、実測値の状況に応じて評価していく。

		4m盤への 移動量 C2	閉合範囲外へ の移動量 D2	降雨涵養量 E12	地下水位変動 への寄与量 E22	山側からの 地下水流入量 F ₂	
設定値	(m³/日)	30	0	90	0	240	
=E12 + F2 - C2-D2-E22							
サブドレンくみ上げ量A2+建屋流入量B2							
	想定	Ξ値(m³/日)		300			

注1) D₂は、山側の一部閉合(I)後も中粒砂岩層と深部の被圧透水層の水位・水頭関係は変わらないことから、ゼロとした。
 注2) E 2₂は、地下水位の定常状態を想定しゼロとする。

図-5 一部閉合(I)後の山側からの地下水流入量の想定(ケース1)

[ケース2]

ケース2における,一部(西側①と西側⑤)閉合後の建屋周辺への地下水流量について, 以下のように評価した。

(ア) 閉合前の山側からの地下水流入量の想定

閉合前の山側からの地下水流入量を、ケース1よりも山側の凍結に至っていない箇 所の凍結が進んだ期間 (2016.10.13~10.27)の実測値に基づいて評価した。その結果、 山側からの流入量は 620m³/日程度と想定される(図-6)。

※ 現状の期間(2016.10.13~10.27)において、深部透水層(粗粒,細粒砂岩)の水頭が互層部と同程度で、上部の中粒砂岩層よりも高いことから、 深部地盤等への移動量D₁をゼロとする。

図-6 一部閉合(I)前の山側からの地下水流入量の想定(ケース2)

(イ)一部閉合(I)後の残りの未凍結箇所からの地下水流入量の想定

ケース1(イ)と同様に、一部(西側①と西側⑤)閉合後の残りの未凍結箇所からの 地下水流入量を想定した結果、残り5箇所の未凍結箇所からの地下水流入量は300m³/ 日程度と想定される(図-7)。

(山側からの地下水流入箇所)

			•		(a)
(a)凍結に いない	至って 箇所		(b)言 未凍	†画的な 転箇所	(b)
凍結	箇所	凍結	してい	ない箇所	

		実測に基づく 面積 (m ²)	面積比	備考
↑	(a)凍結に至っていない箇所	210	0,30	 ・面積は2016.10.20時点の実測 ・中粒砂岩、埋戻土、互層部に設置された温度計を対象 (構造物内と地下
(b)計画的な 未凍結箇所	(b)未凍結箇所	500	0.70	水位以浅を除く) ・互層部の砂岩と泥岩の割合 4:6

(凍結に至っていない箇所および未凍結箇所からの流入量の想定)

	現状	未凍結2箇所閉合後
山側からの地下水流入量 F _n ((a)+(b))	620	300
(a)凍結に至っていない箇所からの流入量	190 (0.30) **3	0
(b)未凍結箇所からの流入量	430 (0.70) **3	300**4
	(0.70) **	

※3:括弧内は面積比 ※4:現状の末凍結箇所からの流入量の30%減

(単位:m³/日)

図-7 一部閉合(I)後の残りの未凍結箇所からの地下水流入量の想定(ケース2)

(ウ) 一部閉合(I)後の建屋周辺への地下水流入量の想定

一部閉合(I)後に山側からの地下水流入量が300m³/日に減少した場合でも、サブド レン稼働(A₂)と建屋への地下水流入(B₂)が継続するための地下水が建屋周辺へ供 給されていることを評価し、サブドレン稼働の調整により建屋内外水位の逆転が生じ ない運用が可能であることを確認する。なお、閉合後の地下水収支の想定にあたっては、 以下の点に留意した。

- ・4m盤への地下水の移動量(C₂)は、閉合前の期間(2016.10.13~10.27)と同程 度とした。
- ・閉合後の降雨涵養量(E12)は、過去(1977~2015年)の年間最小降雨量に基づき90m³/日とした。

その結果,建屋周辺への地下水供給量(サブドレンくみ上げ量(A_2)と建屋流入量(B_2)の合計値)は、150m³/日程度と想定される(図-8)。

注1) D₂は、山側の一部閉合(I)後も中粒砂岩層と深部の被圧透水層の水位・水頭関係は変わらないことから、ゼロとした。
 注2) E₂は、地下水位の定常状態を想定しゼロとする。

図-8 一部閉合(I)後の山側からの地下水流入量の想定(ケース2)

(3) 評価結果

西側①,西側⑤の一部閉合(I)後に山側未凍結箇所からの地下水流入量が30%減少 した場合の地下水収支を想定して、サブドレンくみ上げ量と建屋流入量を確認した結 果,合計でケース1は300m³/日程度、ケース2は150m³/日程度となる。建屋流入量と内 外水位差の関係(期間:2016.1~2016.9)から、建屋内外水位差が1mの場合における 建屋流入量は100m³/日程度と想定されるため(図-9)、一部閉合(I)後も陸側遮水 壁内側への地下水流入量は十分に確保されサブドレン稼働が継続(汲み上げ量は、ケー ス1は200m³/日程度,ケース2は50m³/日程度)し、建屋内外水位の逆転は生じないと 評価した。

上記より,未凍結箇所のうち西側①と西側⑤を閉合しても,地下水位管理上,問題と はならないとものと考えられる。

図-9 建屋内外水位差と建屋流入量の関係(期間:2016.1~2016.9)

以上

第二段階における陸側遮水壁(山側)の未凍結箇所の一部閉合(Ⅱ)の評価

1. 概要

第一段階フェーズ 2 および第二段階一部閉合(I)で凍結対象外としていた山側の5箇 所の未凍結箇所(図-1)のうち,一部(北側,西側②,西側④,南側)の閉合後において も陸側遮水壁閉合域内への地下水流入量が確保され,建屋内外水位の逆転は生じないこと について評価した。

なお、未凍結箇所の一部閉合(Ⅱ)の実施期間における地下水流況についても、本評価方 法を用いて建屋内外水位の逆転が起こらないことを確認していく。

2. 未凍結箇所の一部閉合(Ⅱ)の評価

山側からの地下水は「凍結に至っていない箇所^{*1}」と「未凍結箇所」から流入している。評価にあたっては、一部閉合(II)の実施期間に「凍結に至っていない箇所」が全て 凍結して地下水流入が無くなる状態を想定して、一部閉合(II)実施箇所以外の残りの

「未凍結箇所(西側③)」からの陸側遮水壁閉合域内への地下水流入により,建屋内外水 位の逆転は起こらないことを確認する。

※1:第一段階フェーズ2および一部閉合(I)で凍結対象としていた範囲で凍結に至っていない箇所

- (1) 一部閉合(Ⅱ)の実施期間における建屋周辺への地下水流量の想定
 一部閉合(Ⅱ)(北側,西側②,西側④,南側)の実施期間における建屋周辺への地下水流量について,下記の通り評価した。
- (ア) 閉合前の山側からの地下水流入量の想定

一部閉合(Ⅱ)実施前の山側からの地下水流入量を、一部閉合(Ⅰ)開始後の期間
 (2017.1.6~1.19)の実測値に基づいて評価した。その結果、山側からの流入量は690m³/
 日程度と想定される(図-2)。

現状の実測値に基づく地下水収支

※ 当該期間において、深部透水層(粗粒、細粒砂岩)の水頭が互層部と同程度で、上部の中粒砂岩層よりも高いことから、 深部地盤等への移動量D1をゼロとする。

図-2 一部閉合(Ⅱ)実施前の山側からの地下水流入量の想定

(イ) 一部閉合(Ⅱ)の実施期間における凍結箇所からの地下水流入量の想定

山側からの地下水流入量には、(a)凍結に至っていない箇所(第一段階,第二段階一 部閉合(I))と、(b)5箇所の計画的な未凍結箇所からの流入があり、(a)(b)からの流 入量については、山側からの地下水流入量のそれぞれの通水面積比より想定する。その うち、(a)からの流入は凍結が進めばなくなることから、閉合後の残りの未凍結箇所か らの地下水流入量は、(b)からの流入量に未凍結箇所を4箇所閉じた場合の通水面積比 を乗じた値とした。 その結果,未凍結箇所の4箇所(北側,西側②,西側④,南側)を閉合後,残り1箇 所の未凍結箇所(西側③)からの地下水流入量は120m³/日程度と想定される(図-3)。

現状に基づいた一部閉合(Ⅱ)後の山側からの地下水流入量の想定

	現状			ー部閉合(II)(北側・西側2・④・南側) 閉合後の想定		
	未凍結面積※1		流入量	未凍結面積	流入量	
	m ²	%	m ³ /⊟	m²	m³/⊟	
山側全体 (a)+(b)	400	100	690 ^{%2}	70	<u>120</u>	
(a)凍結に至っていない箇所 (第一段階,第二段階(一部閉合(I)))	60	15	100	0	0	
(b)未凍結箇所(5箇所→1箇所)	340	85	590	70	120	

※1:2017.1.16の℃以上の領域の通水面積 中粒砂岩、埋戻土、互層部に設置された測温点を対象(構造物内と地下水位以浅を除く) 互層部の砂岩と泥岩の割合 4:6 ※2:2017.1.6~2017.1.19の地下水収支より

図-3 一部閉合(II)の実施期間における残りの未凍結箇所からの地下水流入量の想定

(ウ)一部閉合(II)の実施期間における建屋周辺の地下水位変動の想定

一部閉合(Ⅱ)の実施期間に山側からの地下水流入量が 120m³/日に減少した場合で も、サブドレン稼働と建屋への地下水流入が継続するための地下水が建屋周辺へ供給 されていることを評価し、建屋内外水位の逆転が生じない運用が可能であることを確 認する。なお、閉合開始後の地下水位変動の想定にあたっては、以下の点に留意した。

- ・今後,建屋滞留水位を T.P.+0.43 まで徐々に低下するとともに,サブドレンの設定 水位(L値)を建屋水位低下に伴い建屋水位+1m とすると仮定した。
- ・建屋への地下水流入量(B₁)は、建屋内外水位差の減少に伴い減少するものとした。(図-4)
- 4 m盤への地下水の移動量(C₁)は、陸側遮水壁(海側)の内外水位差の減少に
 伴い減少するものとした。(図-5)
- ・閉合後の降雨涵養量(E11)は、過去(1977~2015年)の12か月間累積最小降 雨を用いた。

図-4 建屋内外水位差と建屋流入量の関係(期間:2016.1~2017.1)

図-5 海側注水井水位-地下水ドレン水位と4m盤流入量の関係 (期間:2016.7~2017.1)

その結果,一部閉合(Ⅱ)の効果が現れ,未凍結箇所からの流入量が120m³/日となった後においても、サブドレンの稼働は継続し,また建屋内外水位差は1m以上確保されると想定される(図-6)。

図-6 一部閉合(Ⅱ)の実施期間における建屋周辺の地下水位変動の想定

(2) 評価結果

北側,西側②,西側④,南側閉合後に,山側未凍結箇所からの地下水流入量が減少し た場合の地下水収支を確認した結果,サブドレンの稼働は継続し,建屋周辺の地下水位 はサブドレン設定水位(L値)よりも高い位置で推移すると想定されることから,建屋 内外水位の逆転は生じないと評価した。

上記より,未凍結箇所のうち北側,西側②,西側④,南側を閉合しても,地下水位管 理上,問題とはならないとものと考えられる。

以上

注水・散水用水の確保

1. 概要

早急な対応が必要と判断された場合や,降雨が少ない時期が継続する等の場合における, 地下水涵養の方策として注水・散水の実施にあたり,用水の確保について示す。

2. 用水の確保

注水・散水に使用可能な用水として,坂下ダムから所内へ導水している原水と,原水を水 源とする浄水設備(処理能力:600m³/日程度)より給水される浄水がある。浄水は,凍結プ ラントの冷却補給水に使用しており,残りを注水と散水に使用する。

原水の水源である坂下ダムにおける当社の最大使用可能量は 11,000m³/日である。また, 浄水設備への給水とは別に,坂下ダムから所内までの導水管から分岐して,水処理設備付近 へ原水を直接導水していることから,仮に浄水から注水(最大量約 360m³/日)した場合にお いても,原水の直接供給分を含めると,約 240m³/日*以上は散水等へ利用可能であり,注水 や散水の用水は確保されている。

※降水量換算で約 3.8mm/日程度(240m³/64,000m²≒0.0038m)

図 水供給設備および供給ルート概要

以上

陸側遮水壁(山側)の完全閉合の評価

1. 概要

第一段階フェーズ 2 および第二段階で凍結対象外としていた未凍結箇所である西側③の 閉合後においても、建屋内外水位の逆転は生じないことについて評価した。

なお,第三段階(完全閉合)の実施期間における地下水流況についても,本評価方法を用いて建屋内外水位の逆転が起こらないことを確認していく。

図-1 第三段階(完全閉合)における閉合実施箇所

2. 第三段階(完全閉合)の評価

山側からの地下水は「凍結に至っていない箇所^{*1}」と「未凍結箇所(西側③)」から流 入している。評価にあたっては,第三段階(完全閉合)の実施期間に「凍結に至っていな い箇所」および「未凍結箇所(西側③)」が全て凍結し,地下水流入が無くなる状態を想 定しても,建屋内外水位の逆転は起こらないことを確認する。

※1:第一段階フェーズ2および第二段階一部閉合(I), (II)で凍結対象としていた範囲で凍結に至っていない 箇所

(1)第三段階(完全閉合)の実施期間における建屋周辺の地下水位変動の想定
 第三段階(完全閉合)の実施期間における建屋周辺の地下水位変動について、下記の
 通り想定される。

(ア) 閉合前の山側からの地下水流入量の想定

第三段階(完全閉合)実施前の山側からの地下水流入量を,第二段階一部閉合(II) 開始後の期間(2017.5.1~5.31)の実測値に基づいて評価した。その結果,山側からの 流入量は580m³/日程度と想定される(図-2)。

※ 当該期間において、深部透水層(粗粒,細粒砂岩)の水頭が互層部と同程度で、上部の中粒砂岩層よりも高いことから、 深部地盤等への移動量D₁をゼロとする。

図-2 第三段階(完全閉合)実施前の山側からの地下水流入量の想定

- (イ)第三段階(完全閉合)の実施期間における山側からの地下水流入量の想定 山側からの地下水流入量には、(a)凍結に至っていない箇所(第一段階,第二段階一 部閉合(I),(II))と、(b)1箇所の計画的な未凍結箇所からの流入がある。
 (a)からの流入は凍結が進めばなくなること、閉合後には(b)からの流入量もなくなることから、山側からの地下水流入量は0m³/日となると仮定した。
- (ウ) 第三段階(完全閉合)の実施期間における建屋周辺の地下水位変動の想定

第三段階(完全閉合)の実施期間における山側からの地下水流入量が 0m³/日となった 場合でも、サブドレン稼働と建屋への地下水流入が継続することを評価し、建屋内外水 位の逆転が生じない運用が可能であることを確認する。なお、閉合開始後の地下水位変 動の想定にあたっては、以下の点に留意した。

- ・今後, 建屋滞留水位を T. P. -0.036m まで徐々に低下するとともに, サブドレンの設 定水位(L値)を建屋水位低下に伴い建屋水位+0.9m とすると仮定した。
- ・建屋への地下水流入量(B)は,建屋内外水位差の減少に伴い減少するものとした。 (図-3)
- ・4m盤への地下水の移動量(C)は、陸側遮水壁(海側)の内外水位差の減少に伴い減少するものとした。(図-4)
- ・閉合後の降雨涵養量(E1)は,過去(1977~2015年)の24か月間累積最小降雨 を用いた。

図-3 建屋内外水位差と建屋流入量の関係(期間:2016.1~2017.5)

Ⅱ-2-6-添15-129

その結果,完全閉合の効果が現れ,山側からの地下水流入量が 0m³/日となった後においても、サブドレンの稼働は継続し、また建屋内外水位差は 0.9m 以上確保されると想定される(図-5)。

図-5 第三段階(完全閉合)の実施期間における建屋周辺の地下水位変動の想定

(2) 評価結果

第三段階(完全閉合)後に、山側からの地下水流入量が 0m³/日となった場合の地下水 収支を確認した結果、サブドレンの稼働は継続し、建屋周辺の地下水位はサブドレン設 定水位(L値)よりも高い位置で推移すると想定されることから、建屋内外水位の逆転 は生じないと評価した。

上記より,未凍結箇所(西側③)を閉合しても,地下水位管理上,問題とはならない とものと考えられる。

以上