柏崎刈羽原子力発電所6号機 安全上重要な機器·配管系の耐震安全性評価

平成 21 年 3月 31 日

東京電力株式会社

【目次】

7.1. 評価方針	7-1
7.1.1 評価対象	7-1
7.1.2 耐震安全性評価の概要	7-3
7.1.3 構造強度の評価方法	7-5
7.1.3.1 応答倍率法による評価	7-5
7.1.3.2 詳細評価 (スペクトルモーダル解析法等による評価)	7-6
7.1.4 動的機能維持の評価方法	7-9
7.1.4.1 機能確認済加速度との比較	7-9
7.1.4.2 詳細評価	7-9
7.2. 地震応答解析	7-11
7.2.1 地震応答解析モデル	7-11
7.2.2 大型機器の地震応答解析	7-11
7.2.2.1 大型機器解析モデル	7-12
7.2.2.2 炉内構造物解析モデル	7-12
7.2.2.3 固有值解析結果	7-17
7.2.2.4 地震応答解析結果	7-19
7.2.3 床応答スペクトル	7-26
7.2.3.1 水平方向	7-26
7.2.3.2 鉛直方向	7-26
7.2.4 減衰定数	7-31
7.3. 荷重の組み合わせ	7-32
7.3.1 運転状態と地震動との組み合わせ	7-32
7.4. 評価基準	7-36
7.4.1 構造強度の評価基準	7-36
7.4.2 動的機能維持の評価基準	7-37

目 7-2

7.5. 評	価結果	7-39
7.5.1	構造強度の評価結果	7-39
7.5.2	動的機能維持の評価結果	7-49
7.6. 参	考文献	7-53

【添付】

- 添付 7.1 配管系の減衰定数について
- 添付 7.2 燃料取替機および原子炉建屋クレーンの減衰定数について
- 添付 7.3 使用済燃料貯蔵ラックの減衰定数について
- 添付 7.4 原子炉冷却材再循環ポンプの減衰定数について
- 添付 7.5 機器・配管系の構造強度の評価基準値について
- 添付 7.6 動的機器の地震時機能確認済加速度について
- 添付 7.7 設計時の制御棒挿入試験について

【参考資料】

- 参考資料 7.1 使用済燃料プールスロッシングに対する影響検討について
- 参考資料 7.2 大型機器解析モデルおよび炉内構造物解析モデルによる 地震応答解析結果(詳細)
- 参考資料 7.3 構造強度の評価例について

7. 安全上重要な機器・配管系の耐震安全性評価

7.1. 評価方針

7.1.1. 評価対象

「原子炉の緊急停止のために急激に負の反応度を付加する」,「原子炉停止後, または原子炉冷却材圧力バウンダリ破損事故後,炉心から崩壊熱を除去する」, 「原子炉冷却材圧力バウンダリ破損事故の際に,圧力障壁となり放射性物質の 放散を直接防ぐ」等の安全機能が保持されることを確認するため, S クラス の設備について構造強度評価を実施するとともに,ポンプ,弁および制御棒等 の地震時の動的機能が要求される動的機能については動的機能維持評価を実 施する。評価に当たり,同一仕様・同一設計の複数の設備が存在する場合は, 代表設備について評価する。また,配管系のように類似設備が多数存在する場 合は,仕様,使用条件等の観点から耐震安全評価上適切にグループ化し,その 代表設備について評価する。

Bクラスおよび C クラス設備のうち,その破損が S クラス設備に波及的破損 を生じさせるおそれのある設備については,波及的影響評価を実施する。

S クラスの設備は具体的には,第 7.1.1-1 表に示す主要設備に属するポンプ, タービン,容器,熱交換器等の機器,配管系,および補助設備である原子炉補 機冷却水系,原子炉補機冷却海水系,電気計装設備等,ならびにそれらの支持 構造物である。

BクラスおよびCクラス設備のうち,燃料取替機,原子炉建屋クレーンおよ び原子炉遮へい壁は,使用目的上,Sクラス設備の上部を通過する等,その破 損がSクラス設備に波及的破損を生じさせる可能性があるため評価を実施す る。

$$7 - 1$$

	S クラスの定義	主要設備
i	原子炉冷却材圧力バウンダリを構成す る機器・配管系	 ・原子炉圧力容器 ・原子炉冷却材圧力バウンダリ に属する系統^{*1}
ii	使用済燃料を貯蔵するための施設	• 使用済燃料貯蔵設備
iii	原子炉の緊急停止のために急激に負の 反応度を付加するための施設,および原 子炉の停止状態を維持するための施設	 ・制御棒 ・制御棒駆動機構 ・制御棒駆動系
iv	原子炉停止後,炉心から崩壊熱を除去す るための施設	 ・原子炉隔離時冷却系 ・高圧炉心注水系 ・残留熱除去系 ・サプレッションチェンバ
V	原子炉冷却材圧力バウンダリ破損事故 後,炉心から崩壊熱を除去するための施 設	 ・高圧炉心注水系 ・残留熱除去系 ・自動減圧系 ・サプレッションチェンバ
vi	原子炉冷却材圧力バウンダリ破損事故 の際に,圧力障壁となり放射性物質の放 散を直接防ぐための施設	 ・ 原子炉格納容器 ・ 原子炉格納容器バウンダリに 属する系統^{*2}
vii	放射性物質の放出を伴うような事故の際に,その外部放散を抑制するための施設で上記vi以外の施設	 ・ 残留熱除去系 ・ 可燃性ガス濃度制御系 ・ 非常用ガス処理系 ・ サプレッションチェンバ

第7.1.1-1表 柏崎刈羽6号機 Sクラス主要設備一覧

※1 主蒸気系,給水系,残留熱除去系,ほう酸水注入系,原子炉冷却材浄化系,原子 炉隔離時冷却系,高圧炉心注水系

※2 主蒸気系,給水系,残留熱除去系,制御棒駆動系,ほう酸水注入系,原子炉冷却 材浄化系,原子炉隔離時冷却系,高圧炉心注水系,不活性ガス系,原子炉補機冷 却水系,可燃性ガス濃度制御系,放射性ドレン移送系

7.1.2 耐震安全性評価の概要

地震時の安全性評価は、基準地震動 Ss を用いた動的解析によることを基本 とし、機器・配管系の応答性状を適切に表現できるモデルを設定した上で応答 解析を行い、その結果求められた応力値、または応答加速度値をもとに評価す る。基準値震動 Ss を第 7.1.2-1 表に示す。

原子炉建屋内の大型機器である原子炉格納容器(以下「RCCV」という。), 原子炉圧力容器(以下「RPV」という。),および炉内構造物等の安全性評価に 当たっては,水平地震動と鉛直地震動による建屋・機器連成応答解析を行い, それぞれの応答結果を用いる。また,比較的小型の機器等の安全性評価に当た っては,当該設備の据付床の水平方向および鉛直方向それぞれの床応答を用い た応答解析等を行う。なお、水平方向、鉛直方向それぞれの応答結果を二乗和 平方根(SRSS)法等により組み合わせる場合もある。⁽¹⁾

構造強度評価に際しては、当該設備の耐震安全機能を確認する観点から耐震 構造上重要な評価箇所を、既往評価の評価箇所を参考に選定する。本報告書に は、当該設備の評価箇所のうち、発生値が評価基準値に対して比較的近い箇所 を記載している。また、選定した評価箇所に対して、基準地震動 Ss による地 震慣性力と、設計時の地震以外の荷重との組合せによる1次応力評価を基本と して構造強度評価を行う。

動的機能維持評価に際しては、地震時に動的機能が要求される動的機器を選 定する。また、選定した動的機器の設置位置における応答加速度と機能確認済 加速度との比較を基本として動的機能維持評価を行う。

7 - 3

地震動	概要	
Ss-1	F-B断層による地震 (応答スペクトル法)	
Ss-2	F – B 断層による地震 (断層モデル)	
Ss-3	長岡平野西縁断層帯による地震 (応答スペクトル法, 断層傾斜角 50°/応力降下量 1.5 倍および断 層傾斜角 35°/応力降下量 1.0 倍の 2 つのケースを包絡)	
Ss-4	長岡平野西縁断層帯による地震 (断層モデル,断層傾斜角 50°/応力降下量 1.5 倍)	
Ss-5	長岡平野西縁断層帯による地震 (断層モデル,断層傾斜角 35°/応力降下量 1.0 倍)	

第 7.1.2-1 表 基準地震動 Ss

7.1.3 構造強度の評価方法

構造強度に関する評価は、以下に示す応答倍率法による評価、または詳細評価(スペクトルモーダル解析法等)により実施する。構造強度の評価手順を第 7.1.3-1 図に示す。

7.1.3.1 応答倍率法による評価

大型機器である RCCV, RPV, および炉内構造物等については, 基準地震動 Ss による地震力(加速度, せん断力, モーメント, 軸力)と設計時における 地震力との比を求め, 設計時の応力に乗じることにより, 発生値を算定し, 評価基準値と比較する。

また,比較的小型の機器については,剛構造の場合は基準地震動 Ss による 床の最大応答加速度と設計時における床の最大応答加速度の比,剛構造でな い場合はそれぞれの床応答スペクトルの比を求め,設計時の応力に乗じるこ とにより,発生値を算定し,評価基準値と比較する。

7.1.3.2 詳細評価 (スペクトルモーダル解析法等による評価)

配管系は、スペクトルモーダル解析法等による詳細評価を行い、発生値を算 定し評価基準値と比較する。

応答倍率法による評価の結果,詳細評価が必要と判断された設備は,設計時の評価方法を参考に以下のa.~c.に示す解析法から選択して評価を行い, 発生値を算定し評価基準値と比較する。

また,設備によっては応答倍率法による評価によらず,以下のa.~c.に 示す解析法から選択して評価を行い,発生値を算定し評価基準値と比較する 場合がある。

a. スペクトルモーダル解析法

b. 時刻歷応答解析法

c. 定式化された評価式を用いた解析法(床置き機器等)

なお、上記の詳細評価は、工事計画認可申請時と同等の評価手法である。

- ※1 次ページに詳細説明を記載。
- ※2 応答倍率法による評価によらず,詳細評価する場合がある。

第7.1.3-1図 構造強度の評価手順

7 - 7

※1 応答倍率法による評価

設計時の耐震計算書等の既往評価条件と基準地震動 Ss の評価条件の比率(応答比)を算定して、その応答比を既往評価値に乗じることにより、基準地震動 Ss に対する評価対象設備の発生値が、評価基準値を上回らないことを確認する。

- ※応答比

A1:応答荷重比を用いた評価

設備の発生値を算定するにあたり、せん断力、モーメント、軸力を用いる機器は、 基準地震動 Ss による地震力と既往評価の地震力との比を応答比とする。

A2:応答加速度比を用いた評価

設備の発生値を算定するにあたり、水平加速度,鉛直加速度を用いる機器は基準 地震動 Ss による床応答スペクトル等と,既往評価で用いた床応答スペクトル等から 水平加速度と鉛直加速度の比をそれぞれ求め、大きい方の値を応答比とする。

応答比 = MAX
$$\left(\frac{C_H}{C_{H0}}, \frac{C_V}{C_{V0}}\right)$$

$$C_{H0}$$
: 既往評価による水平加速度
 C_{H} : 基準地震動Ssによる水平加速度
 C_{V0} : 既往評価による鉛直加速度
 C_{V} : 基準地震動Ssによる鉛直加速度

7.1.4 動的機能維持の評価方法

動的機能維持に関する評価は、以下に示す機能確認済加速度との比較、または詳細評価により実施する。動的機能維持の評価手順を第7.1.4-1図に示す。

7.1.4.1 機能確認済加速度との比較

基準地震動 Ss による評価対象機器の応答加速度を求め、その加速度が機能 確認済加速度以下であることを確認する。なお、機能確認済加速度とは、立 形ポンプ、横形ポンプおよびポンプ駆動用タービン等、機種ごとに、試験あ るいは解析により、動的機能維持が確認された加速度である。

制御棒の地震時挿入性については,基準地震動 Ss による燃料集合体の相対 変位を求め,その相対変位が,試験により挿入性が確認された相対変位以下 であることを確認する。

7.1.4.2 詳細評価

基準地震動 Ss による応答加速度が,機能確認済加速度を上回る機器については,「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」等を参考に,動的機能維持を確認する上で評価が必要となる項目を抽出し,対象部位ごとの構造強度評価または動的機能維持評価を行い,発生値が評価基準値以下であることを確認する。⁽¹⁾

※1 1次固有周期が 0.05 [秒] 以下(固有振動数が 20 [Hz] 以上)の場合。

第7.1.4-1図 動的機能維持の評価手順

7.2 地震応答解析

7.2.1 地震応答解析モデル

機器・配管系の動的解析のモデルは、その振動特性に応じて、代表的な振動 モードが適切に表現でき、応力評価等に用いる地震荷重を適切に算定できるも のを使用する。また、解析モデルは既往評価で用いられたものの他、有限要素 法等実績がある手法によるモデルを使用する。モデル化に当たって使用する物 性値等については、既往評価で用いられたものの他、施設運用上の管理値や実 測値等を考慮して設定する。

7.2.2 大型機器の地震応答解析

原子炉建屋内の大型機器(RCCV, RPV および炉内構造物等)は、大規模構 造物でしかも建屋から各点で支持されているため、建屋からの各入力をより厳 密に評価することを目的とし、地盤・建屋と連成した解析モデルにより基準地 震動 Ss による地震応答解析を時刻歴応答解析で実施する。

解析は水平方向(NS および EW の両方向)および鉛直方向について実施する。

地震応答解析モデルは,以下に示す大型機器解析モデルと炉内構造物解析モ デルがある。

7.2.2.1 大型機器解析モデル

RCCV, RPV, 原子炉遮へい壁, および原子炉本体の基礎等の地震力を算定 する解析モデルである。

水平方向の解析モデルは、多質点系でモデル化し、それぞれの質点間を曲げ、 せん断剛性を有する無質量のはり、またはばねにより結合する。

鉛直方向の解析モデルは、質点間を軸剛性(圧縮,引張りに対する剛性)を 有するばねにより結合する。⁽¹⁾

原子炉建屋模式図を第 7.2.2.1-1 図に,水平方向の解析モデルを第 7.2.2.1-2 図および第 7.2.2.1-3 図に,鉛直方向の解析モデルを第 7.2.2.1-4 図に示す。

7.2.2.2 炉内構造物解析モデル

RPV 内の気水分離器,燃料集合体,炉心シュラウド,および制御棒案内管 等の地震力を算定する解析モデルである。

モデル化の考え方は、大型機器解析モデルと同じである。

炉内構造物模式図を第 7.2.2.2-1 図に,水平方向の解析モデルを第 7.2.2.2-2 図および第 7.2.2.2-3 図に,鉛直方向の解析モデルを第 7.2.2.2-4 図に示す。

第 7.2.2.1-2 図 大型機器水平方向解析モデル(NS 方向)

第7.2.2.1-3 図 大型機器水平方向解析モデル(EW 方向)

第 7.2.2.1-4 図 大型機器鉛直方向解析モデル

第 7.2.2.2-1 図 炉内構造物模式図

第7.2.2.2-2 図 炉内構造物水平方向解析モデル(NS 方向)

第7.2.2.2-3 図 炉内構造物水平方向解析モデル(EW方向)

第7.2.2.4 図 炉内構造物鉛直方向解析モデル

7.2.2.3 固有值解析結果

炉内構造物解析モデルによる固有値解析結果を以下に示す。

(1) 水平方向(NS方向)

水平方向(NS方向)の固有周期を第7.2.2.3-1表に示す。

次数	固有周期(秒)	卓越部位	
1	0.434	原子炉建屋1次	
2	0.223	燃料集合体	
3	0.190	原子炉建屋 2 次	
4	0.131	炉心シュラウド	
5	0.097	原子炉冷却材再循環ポンプ	
8	0.084	制御棒駆動機構ハウジング	
11	0.066	原子炉圧力容器	
12	0.059	制御棒案内管	

第7.2.2.3-1 表 固有周期(水平方向(NS方向))

(2) 水平方向(EW方向)

水平方向(EW方向)の固有周期を第7.2.2.3-2表に示す。

次数	固有周期(秒)	卓越部位	
1	0.425	原子炉建屋1次	
2	0.223	燃料集合体	
3	0.189	原子炉建屋 2 次	
4	0.131	炉心シュラウド	
5	0.097	原子炉冷却材再循環ポンプ	
7	0.084	制御棒駆動機構ハウジング	
11	0.067	原子炉圧力容器	
12	0.059	制御棒案内管	

第7.2.2.3-2表 固有周期(水平方向(EW方向))

(3) 鉛直方向

鉛直方向の固有周期を第7.2.2.3-3表に示す。

次数	固有周期(秒)	卓越部位
1	0.276	屋根トラス
2	0.256	原子炉建屋
4	0.052	原子炉遮へい壁および 原子炉本体基礎

第7.2.2.3-3表 固有周期(鉛直方向)

7.2.2.4 地震応答解析結果

大型機器解析モデルおよび炉内構造物解析モデルによる地震応答解析結果 を以下に示す。

なお,評価に当たっては,基準地震動 Ss による地震力を包絡させた値を用いる。

(1) 大型機器解析モデルによる解析結果

基準地震動 Ss による RPV および原子炉本体基礎の水平方向(NS 方向および EW 方向)の地震応答解析結果を第 7.2.2.4-1 図~第 7.2.2.4-12 図に示す。

また,鉛直方向の地震応答解析結果を第7.2.2.4-13 図~第7.2.2.4-16 図に 示す。

(2) 炉内構造物解析モデルによる解析結果

基準地震動 Ss による炉心シュラウドの水平方向(NS 方向および EW 方向)の地震応答解析結果を第 7.2.2.4-17 図~第 7.2.2.4-22 図に示す。

また,鉛直方向の地震応答解析結果を第 7.2.2.4-23 図および第 7.2.2.4-24 図に示す。

最大応答せん断力(NS 方向)

第7.2.2.4-8 図 原子炉遮へい壁および原子炉本体基礎 水平方向最大応答加速度(EW 方向)

第7.2.2.4-9 図 原子炉遮へい壁および原子炉本体基礎 水平方向最大応答せん断力(NS 方向)

第7.2.2.4-10 図 原子炉遮へい壁および原子炉本体基礎 水平方向最大応答せん断力(EW方向)

第7.2.2.4-11 図 原子炉遮へい壁および原子炉本体基礎 水平方向最大応答モーメント(NS 方向)

第7.2.2.4-12 図 原子炉遮へい壁および原子炉本体基礎 水平方向最大応答モーメント(EW方向)

第7.2.2.4-16 図 原子炉遮へい壁および原子炉本体基礎 鉛直方向最大応答軸力

第7.2.2.4-18 図 炉心シュラウド下部胴水平方向 最大応答加速度(EW 方向)

第7.2.2.4-17図 炉心シュラウド下部胴水平方向 最大応答加速度(NS 方向)

最大応答せん断力(NS 方向)

第7.2.2.4-21 図 炉心シュラウド下部胴水平方向 最大応答モーメント (NS 方向)

最大応答軸力

7.2.3 床応答スペクトル

床応答スペクトルは,建物・構築物,大型機器の地震応答解析で得られた床 応答時刻歴を用いて水平方向および鉛直方向について算定する。

床応答スペクトルの算定に当たっては,地盤や建屋の物性等のばらつきが床 応答に与える影響を考慮し,「原子力発電所耐震設計技術指針 JEAG4601-1987」等を参考に周期軸方向に±10%拡幅する。⁽¹⁾

また,配管系等の評価に当たっては,基準地震動 Ss による全ての床応答スペクトルを重ね合わせた包絡スペクトルにより評価を行う。

7.2.3.1 水平方向

基準地震動 Ss による水平方向の床応答スペクトルの例を第7.2.3.1-1 図~第7.2.3.1-2 図に示す。

7.2.3.2 鉛直方向

基準地震動 Ss による鉛直方向の床応答スペクトルの例を第 7.2.3.2-1 図~第 7.2.3.2-2 図に示す。

第7.2.3.1-1 図 原子炉建屋水平方向床応答スペクトル (NS/EW 包絡)

第7.2.3.1-2 図 原子炉遮へい壁および原子炉本体基礎水平方向床応答スペクトル (NS/EW 包絡)

第7.2.3.2-1 図 原子炉建屋鉛直方向床応答スペクトル

第7.2.3.2-2 図 原子炉遮へい壁および原子炉本体基礎鉛直方向床応答スペクトル

7.2.4 減衰定数

機器・配管系の地震応答解析に用いる減衰定数を第7.2.4-1表に示す。

水平方向の減衰定数は、「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」に規定された値を基本とし、原子炉冷却材再循環ポンプ、配管系、使 用済燃料貯蔵ラック、燃料取替機、および原子炉建屋クレーンについては、試 験等で妥当性が確認された値も評価に用いる。(添付 7.1~7.4 参照)

鉛直方向の減衰定数は、基本的に水平方向と同様とするが、電気盤や燃料集 合体等鉛直地震動に対し剛体挙動する設備は1%とする。

→右弐/曲	減衰定数(%)		
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	水平方向	鉛直方向	
溶接構造物	1.0	1.0	
ボルトおよびリベット構造物	2.0	2.0	
ポンプ・ファン等の機械装置	1.0	1.0	
原子炉冷却材再循環ポンプ	3.0	1.0	
電気盤	4.0	1.0	
燃料集合体	7.0	1.0	
制御棒駆動装置	3.5	1.0	
配管系	0.5~3.0	0.5~3.0	
使用済燃料貯蔵ラック	7.0	1.0	
燃料取替機	2.0	1.5~2.0	
原子炉建屋クレーン	2.0	2.0	

第7.2.4-1 表 機器・配管系の減衰定数

7.3. 荷重の組み合わせ

7.3.1 運転状態と地震動との組み合わせ

通常運転時に生じる荷重および運転時の異常な過渡変化時に生じる荷重と 基準地震動 Ss による地震力を組み合わせて評価する。

事故時に生じる荷重と組み合わせる地震動は,事故事象の発生確率と継続時間および基準地震動 Ss の年超過確率を踏まえ,両者が同時に発生する可能性が極めて小さい場合,具体的には「原子力発電所耐震設計技術指針 JEAG4601 -1984」に基づき 10⁻⁷/年以下であれば,基準地震動 Ss ではなく弾性設計用地 震動 Sd とする。(第7.3.1-1 図参照)

柏崎刈羽原子力発電所 (5~7 号機) における基準地震動 Ss の年超過確率は, 第 7.3.1-2 図に示すとおり, 試算値において概ね 10⁻⁴/年から 10⁻⁵/年であるこ とより, 事故 (「原子力発電所耐震設計技術指針 JEAG4601-1984」に基づき, 発生確率は 10⁻⁴/年以下を想定) の同時発生を想定しても 10⁻⁷/年を下回る ため, 事故時に生じる荷重と組み合わせる地震動は, 弾性設計用地震動 Sd と する。

弾性設計用地震動 Sd は,基準地震動 Ss による安全機能保持をより確実なものとする観点から,第7.3.1-3 図に示すとおり基準地震動 Ss を 0.5 倍した地震動とする。

なお,弾性設計用地震動 Sd の年超過確率は,第7.3.1-3 図に示すとおり試算 値において概ね 10⁻³/年から 10⁻⁴/年である。
発	\$ 4	も 確 幸	2		1	10-1	10-2	10 ⁻³	10	}_4	10-	10	⁶ 1	0-7	10-8	10 ⁻⁹
運転	s状態 (態の発生確 1 / 年)	軍率	I		П		Ш				IV			-	
基準	地震 (動の発生研 1 / 年)	霍率					Sı		S2						
基	従	属事	象				,S	1 従属	5.							
準地震	独	1分以	内												S_1	+ 11
動 Sı と	立	1時間以	内									÷	S ₁ +	Π		-→ -Ⅱ
の組合	事	1日以	内								~	$S_1 + II$	S ₁	+ II	•	Ş₁+IV
t t	象	1年以	内				~	S ₁ + I	I 		→ <u>(</u>	S₁+Ⅲ ←	S		V	
基	従	属事	象						S	。従	≝					
準地震	独	1分以	内				(S ₂	,+Ⅱは	10	°以	ፑと	なる)				
動 S₂ と	立	1時間以	内									,		•	S ₂ +	I S₂+Ⅲ ←
の組合	事	1日以	内									÷	S ₂ -	÷Π	S ₂ +	Ш
世	象	1年以	内						¢	S ₂ -	+ II ←	S	→ 2+∏		S ₂ +	IV
注:((1) §	発生確率から ←── 組合も ←── 発生研	ら見て せが必	要な ま 10 ⁻⁷ 」	。の。 以下 2	となり組	合せか	「不要と	なる	60	•					

- (2) 基準地震動 S₂の発生確率は 10° ~ 10° / サイト・年と推定されるが、ここでは 5 × 10° ~ 10⁻⁵ / サイト・年を用いた。
- (3) 表に示す発生確率は現在の知見によるものである。
- ※ 図中の基準地震動 S₁および基準地震動 S₂は、それぞれ弾性設計用地震動 Sd および基準地震動 Ss と読み替える。

第7.3.1-1 図 運転状態と地震動との組合せの確率的評価 (原子力発電所耐震設計技術指針 JEAG4601-1984 P.38 より引用)

第7.3.1-2図 基準地震動 Ss の年超過確率(5~7 号機)

第7.3.1-3 図 弾性設計用地震動 Sd の年超過確率(5~7 号機)

7.4. 評価基準

7.4.1 構造強度の評価基準

構造強度評価の評価基準値は、「原子力発電所耐震設計技術指針 JEAG4601 -補・1984、JEAG4601-1987、JEAG4601-1991 追補版」および「発電用原子 力設備規格 設計・建設規格 JSME S NC1-2005」(以下「設計・建設規 格」という。)に準拠するとともに、ほかの規格基準で規定されている値およ び実験等で妥当性が確認されている値等も用いる。

機器・配管系の評価基準値は,材料の過度な変形や破損に対して裕度をもった値に設定されている。機器・配管系の評価基準値を添付 7.5 に示す。

7.4.2 動的機能維持の評価基準

機能確認済加速度は、「原子力発電所耐震設計技術指針 JEAG4601-1991 追 補版」に準拠するとともに、試験等で妥当性が確認された値も用いる。(添付 7.6)

機能確認済加速度を第7.4.2-1表に示す。

詳細評価における構造強度評価の評価基準値は,「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」等による。また,部位ごとの動的機能維持の評価基準値は,個別に試験等で妥当性が確認されている値を用いる。

		加速度	機能確認	済加速度	
種別	機種	加速度	水平方向	鉛直方向	
		が用いているの単化	(G^{*1})	(G^{*1})	
	ピットバレル形ポンプ	コラム			
立形ポンプ	立形斜流ポンプ	先端部	10.0	1.0	
	一 立 部 出 の 古 墨 歌 ポ い プ	ケーシング			
	立形単枝床直形ホンフ	下端部			
	 構形単段遠心式ポンプ		3.2		
構形ポンプ		 	(軸直角方向)	1.0	
	構形多段這心式ポンプ		1.4	1.0	
	预///多校速心·K/// /		(軸方向)		
ポンプ駆動用	RCICタービン	重心位置	2.4	1.0	
タービン			2.7	1.0	
	横形ころがり軸受電動機		4.7		
雪動機	横形すべり軸受電動機	 盐 空 如	2.6	1.0	
电却版	立形ころがり軸受電動機	11日 × 山井	2.5	1.0	
	立形すべり軸受電動機		2.5		

第7.4.2-1 表 機能確認済加速度(1/3)

 ≈ 1 G=9.80665(m/s²)

		加油库	機能確認	済加速度
種別	機種	加速度	水平方向	鉛直方向
		ユービュロロー	(G^{*1})	(G^{*1})
	遠心直結刑ファン	軸受部および	23	
ファン		メカニカルシールケーシンク゛	2.5	1.0
///	遠心直動型ファン	 盐 空 如	2.6	1.0
	軸流式ファン	言文早	2.4	
非母田		機関	1 1	
作市 市 ディーゼル	高速形	重心位置	1.1	1.0
	ディーゼル機関	ガバナ	1 0	1.0
元电极		取付位置	1.0	
往復動式	構形 2 連往復動式ポンプ	重心位置	1.6	1.0
ポンプ	傾形う単征復動氏ホンク	里心心间	1.0	1.0
	一般弁			
	(グローブ弁,ゲート弁,		6.0	6.0
并	バタフライ弁, 逆止弁)			
(一般开およ	主蒸気隔離弁	駆動部	10.0	6.2
い特殊开)	主蒸気逃がし安全弁		9.6	6.1
	制御棒駆動系スクラム弁		6.0	6.0

第7.4.2-1 表 機能確認済加速度(2/3)

 $1 G=9.80665 (m/s^2)$

第 7.4.2-1 表 機能確認済加速度 (3/3)

種別	機能確認済相対変位(mm)
制御棒挿入性	40.0^{*1}

※1 確認済相対変位とは、加振時の挿入性試験により、規定時間内に制御棒が挿入さ れたことが確認された値である。

7.5. 評価結果

7.5.1 構造強度の評価結果

選定した重要な評価箇所に対する構造強度の評価結果を第7.5.1-1表に示す。 機器・配管系の発生値は、いずれも評価基準値以下であることを確認した。 なお、耐震強化工事を実施した設備については、工事終了後の状況を反映し て評価を実施した。

		評価対象設備	評価 部位	応力 分類	発生値 MPa	評価 基準値 MPa	評価 方法 ※1	備考
		原子炉圧力容器	胴板	 一次 一般膜 応力 	179	320	В	
	原	制御棒駆動機構 ハウジング貫通孔	スタブ チューブ	軸圧縮 応力	69	124	В	
	子炉圧力宮	原子炉冷却材再循環 ポンプ貫通孔(N1)	ケーシング側 付け根	 一次一般 膜+一次 曲げ応力 	249	442	В	
	容器	主蒸気ノズル(N3)	ノス゛ル セーフエント゛	 一次 一般膜 応力 	94	320	В	
		給水ノズル(N4)	ノス゛ル セーフエント゛	一次一般膜+一次曲げ応力	143	391	В	
	支持構造物	原子炉圧力容器スタビ ライザブラケット	ブラケット 付け根	一次一般膜+一次曲げ応力	262	490	В	
		支持スカート	スカート	一次一般膜+一次曲げ応力	71	418	В	
原子恒		原子炉圧力容器 基礎ボルト	基礎ボルト	引張 応力	148	499	В	
本体	付属構造物原子炉圧力容	原子炉圧力容器 スタビライザ	ロッド	引張 応力	236	513	В	
		制御棒駆動機構ハウジ ングレストレントビー ム	プレート	曲げ 応力	86	211	В	
	初谷器	原子炉冷却材再循環ポ ンプモータケーシング	ケーシング	軸圧縮 応力	135	207	В	
		蒸気乾燥器	耐震用 ブロック せん断面 A	平均せん 断応力	26	242	В	
	后	シュラウドヘッド	鏡板	一次一般膜+一次曲げ応力	103	222	В	
	~ 内構造物	気水分離器	スタンド パイプ	一次一般膜+一次曲げ応力	111	205	В	
	עיר	給水スパージャ	ヘッダ	一次一般膜+一次曲げ応力	27	342	В	
		高圧炉心注水 スパージャ	ヘッダ	 一次一般 膜+一次 曲げ応力 	40	342	В	

第 7.5.1-1 表 構造強度評価結果 (1/9)

		評価対象設備	評価 部位	応力 分類	発生値 MPa	評価 基準値 MPa	評価 方法 ※1	備考
		低圧注水スパージャ	ヘッダ	一次一般 膜+一次 曲げ応力	23	342	В	
	》内構造物 炉心支持構造物	高圧炉心注水系配管 (原子炉圧力容器内部)	パイプ	一次一般膜+一次曲げ応力	26	342	В	
		中性子束計測案内管	中性子束計 測案内管	一次一般膜+一次曲げ応力	17	222	В	
		炉心シュラウド	下部胴	一次一般 膜応力	24	205	В	
原子		シュラウドサポート	レグ	軸圧縮 応力	170	260	В	
炉本体		上部格子板	グリッド プレート	一次一般 膜+一次 曲げ応力	37	342	В	
		炉心支持板	支持板	一次一般 膜+一次 曲げ応力	69	342	В	
-		制御棒案内管	下部 溶接部	一次一般膜応力	8	148	В	
	原子炉	円筒部	縦リブ	組合せ 応力度	384	427	В	
	礎 本 の	アンカボルト	アンカ ボルト	引抜力	3331	5947	В	単位:kN/4.5°

第 7.5.1-1 表 構造強度評価結果 (2/9)

		評価対象設備	評価 部位	応力 分類	発生値 MPa	評価 基準値 MPa	評価 方法 ※1	備考
	駆動 新 御 棒	水圧制御ユニット	フレーム	組合せ 応力	40	276	A2	
	ほう	ほう酸水注入系 ポンプ	ポンプ取付 ボルト	せん断 応力	48	146	A2	
	八酸 水	ほう酸水注入系 貯蔵タンク	基礎ボルト	引張 応力	72	207	В	
	核計測	起動領域モニタ ドライチューブ	パイプ	一次一般膜+一次曲げ応力	148	427	В	
計測制御	侧装置	局部出力領域モニタ 検出器集合体	LPRM 検出 器集合体 カバーチューブ	一次一般膜+一次曲げ応力	123	254	В	
系統設備	放射線管理用 1	燃料取替エリア 排気放射線モニタ	検出器 取付ボルト	引張 応力	8	207	A2	
		ベンチ形制御盤 (運転監視補助盤 1)	取付ボルト	せん断 応力	12	159	A2	
	盤	垂直自立形制御盤 (安全保護系盤区分 I)	取付ボルト	引張 応力	23	207	A2	
		 原子炉系 (I系) 計装ラック	取付ボルト	引張 応力	7	207	A2	

第7.5.1-1表 構造強度評価結果 (3/9)

		評価対象設備	評価 部位	応力 分類	発生値 MPa	評価 基準値 MPa	評価 方法 ※1	備考
	主蒸	主蒸気逃がし安全弁逃 がし弁機能用アキュム レータ	U-バンド 及びリブ	組合せ応 力	23	203	A2	
	気系	主蒸気逃がし安全弁自 動減圧機能用アキュム レータ	U-バンド 及びリブ	組合せ応 力	187	203	В	
	残留熱	残留熱除去系 熱交換器	胴板	一次 応力	161	408	В	
	除去系	残留熱除去系 ポンプ	原動機台取 付ボルト	引張 応力	38	444	В	
原	原子炉隔離時	原子炉隔離時冷却系 ポンプ	基礎ボルト	引張 応力	78	202	A2	
于炉冷却至		原子炉隔離時冷却系 ポンプ駆動用蒸気 タービン	基礎ボルト	引張 応力	61	202	A2	
^术 統設備	<u></u> 注水系	高圧炉心注水系 ポンプ	原動機取付 ボルト	引張 応力	36	455	В	
	冷却	原子炉補機冷却水系 熱交換器	基礎ボルト	引張 応力	108	190	В	※ 3
	水補務機	原子炉補機冷却水系 ポンプ	原動機取付 ボルト	せん断 応力	13	146	A2	
	冷原	原子炉補機冷却海水系 ポンプ	原動機取付 ボルト	引張 応力	41	475	В	
	一水 茶 機	原子炉補機冷却海水系 ストレーナ	基礎ボルト	せん断 応力	10	159	A2	

第7.5.1-1表 構造強度評価結果 (4/9)

		評価対象設備	評価 部位	応力 分類	発生値	評価 基準値	評価 方法	備考
		原子炉格納容器 ライナ部	ライナ プレート	引張 ひずみ	MPa 0.00175	0.003	B	ひずみ量を評価 事故時荷重との組 合せ ^{*2}
		上部ドライウェル 所員用エアロック	ガセット プレート	せん断 応力	77	158	В	事故時荷重との組 合せ ^{**2}
		下部ドライウェル 所員用エアロック	円筒胴	一次一般 膜応力	50	253	A2	
		下部ドライウェルアクセストンネルスリ ーブおよび鏡板 (所員用エアロック付)	ガセット プレート	せん断 応力	91	158	В	
	原子炉格納容器	原子炉格納容器 スプレイ管	スプレイ管	一次 応力	86	363	В	
原子炉		原子炉格納容器 配管貫通部	フランジプ レート	曲げ応力	70	317	В	
格納施設		原子炉格納容器 電気配線貫通部	ガセットプ レート	せん断 応力	102	158	В	
		サプレッションチェン バ出入口	ガセット プレート	せん断 応力	35	164	В	事故時荷重との組 合せ ^{**2}
		ベント管	リターンラインの 垂直管との 接合部	一次応力	80	254	В	
		ダイヤフラムフロア	放射方向筋	面外 せん断力	1482	2092	В	単位:N/mm
	可燃性ゴ	可燃性ガス濃度制御系 可搬式再結合装置	取付ボルト	せん断応 力	94	350	A2	
	御系濃度	可燃性ガス濃度制御系 可搬式再結合装置ブロワ	ブレース	圧縮応力	14	209	A2	

第 7.5.1-1 表 構造強度評価結果 (5/9)

		評価対象設備	評価 部位	応力 分類	発生値 MPa	評価 基準値 MPa	評価 方法 ※1	備考
放射線管理設備	い装置 へ	原子炉遮へい壁	開口集中部	組合せ 応力	71	235	A1	
	非常	非常用ガス処理系 排風機	基礎ボルト	引張 応力	36	202	В	
	用ガス処	非常用ガス処理系 乾燥装置	基礎ボルト	引張 応力	52	202	В	
	理系	非常用ガス処理系 フィルタ装置	取付ボルト	せん断 応力	146	342	В	
	換気設備	中央制御室送風機	基礎ボルト	引張 応力	84	207	В	
		中央制御室排風機	基礎ボルト	引張 応力	10	207	В	
		中央制御室再循環 送風機	基礎ボルト	引張 応力	19	207	В	
		中央制御室再循環 フィルタ装置	基礎ボルト	せん断 応力	42	159	В	
	燃料	燃料取替機	構造物 フレーム	組合せ 応力	195	276	В	*3
燃料設備	^行 取扱装置	原子炉建屋 クレーン	トロリ浮き 上がり量	-	182	460	В	弾性設計用地震動 Sdによる浮き上が り量評価 単位:mm ※3
	貯 鹿 滅	使用済燃料貯蔵ラック	ラック本体	組合せ 応力	80	205	В	
	設備料	制御棒・破損燃料 貯蔵ラック	ラック本体	組合せ 応力	26	205	В	

第 7.5.1-1 表 構造強度評価結果 (6/9)

	Ī	評価対象設備	評価 部位	応力 分類	発生値 MPa	評価 基準値 MPa	評価 方法 ※1	備考
	非	ディーゼル機関	基礎ボルト	せん断 応力	62	225	A2	
	常用ディー	空気だめ	胴板	一次一般 膜応力	91	262	В	
	ーゼル発電設	燃料ディタンク	スカート	座屈	0.24	1.00	A2	座屈に対する評価 式により,発生値 は評価基準値に対 する比率で示す。
附帯設	備	発電機	機関側軸受 台下部ベース 取付ボルト	引張 応力	101	205	A2	
備	蓄電池	蓄電池	取付ボルト	せん断 応力	29	159	A2	
	电器 および	充電器	取付ボルト	せん断 応力	15	159	A2	
	電源設備	バイタル交流電源設備	取付ボルト	せん断 応力	11	159	A2	

第 7.5.1-1 表 構造強度評価結果 (7/9)

		評価対象設備	評価 部位	応力 分類	発生値	評価 基準値	評価 方法	備考
		主蒸気系		一次	МРа	МРа	<u>×1</u>	
	主蒸	配管本体	配管本体	応力	201	375	В	*3
	気系	主蒸気系 配管サポート	サポート 部材	スナッバ 耐荷重	69	224	В	単位:kN ※3
	原子炉	原子炉冷却材浄化系 配管本体	配管本体	一次 応力	141	366	В	**3
	化系却材	原子炉冷却材浄化系 配管サポート	サポート 部材	スナッバ 耐荷重	56	170	В	単位:kN ※3
	残留熱	残留熱除去系 配管本体	配管本体	一次 応力	192	363	В	**3
	除去系	残留熱除去系 配管サポート	サポート 部材	組合せ 応力	150	245	В	**3
	原子炉 冷却	原子炉隔離時冷却系 配管本体	配管本体	一次 応力	185	324	В	**3
西己	ふ 隔離時	原子炉隔離時冷却系 配管サポート	サポート 部材	組合せ 応力	137	245	В	**3
管	高圧炉	高圧炉心注水系 配管本体	配管本体	一次 応力	146	366	В	**3
	心注水系	高圧炉心注水系 配管サポート	サポート 部材	ロッドレストレ イント 耐荷重	12	24	В	単位:kN ※3
	給水	給水系 配管本体	配管本体	一次 応力	149	375	В	**3
	小系	給水系 配管サポート	サポート 部材	スナッバ 耐荷重	99	224	В	単位:kN ※3
	放 移 送	放射性ドレン移送系 配管本体	配管本体	一次 応力	106	315	В	
	ビ系レン	 放射性ドレン移送系 配管サポート	サポート 部材	組合せ 応力	100	217	В	
	冷 炉 却 炉	原子炉補機冷却水系 配管本体	配管本体	一次 応力	150	344	В	**3
	水系機	原子炉補機冷却水系 配管サポート	サポート 部材	ロット [*] レストレ イント 耐荷重	97	235	В	単位:kN ※3

第7.5.1-1表 構造強度評価結果 (8/9)

評価対象設備		評価 部位	応力 分類	発生値	評価 基準値	評価 方法	詳細 評価	
	冷却海水系	京 京 同 子 記 管本体 配 行		一次 応力	MPa	MPa	<u></u> *1	
			配管本体		153	354	В	₩3
		原子炉補機冷却海水系 配管サポート	サポート 部材	組合せ 応力	98	245	В	*3
	制御棒	制御棒駆動系 配管本体	配管本体	一次 応力	87	318	В	*3
	駆動系	制御棒駆動系 配管サポート	サポート 部材	組合せ 応力	124	205	В	**3
配管	ほう酸水注入系	ほう酸水注入系 配管本体	配管本体	一次 応力	94	325	В	
		ほう酸水注入系 配管サポート	サポート 部材	組合せ 応力	164	245	В	
	処理系	非常用ガス処理系 配管本体	配管本体	一次 応力	88	363	В	**3
		非常用ガス処理系 配管サポート	サポート 部材	組合せ 応力	143	245	В	**3
	可燃性ガス濃度	可燃性ガス濃度制御系 配管本体	配管本体	一次 応力	109	363	В	**3
		可燃性ガス濃度制御系 配管サポート	サポート 部材	組合せ 応力	26	245	В	**3
	不活性	不活性ガス系 配管本体	配管本体	一次 応力	113	363	В	**3
	ガス系	不活性ガス系 配管サポート	サポート 部材	組合せ 応力	85	245	В	% 3

第7.5.1-1表 構造強度評価結果 (9/9)

※1 「評価方法」の欄に記載されている[A1], [A2], [B]の凡例は,以下のとおり。

A1:応答倍率法において,基準地震動 Ss による地震力と既往評価の地震力との応答比を用いた評価方法

A2:応答倍率法において,基準地震動 Ss による床応答スペクトル等と,既往評価で用いた床応答 スペクトル等から水平加速度と鉛直加速度の比をそれぞれ求め,大きい方の値を用いた評価方法 B:詳細評価(スペクトルモーダル解析法等による評価)

- ※2 事故時荷重と組み合わせる地震動である弾性設計用地震動 Sd による評価結果である。
- ※3 耐震強化工事実施

7.5.2. 動的機能維持の評価結果

動的機能維持の評価結果を第7.5.2-1 表に示す。

各機器の応答加速度が機能確認済加速度以下のあることを確認した。 制御棒の地震時挿入性について,基準地震動 Ss による燃料集合体の相対変 位が,試験により挿入性が確認された相対変位以下であることを確認した。

	機能確認済加速度との比較					
⇒/≖++/4→11/#	1->++-++	水平加速度(G ^{*1})		上下加速度(G ^{*1})		詳細
計個刈家試開	加速度 確認部位	応答 加速度	機能確認済 加速度	応答 加速度	機能確認済 加速度	評価 ^{**2}
残留熱除去系ポンプ	コラム 先端部	0.75	10.0	0.80	1.0	-
原子炉隔離時冷却系ポンプ	軸位置	0.77	1.4	0.81	1.0	_
原子炉隔離時冷却系ポンプ 駆動用蒸気タービン	重心位置	0.77	2.4	0.81	1.0	_
高圧炉心注水系ポンプ	コラム 先端部	0.75	10.0	0.80	1.0	-
原子炉補機冷却水系ポンプ	軸位置	0.83	1.4	0.75	1.0	_
原子炉補機冷却海水系ポンプ	コラム 先端部	1.54	10.0	0.75	1.0	_
ほう酸水注入系ポンプ	重心位置	0.97	1.6	0.90	1.0	_
可燃性ガス濃度制御系 可搬式再結合装置ブロワ	ファン	0.88	2.6	0.85	1.0	_
非常用ガス処理系排風機	軸受部	0.99	2.3	0.91	1.0	_
中央制御室送風機	軸受部	1.26	2.6	0.90	1.0	_
中央制御室排風機	軸受部	1.26	2.6	0.90	1.0	_
中央制御室再循環送風機	軸受部	1.21	2.6	0.87	1.0	_
非党田ディーゼル機関	機関 重心位置	0.89	1.1	0.86	1.0	_
	ガバナ 取付位置	0.89	1.8	0.86	1.0	-

第 7.5.2-1 表 動的機能維持評価結果 (1/3)

 $1 G=9.80665 (m/s^2)$

※2 応答加速度が機能確認済加速度を上回る場合に実施する。

		機能確認済加速度との比較					
評価対象設備		4-0-14- 7 -	水平加速度(G ^{*1})		上下加速度(G ^{*1})		詳細
		加速度 確認部位	応答 加速度	機能確認済 加速度	応答 加速度	機能確認済 加速度	評価 ^{※2}
	主蒸気系 (主蒸気内側隔離弁(D))	弁駆動部	3.59	10.0	3.08	6.2	_
	主蒸気系 (主蒸気逃がし安全弁(S))	弁駆動部	4.71	9.6	2.89	6.1	_
	原子炉冷却材浄化系 (CUW 系ヘッドスプレイ逆止弁)	弁駆動部	2.94	6.0	2.33	6.0	_
	残留熱除去系 (RHR 系最小流量バイパス弁(B))	弁駆動部	1.95	6.0	1.08	6.0	_
	原子炉隔離時冷却系 (RCIC系注入弁)	弁駆動部	3.15	6.0	1.05	6.0	_
	高圧炉心注水系 (HPCF 系試験可能逆止弁(C))	弁駆動部	2.18	6.0	4.66	6.0	_
4	給水系 (原子炉給水ライン 内側隔離弁(A))	弁駆動部	1.77	6.0	3.15	6.0	_
开	放射性ドレン移送系 (D/W LCW サンプ内側隔離弁)	弁駆動部	1.98	6.0	1.09	6.0	_
	原子炉補機冷却水系 (RCW 冷却水供給温度調節弁(B))	弁駆動部	3.95	6.0	1.44	6.0	_
	原子炉補機冷却海水系 (RSW 海水ストレーナ(B) ブロー弁)	弁駆動部	2.07	6.0	2.71	6.0	_
	ほう酸水注入系 (SLC 系注入ライン試験タップ 第二弁)	弁駆動部	2.25	6.0	0.87	6.0	_
-	非常用ガス処理系 (SGTS フィルタ装置出口弁(A))	弁駆動部	3.03	6.0	2.64	6.0	_
	可燃性ガス濃度制御系 (FCS 出口第二隔離弁(A))	弁駆動部	2.88	6.0	1.39	6.0	_
	不活性ガス系 (D/W パージ用入口隔離弁)	弁駆動部	2.03	6.0	1.56	6.0	-

第 7.5.2-1 表 動的機能維持評価結果 (2/3)

 $1 G=9.80665 (m/s^2)$

※2 応答加速度が機能確認済加速度を上回る場合に実施する。

評価対象設備	評価対象設備 燃料集合体の地震時 相対変位(mm)	
制御棒 (地震時の挿入性)	13.3	40.0

第7.5.2-1表 動的機能維持評価結果 (3/3)

7.6. 参考文献

(1)(財)原子力発電技術機構(2001):耐震設計高度化調査原子炉建屋・機器の水平・上下応答評価法の調査報告書

配管系の減衰定数について

配管系の設計用減衰定数は,「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」に規定されているが,新たに実施した振動試験等をもとに,保温 材の付加減衰定数およびUボルトを用いた支持具を有する配管系の減衰定数を 定め,配管系の耐震安全性評価に用いる(表-1)。

保温材とUボルト支持配管系の減衰定数に関する検討結果(1)を以下に示す。

(1) 保温材の付加減衰定数

現行の保温材による設計用付加減衰定数(0.5%)を設定するために用いられ たデータと、その後に実施された無機多孔質保温材を対象とした試験データ を再整理した結果、配管強度上問題とならない小変位領域を除き、付加減衰 比が1.0%以上確保されていることから、保温材の付加減衰定数として1.0%を 使用する。

金属保温材については、原子力工学試験センター(現(財)原子力発電技 術機構)の耐震信頼性実証試験において、無機多孔質保温材と金属保温材が 混在する配管系の振動試験が行われており、その試験結果を調査したところ、 金属保温施工範囲が配管全長の40%以下の場合には付加減衰定数を1.0%と して問題ないことを確認したことから、これを使用する。なお、金属保温施 工範囲が配管全長の40%を超える配管系については、従来の付加減衰定数 0.5%を使用する。 (2) Uボルトを用いた支持具を有する配管系の減衰定数

現行のスナッバ及び架構レストレイント支持主体の配管系の減衰定数は, 消散エネルギ評価式を用いた減衰推算法により設定されているが, Uボルト 支持配管系についてはこのような検討がされていない。そこで, Uボルト支 持配管系の消散エネルギ評価法を用いた減衰推算法を策定し,実規模配管系 による振動試験により, その妥当性を確認した。

この減衰推算法により,実機のUボルト支持配管系の解析評価を行った結果,配管の自重を受けるUボルト支持具が4個以上の配管系に対する減衰定数が2.0%であったことから,これを使用する。

	即 徐可入	減衰定数(%)*1		
	的自己自己力	保温材有	保温材無	
	スナッバ及び架構レストレイント支持主体の配			
Ι	管系で、その支持具(スナッバ又は架構レストレ	<u>3.0</u>	2.0	
	イント)の数が4個以上のもの			
	スナッバ,架構レストレイント,ロッドレストレ			
П	イント,ハンガ等を有する配管系で,アンカ及び	2.0	1.0	
	Uボルトを除いた支持具の数が4個以上であり,	<u>2.0</u>		
	配管区分 I に属さないもの			
ш	Uボルトを有する配管で,架構で水平配管の自重	2.0	2.0	
ш	を受けるUボルトの数が4以上のもの	<u>3.0</u>	<u>2.0</u>	
IV	配管区分Ⅰ,ⅡおよびⅢに属さないもの	<u>1.5</u>	0.5	

表-1 耐震安全性評価に使用する配管系の減衰定数

※1 「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」から変更した 箇所を下線で示す。

参考文献

(1)(社)日本電気協会(2006):配管系設計用減衰定数適正化に関する検討,第
 9回機器・配管系検討会資料 No. 9-3-2-2(5),平成18年5月12日

燃料取替機および原子炉建屋クレーンの減衰定数について

燃料取替機および原子炉建屋クレーンについては,振動試験で得られた減衰 比に基づき,水平・鉛直それぞれの方向の減衰定数を定め,耐震安全性評価に 用いる。

原子炉建屋クレーンおよび燃料取替機の減衰定数に関する検討結果⁽¹⁾を以下 に示す。

現行の燃料取替機および原子炉建屋クレーンの減衰定数は,溶接構造物の設計用減衰定数である1.0%を用いているが,実際には,各構造部材の材料減衰および摩擦やガタに起因する構造減衰が期待できると考えられる。

そこで燃料取替機および原子炉建屋クレーンそれぞれについて,実機構造を 模擬した試験体により振動試験を行い,減衰比を確認した。

その結果,鉛直方向については,燃料取替機のトロリがガーダ端部にある場合を除き,振幅の増加に従い減衰比が増加する傾向を示した。また,強度上問題とならない小振幅領域を除き,減衰比は2.0%以上が確保されていた。燃料取替機のトロリがガーダ端部にある場合では,振幅が増加しても減衰比が大きくなりにくい傾向を示し,その減衰比は1.5%以上であった。

水平方向については,鉛直方向に比べて大きな減衰比が得られており,また トロリ位置が減衰比に与える影響が小さいことを確認した。

これらの試験結果に基づき、燃料取替機および原子炉建屋クレーンの減衰定 数として表-1に示す値を使用する。

添7.2-1

表-1 耐震安全性評価に使用する燃料取替機および 原子炉建屋クレーンの減衰定数

计争识供	減衰定数(%)				
刈 豕 武 /佣	水平方向	鉛直方向			
 	2.0	トロリ位置中央 2.0			
旅村110 首焼	2.0	トロリ位置端部 1.5			
原子炉建屋クレーン	2.0	2.0			

参考文献

(1)(社)日本電気協会(2006): クレーン類の設計用減衰定数に関する検討,第
 9回機器・配管系検討会資料 No. 9-3-2-2(2),平成18年5月12日

添付資料 7.3

使用済燃料貯蔵ラックの水平方向の減衰定数について

使用済燃料貯蔵ラックの設計用減衰定数は、従来、「原子力発電所耐震設計技 術指針 JEAG4601-1991 追補版 | に示されている溶接構造物の設計用減衰定数 1% を用いているが、使用済燃料貯蔵ラックの耐震安全性評価では、既往の試験研 究等をもとに水平方向の減衰定数を定め、耐震安全性評価に用いた。

柏崎刈羽原子力発電所 6 号機には、以下に示す構造の異なる 2 種類の使用済 燃料貯蔵ラックが設置されており、それぞれの使用済燃料貯蔵ラックの減衰定 数に関する検討結果を次ページ以降に示す。

< 角管並列型(**B-SUS**^{*})>

<格子型(B-SUS*)>

*:ボロン添加ステンレス鋼

図1 柏崎刈羽原子力発電所6号機の使用済燃料貯蔵ラック構造概略

添7.3-1

1. 角管並列型

既往試験において,角管並列型ボロン添加ステンレス鋼(B-SUS)製 30 体燃料ラックの振動試験が実施されている。試験内容の抜粋を次ページ以降に示す。

試験は、(a)模擬燃料を装荷し水を注入した状態、(b)模擬燃料を装荷せず、水 を注入しない状態の2種類にて実施され、(a)の場合で減衰比9.9%、(b)の場合で 減衰比2.5%が得られた。よって、燃料装荷および水の注入による付加減衰比は、 (a)と(b)の減衰比の差から約7%と推定される。

実機の使用済燃料ラックは、材料および1体あたりの燃料貯蔵セルの構造は 試験体として用いた30体ラックと同様であり、収納体数のみが多くなっている。 燃料と水による付加減衰比は約7%であることから、収納体数が30体を超える ラックについても減衰定数が7%を下回ることはないと判断し、耐震安全性評価 では水平方向の減衰定数として7%を使用する。 角管並列型ボロン添加ステンレス鋼製燃料ラックの既往試験の概要(1/2)

1. 試験概要

実機で用いられる角管並列型ボロン添加ステンレス鋼製燃料ラック(B-SUS ラック)の構造 概念を図-1 に示す。B-SUS ラックは、短辺方向が 11 列、長辺方向は 16 又は 17 列である。 試験で用いる供試体を図-2 に示す。供試体は 10 列×3 列の 30 体ラックとする。

試験は、ラックに模擬燃料を装荷し水を注入した状態、およびラック単体(模擬燃料を装荷 せず水を注入しない状態)の各状態にて実施する。

まず、各状態において掃引試験を実施して共振周波数を確認し、次に確認した共振周波数に

て一波突印試験を実施し減衰比を確認する。

加振方向は、実機 B-SUS ラックの列数が短辺及び長辺方向とも 10 列以上であることから、10 列方向の水平加振とする。

添7.3-3

- 2. 格子型(角管市松型)
 - 2.1 試験装置

試験体の概略を図2に示す。長辺方向は実機での標準列数の10列とし、 短辺方向は自立型での最小幅として5列とした。なお、試験体は角管を市松 模様に配列した構造(角管市松型)であるが、図5に示すように格子型と基 本的な構造が同一であることから、格子型と同等として扱った。

図5 角管市松型ラック(左図)と格子型ラック(右図)

図3 試験体設置状況

図4 試験水槽

添7.3-5

2.2 加振方法

試験体に模擬燃料を装荷し,試験水槽に水を注入した状態にて以下の加振 条件に基づく加振試験を実施した。試験は,試験体の長辺方向及び短辺方向 それぞれについておこなった。

加振レベルの小さい範囲では正弦波による掃引試験とし,試験装置の損傷 を防止する観点から,加振レベルの大きい範囲では半波の加振試験とした。

	加振条件	加振周波数
正弦波提引試驗	短辺方向:50gal~100gal	5Hz∼70Hz
	長辺方向:75gal~125gal	5112 /0112
半波加振試験	振動台変位:3mm~5mm	10Hz

表 2 加振条件

2.3 試験結果

正弦波掃引試験の減衰比は,加振レベル3ケースで求めた伝達関数よりハ ーフパワー法で評価した。半波加振試験の減衰比は,振動台変位レベルを3 ケースとした自由振動波形より減衰比を評価した。試験の結果のまとめを図 5に示す。

図5に示すように、長辺方向における正弦波掃引試験では、加速度レベル の低い範囲では一部7%を下回るデータが存在するものの、加速度レベルの 増大に伴い大きな減衰比が得られる傾向が見られている。短辺方向における 正弦波掃引試験では、加速度レベルの低い範囲では若干の減衰比の低下傾向 が見られるが、その傾向は加速度レベルの増大に伴いゆるやかとなっており、 半波加振試験の結果では加速度レベルの高い範囲では7%を十分上回ってい る。

以上の結果から,実機の加速度レベルに相当する高い範囲に対しては,減

添 7.3-6

図6燃料ラック頂部の応答加速度と減衰定数の関係(試験条件:水中,燃料体100%挿荷)

原子炉冷却材再循環ポンプの水平方向の減衰定数について

原子炉冷却材再循環ポンプ(以下,「RIP」という。)の耐震安全性評価における設計用減衰定数は、従来と同様に3%を用いている。当該減衰定数は「原子力 発電所耐震設計技術指針 JEAG4601-1991 追補版」に示されていないことから, 既往試験の概要と検討結果を以下に示す。

1. RIP の構造

RIP の概略図を図 1-1 に示す。RIP のモータケーシングは、上部が原子炉圧 力容器に固定された片持ち構造となっている。モータケーシングの付根にはパ ッドが設けられており、モータケーシングが大きく振動する際には、このパッ ドが RIP ノズル外側スリーブに接触する。ただし、RIP の地震応答解析モデル では、保守的にパッドの接触を考慮しないモデルとしている。

図 1-1 RIP 概略図

2. 試験装置・方法

試験装置の概要を図 2-1 に示す。原子炉圧力容器および RIP 1 台を実規模 大でモデル化し,実機運転状態と同様の高温・高圧状態とした。試験では, モータケーシング下端に加振力を与えて加振周波数を変化させ,ケーシング 下端における応答変位を測定した。ケーシング下端応答変位が約 6mm 相当 になるまで加振力を増加させた。また,ポンプ回転数の影響を確認するため, 3 種類の回転数にて試験を行った。

図 2-1 試験装置概要図

添7.4-3

3. 試験結果

試験により得られた,加振周波数とモータケーシング下端応答変位の関係の 例を図 3-1 に示す。減衰比および固有周波数の算出は,モータケーシング下端加 速度および加振荷重から,サークルフィット法で計算処理して求めた。

図 3-1 加振周波数とモータケーシング下端応答変位の関係の例(1)

上記方法にて求めた,モータケーシング下端応答変位に対する減衰比の関係 を図 3-2 に示す。

図 3-2 ケーシング下端応答変位と減衰比との関係(1)

4. 結論

実機運転状態における RIP 加振試験の結果, RIP の水平方向の減衰比は約3~5%であったことより, RIP の耐震安全性評価における水平方向の減衰定数は3%を使用する。

参考文献

 Kondoh, T. et al.: Vibration Characteristics and Control for Sleeve Set-on Type Vertical Pump, PVP-Vol.364, Seismic Engineering-1998, ASME 1998.

機器・配管系の構造強度の評価基準値について

機器・配管系の構造強度の評価基準値は,材料の過度な変形や破損に対して 裕度をもった値に設定されている。機器・配管系の構造強度の評価基準値を以 下に示す。

なお、供用状態および材質の表記については以下とする。

- D(IVAS):「原子力発電所耐震設計技術指針」において規定される許容応力 状態(「設計・建設規格」の供用状態Dに相当)
- C (ⅢAS):「原子力発電所耐震設計技術指針」において規定される許容応力 状態(「設計・建設規格」の供用状態Cに相当)
- ASS :オーステナイト系ステンレス鋼
- HNA : 高ニッケル合金
- 1. 容器の評価基準値
 - (1) クラス1容器の評価基準値

クラス1容器の評価基準値を表1-1に示す。

応力分類		一次一般膜応力	一次膜応力 + 一次曲げ応力	軸圧縮応力
供用状態	D(IV _A S)	・ ASS および HNA : Min[2.4S _m , (2/3)S _u] ・ それ以外の材料 : (2/3)S _u	左欄のα ^{**1} 倍	1.5Min[S _m ,B ^{**2}]

表 1-1 クラス1 容器の評価基準値

※ 1 α:形状係数

※ 2 B:「設計・建設規格」付録材料図表 Part7 より求めた値

添7.5-1

(2) クラス MC 容器の評価基準値

クラス MC 容器の評価基準値を表 1-2 に示す。

応力分類		一次一般膜応力	一次膜応力 + 一次曲げ応力
供用状態	D(IV _A S)	 (1)構造上の連続部 ASS および HNA: Min[2S,0.6S_u] それ以外の材料: 0.6S_u (2)不連続部分 ASS および HNA: 1.2S それ以外の材料: Min[S_y, 0.6S_u] 	左欄のα ^{*1} 倍

表 1-2 クラス MC 容器の評価基準値

※1 α:形状係数

(3) クラス 2,3 容器の評価基準値

クラス2,3容器の評価基準値を表1-3に示す。

応力分類		一次一般膜応力	一次膜応力 + 一次曲げ応力
供用状態	D(IV _A S)	$0.6\mathrm{S}_{\mathrm{u}}$	左欄の 1.5 倍

表 1-3 クラス 2,3 容器の評価基準値

2. 管の評価基準値

(1) クラス1配管の評価基準値

クラス1配管の評価基準値を表 2-1 に示す。

表 2-1 クラス1 配管の評価基準値

応力分類			
供			
用	D(IVAS)	Min[3S., 2S.]	
状	D(IVAD)		
態			

(2) クラス 2,3 配管の評価基準値

クラス2,3配管の評価基準値を表2-2に示す。

応力分類		一次応力 (膜+曲げ)
供	D(IV _A S)	・地震以外の短期機械的荷重を含む場合
用		$Min[3S_h, 2S_y]$
状		・地震以外の短期機械的荷重を含まない場合
態		$0.9\mathrm{S}_{\mathrm{u}}$

表 2-2 クラス 2,3 配管の評価基準値

(3) クラス4配管の評価基準値

非常用ガス処理系のように管を使用する場合については,クラス2配管の 評価基準値を準用する。

- 3. 炉心支持構造物の評価基準値
 - (1) 炉心支持構造物の評価基準値

炉心支持構造物の評価基準値を表 3-1 に示す。

表 3-1 炉心支持構造物の評価基準値

応力分類		一次一般膜応力	一次膜応力 + 一次曲げ応力	平均せん断 応力
供用状態	D(IV _A S)	・ ASS および HNA : Min[2.4S _m , (2/3)S _u] ・ それ以外の材料 : (2/3)S _u	左欄の 1.5 倍	1.2 S _m

(2) 炉心支持構造物の座屈の防止

軸圧縮荷重と曲げモーメントが負荷されるクラス炉心支持構造物は,供用 状態 C(Ⅲ_AS)および D(IV_AS)において次の不等式を満足しなければならない。

 $rac{lpha \left(P/\parallel A
ight) }{f_{
m c}} + rac{lpha \left(M/\parallel Z
ight) }{f_{
m b}} \leq 1$

上記式は $\ell/R \leq 5$ の場合に適用できる。ただし,強め輪等により ℓ/R ≤ 0.5 となる場合は,強め輪の効果を考慮することができる。ここで,

P:軸圧縮荷重(N)

- A : 断面積 (mm²)
- M :曲げモーメント (N・mm)
- Z : 断面係数(mm³)
- f。:軸圧縮荷重に対する座屈応力(MPa)
- f_b:曲げモーメントに対する座屈応力(MPa)
- α :安全率
- ℓ : 胴長(mm)
- R : 円筒の平均半径(mm)

a. 軸圧縮荷重に対する座屈応力(f_c)

$$f_{c} = \begin{cases} F & (\eta \leq \eta_{1}) \\ F \times \left\{ 1 - \frac{1}{6800g} (F - \Phi_{c} \{ \eta_{2} \}) (\eta - \eta_{1}) \right\} & (\eta_{1} < \eta < \eta_{2}) \\ \Phi_{c} \{ \eta_{1} \} & (\eta_{2} \leq \eta \leq 800) \end{cases}$$

ここに,

$$\Phi_{c} \{\eta\} = 0.6 \frac{E}{\eta} \left[1 - 0.901 \left\{ 1 - \exp\left(-\frac{1}{16}\sqrt{\eta}\right) \right\} \right]$$

b. 曲げモーメントに対する座屈応力(f_b)
f_b
$$\begin{cases} F \\ F \times \left\{ 1 - \frac{1}{8400g} (F - \Phi_{b} \{\eta_{3}\})(\eta - \eta_{1}) \right\} \\ \Phi_{b} \{\eta\} \end{cases}$$
 ($\eta \le \eta_{1}$)
($\eta_{1} < \eta < \eta_{3}$)
($\eta_{3} \le \eta \le 800$)

ここに,

$$\Phi_{b}\{\eta\} = 0.6 \frac{E}{\eta} \left[1 - 0.731 \left\{ 1 - \exp\left(-\frac{1}{16}\sqrt{\eta}\right) \right\} \right]$$

c. 安全率(α)

安全率は,供用状態 C(III_AS)および D(IV_AS)に対して,

$$\alpha = \begin{cases} 1.0 & (\eta \le \eta_1) \\ 1.0 + \frac{F}{13600g} (\eta - \eta_1) & (\eta_1 < \eta < \eta_2) \\ 1.5 & (\eta_2 \le \eta_1) \end{cases}$$

ここに,

F :設計・建設規格 SSB-3121.1 において定める F の値(MPa)
E :材料の縦弾性係数(MPa)
t :円筒の板厚(mm)
g :重力加速度(=9.80665m/s²)
$$\eta = R/t, \eta_1 = 1200g/F, \eta_2 = 8000g/F, \eta_3 = 9600g/F$$

4. 炉内構造物の評価基準値

炉内構造物については、炉心支持構造物の評価基準値を準用する。

5. 支持構造物の評価基準値

支持構造物の評価基準値で使用する記号の意味は以下のとおりである。

f_t (注)	:許容引張応力	(MPa)
$f_{s}^{\ ({\rm \grave{z}})}$:許容せん断応力	(MPa)
$f_{\rm c} \ ^{({\rm \dot{\Xi}})}$:許容圧縮応力	(MPa)
$f_{\ b} \stackrel{({\underline{\imath}})}{}$:許容曲げ応力	(MPa)
f ^(注)	:許容支圧応力	(MPa)

(注) クラス3支持構造物およびその他支持構造物に対するf_t, f_s,
 f_o, f_pの値の算出においては, F値として次の値を用いる。
 F=Min[S_v, 0.7S_u]

ただし、使用温度が 40℃を超える ASS および HNA は、 F=Min[1.35S_v, 0.7S_u, S_v(RT)]

 f_{t} , f_{s} , f_{c} , f_{b} , f_{p}

:供用状態 D(IV_AS)に対する評価基準値を算出する際に f_t, f_s, f_o, f_b, f_pの値を算出する際において, S_yおよび S_y(RT)をそれぞれ 1.2S_yおよび 1.2S_y(RT)と読み替えて算出した値(MPa)

クラス1,2,3, MC 支持構造物の評価基準値は以下の(1),(2)によるものとする。

(1) クラス1支持構造物の評価基準値

a. 容器に溶接により取付けられる支持構造物

容器に溶接により取付けられる支持構造物であって、その損壊が耐圧部 の損壊を生じさせるおそれのあるものについては容器の耐圧部と同じ評価 基準値とする。

添7.5-6

b. 上記以外の支持構造物(ボルト等を除く)

ボルト等を除く評価基準値を表 6-1 に示す。

表 6-1 クラス1支持構造物の評価基準値-ボルト等を除く

応力 分類	一 次 応 力*1				
供用 状態	引張	せん断	圧縮	曲げ	支圧
D(IV _A S)	$1.5 f_t^*$	1.5f _s *	$1.5 f_{c}^{*}$	$1.5 f_b^*$	$1.5 f_{p}^{*}$

※1 応力の組合せが考えられる場合、組合せ応力に対しても評価を行うこと。

c. ボルト等

ボルト等の評価基準値を表 6-2 に示す。

応力 分類	一次応力 ^{※1}		
供用 状態	引張	せん断	
D(IV _A S)	$1.5 f_t^*$	$1.5 f_{s}^{*}$	

表 6-2 クラス1支持構造物の評価基準値-ボルト等

※1 応力の組合せが考えられる場合、組合せ応力に対しても評価を行うこと。

(2) クラス MC, 2, 3 支持構造物の評価基準値

前頁(1)クラス1支持構造物の評価基準値を準用する。

(3) スナッバの評価基準値

スナッバの評価基準値は,以下に示す①~③のいずれかを用いる。 ①スナッバメーカーによる保証値 ②試験による許容基準値 ③スナッバ構成部品の構造強度評価に基づく許容基準値

(4) 構築物(原子炉本体の基礎,原子炉遮へい壁等)の評価基準値

構築物(原子炉本体の基礎,原子炉遮へい壁等)の評価基準値を表 6-3 に 示す。

表 6-3 構築物(原子炉本体の基礎,原子炉遮へい壁等)の評価基準値

施設名	部位	供用状態	評価基準値
原子炉本体の基礎 原子炉遮へい壁 等	鋼材	D(IV _A S)	「鋼構造設計規準-許容応力度 設計法-」(社団法人 日本建築 学会(2005年9月))における短期 許容応力度

(5) 原子炉本体の基礎(アンカボルト)の評価基準値

コンクリート躯体がコーン状破壊する場合の基礎ボルト1本当りの許容引 張荷重を以下に示す。

 $1.5 \times 0.31 \times K_1 A_C \sqrt{F_C}$

- K₁:コーン状破壊する場合の引張耐力の低減係数
- F_c : コンクリートの設計基準強度 (MPa)
- Ac : コンクリートのコーン状破壊面の有効投影面積 (mm²)

(6) 原子炉格納容器ライナ部の評価基準値

ライナプレートに生じる強制ひずみは,表 6-4 の左欄に掲げるひずみの種類に応じ,それぞれ右欄に掲げる許容ひずみの値を超えてはならない(「発電用原子力設備規格 コンクリート製原子炉格納容器規格 JSME S NE1-2003」(社団法人 日本機械学会)に準拠)。

ひずみ	の種類	許容ひずみ			
荷重状態	ひずみの種別	膜 膜と曲げの			
\mathbf{III} +2 + 7 \mathbf{KI}	圧縮ひずみ	0.005	0.014		
	引張ひずみ	0.003	0.010		

表 6-4 ライナプレートの許容ひずみ

(7) 原子炉格納容器ダイヤフラムフロアの評価基準値

各荷重状態においてトップスラブ部および底部に生じる面外せん断力は 以下に示す計算式により計算した値を超えてはならない(「発電用原子力設 備規格 コンクリート製原子炉格納容器規格 JSME S NE1-2003」(社団法人 日本機械学会)に準拠)。

 $Q_{A}=b \cdot j\{\alpha \cdot f_{s}+0.5_{w}f_{t}(p_{w}-0.002)\}$

- Q_A : 許容面外せん断力 (N)
- b : 断面の幅(mm)
- j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値(mm)
- f_s : コンクリートの許容せん断応力度 (N/mm²)
- pw : 面外せん断力に対する補強筋の鉄筋比
- wft : 面外せん断力に対する補強筋の許容引張応力度(N/mm²)
- *α* :割増し係数

動的機器の地震時機能確認済加速度について

動的機器の地震時機能確認済加速度は、「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」に規定されているが、水平方向のみであり、鉛直方向 については規定されていない。

既往の試験研究等をもとに鉛直方向の機能確認済加速度を定めるとともに, 水平方向の機能確認済加速度についても見直しを行い,耐震安全性評価に用い る。

動的機器の機能確認済加速度に関する検討結果(1)を以下に示す。

- (1) 鉛直方向の機能確認済加速度の設定
 - a) 弁を除く機器

いずれの機器も鉛直方向の剛性が高く応答増幅が小さいことから,鉛直 方向の内部品の浮き上がりによる非線形特性を考慮する必要のない限界値 (1.0G)を鉛直方向の機能確認済加速度とする。

b) 一般弁(グローブ弁,ゲート弁,バタフライ弁,逆止弁)

グローブ弁,ゲート弁およびバタフライ弁は,配管系の応答増幅により 鉛直方向の応答加速度も水平方向と同様に大きくなる。そこで,既往研究 において,弁最弱部の応力の余裕度が小さい空気作動グローブ弁および空 気作動バタフライ弁について振動試験を行い,鉛直方向については6.0Gを 上回る加速度まで機能維持を確認した。従って,グローブ弁,ゲート弁お よびバタフライ弁の鉛直方向の機能確認済加速度は6.0Gとする。

添7.6-1

逆止弁は、内部流体の圧力により作動状態を維持しようとする力が強く、 地震力による影響を受けにくい構造である。構造が単純であることから、 水平方向および鉛直方向加速度 6.0G に対して、内部流体の圧力とディスク に作用する地震力との釣り合いを評価し、地震時において開状態または閉 状態が維持されることが確認できた。従って、逆止弁の鉛直方向の機能確 認済加速度は、6.0G とする。

c) 特殊弁(主蒸気隔離弁, 主蒸気逃し安全弁, 制御棒駆動系スクラム弁)

主蒸気隔離弁の駆動装置については、水平方向加速度 10G, 鉛直方向加 速度 6.2G の同時加振試験が行われ、機能維持が確認されている。また、弁 全体の機能維持評価として弁の最弱部であるヨークロッド付根部について、 上記の駆動装置の健全性が確認された加速度により応力を算出し、許容応 力以下であることを確認した。従って、鉛直方向の機能確認済加速度は 6.2G とした。

主蒸気逃し安全弁の鉛直方向の機能確認済加速度は、「原子力発電所耐震 設計技術指針 JEAG4601-1991 追補版」策定時に参照した振動試験結果を もとに 6.1G とした。

制御棒駆動系スクラム弁は,一般弁の空気作動グローブ弁と同様の構造 である。そこで,一般弁の機能確認済加速度と同様に,水平方向加速度 6.0G, 鉛直方向加速度 6.0G に対して,弁最弱部であるヨーク部の評価を行い,許 容応力以下であることを確認した。従って,制御棒駆動系スクラム弁の鉛 直方向の機能確認済加速度は,6.0G とする。 (2) 水平方向の機能確認済加速度の見直し

水平方向の機能確認済加速度を設定する際に参照した既往の試験データの 精査等を行い,水平方向の機能確認済加速度の見直しが可能である以下の機 器について,新たに水平方向の機能確認済加速度を設定した。

a) 非常用ディーゼル発電機(ガバナ部)

原子力発電技術機構で行われた耐震信頼性実証試験にて、ガバナリンク 機構の振動試験が行われ、水平方向加速度 1761Gal(約 1.8G)まで機能維持す ることが確認されている。従って、非常用ディーゼル発電機ガバナ部の水 平方向の機能確認済加速度を 1.8G とする。

b) 主蒸気隔離弁

(1) c)に示した弁駆動装置の振動試験結果および弁最弱部の強度評価結 果から,水平方向の機能確認済加速度を10.0Gとする。

c) 制御棒駆動スクラム弁

(1) c)に示した弁最弱部の強度評価結果から,水平方向の機能確認済加 速度を 6.0G とする。

(3) 機能確認済加速度

各機器の機能確認済加速度を表-1に示す。

		加油库	機能確認済加速度*1		
種別	機種	加速度	水平方向	鉛直方向	
		唯認即吐	(G^{*2})	(G^{*2})	
	ピットバレル形ポンプ	コラム		1.0	
生ませいす	立形斜流ポンプ	先端部	10.0		
立形がシノ	去応光印中田が北いつ	ケーシング	10.0	<u>1.0</u>	
	业形甲段床直形ホンノ	下端部			
	横形単段遠心式ポンプ		3.2		
構形ポンプ	横形多段遠心式ポンプ	動位置	(軸直角方向)	1.0	
		中山112.10.	1.4	1.0	
			(軸方向)		
ポンプ駆動用	PCICALEY	重心位置	2.4	1.0	
タービン	KUTU/ LV	里心心直	2.4	<u>1.0</u>	
	横形ころがり軸受電動機		4.7		
雪勈棥	横形すべり軸受電動機		2.6	1.0	
电到版	立形ころがり軸受電動機	い日 又 四千	2.5	<u>1.0</u>	
	立形すべり軸受電動機		2.5		
		軸受部およ			
	遠心直結型ファン	てドメカニカルシール	2.3		
ファン		ケーシンク゛		<u>1.0</u>	
	遠心直動型ファン		2.6		
	軸流式ファン	11111111111111111111111111111111111111	2.4		

表-1 機能確認済加速度(1/2)

※1 「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」に追加および 変更した箇所を下線で示す。

 $2 G=9.80665 (m/s^2)$

種別	機種	加速度 確認部位	機能確認済加速度*1	
			水平方向	鉛直方向
			(G^{*2})	(G^{*2})
非常用		機関	1 1	<u>1.0</u>
	ル ディーゼル機関	重心位置	1.1	
		ガバナ	<u>1.8</u>	
<u> </u>		取付位置		
往復動式	横形3連往復動式ポンプ	重计位型	1.6	1.0
ポンプ		里心忪但	1.0	1.0
	一般弁			
弁 (一般弁およ び特殊弁)	(グローブ弁, ゲート弁,		6.0	<u>6.0</u>
	バタフライ弁,逆止弁)			
	主蒸気隔離弁	駆動剖	<u>10.0</u>	<u>6.2</u>
	主蒸気逃がし安全弁		9.6	6.1
	制御棒駆動系スクラム弁		<u>6.0</u>	<u>6.0</u>

表-1 機能確認済加速度(2/2)

※1 「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」に追加および 変更した箇所を下線で示す。

 $2 G=9.80665 (m/s^2)$

参考資料

 (1)(社)日本電気協会(2006):水平・鉛直地震動に対する動的機器の地 震時機能維持評価法の改定案について,第15回機器・配管系検討 会資料 No. 15-4-4-2,平成18年9月11日

設計時の制御棒挿入試験について

地震時は燃料集合体の中央部が変位することにより,制御棒の挿入時間が通 常運転時に比べて増加することが予想される。よって,地震時においても規定 時間内に制御棒が挿入可能であることを確認するために,設計時に制御棒の挿 入性試験を室温条件下にて実施した。本試験において,燃料集合体相対変位と 制御棒挿入時間の関係が確認され,健全性が確認された燃料集合体相対変位を 制御棒挿入性の許容値とした。

制御棒の耐震安全性評価としては,基準地震動 Ss に対する燃料集合体の相対 変位を算定し,上記の試験結果により確認された許容値以内であることを確認 した。

以下に、制御棒挿入性の試験方法について示す。

1. 試験条件

試験は実際に用いられている以下の2種類の制御棒について行った。

・ボロンカーバイド型

・ハフニウム板型

試験条件を図 1-1 に,試験装置例を図 1-2 に示す。加振機により装置を加振し, 制御棒を挿入することで燃料集合体の相対変位とスクラム時間の関係を確認した。

項目	条件	
温 度	室温	
匠 力	常庄*	-
加振条件	加振方向:水平方向	振方向
	加振振幅 :燃料集合体の最大振幅 の範囲	⊅ ^{\$} 0 ~40mm
	加振振動数:約 5~6H2 (燃料集合体の水中固有 加振波形 :正弦波	振動数相当)
スクラム開す の制御棒位置	時 全引き抜き状態	

 注記 *:アキュムレータ圧力の調整により原子炉定格圧力 (7.24MPa[gage])時のスクラムを模擬。

図 1-1 試験条件

2. 試験結果

試験結果を図 2-1 に示す。燃料集合体の相対変位が約 40mm において,通常の スクラム仕様である 60%ストローク 1.44 秒以内,100%ストローク 2.80 秒以内 であることが確認できたので,燃料集合体相対変位 40mm を制御棒挿入性の許 容値とした。

図 2-1 燃料集合体相対変位のスクラム時間に与える影響

使用済燃料貯蔵プールスロッシングに対する影響検討について

1. 検討方針

基準地震動 Ss による使用済燃料貯蔵プールのスロッシング評価を行い,使用済 燃料貯蔵プールからの溢水量を推定し,使用済燃料貯蔵プール内の使用済燃料お よび下階の安全系機器への影響がないことを確認する。

具体的には,使用済燃料貯蔵プールスロッシングによる溢水事象に対し,以下の 検討を行う。

- ・ 基準地震動 Ss による使用済燃料貯蔵プールからの溢水量の推定
- ・ 溢水による使用済燃料貯蔵プール水位低下に対する使用済燃料の冷却能力への影響確認
- ・ 溢水による下階の安全系機器への影響確認

2. 検討結果

- 2.1 基準地震動 Ss による溢水量の推定
 - 2.1.1 検討に用いる地震動

使用済燃料貯蔵プールのスロッシング周期は3秒から5秒の長周期領域で ある。本検討では、基準地震動 Ss の中から、スロッシング周期における応答 スペクトル値が最大となる Ss-5を用いる。

2.1.2 溢水量の推定方法

使用済燃料貯蔵プールのスロッシング評価は、参図-7.1.1の解析モデルを用いて、参図-7.1.2 に示す NS 方向、EW 方向、UD 方向の加速度により時刻歴解析を行い、溢水量を算定する。

柏崎刈羽原子力発電所6号機原子炉建屋4階の機器配置および断面,並び

に使用済燃料貯蔵プールの概要をそれぞれ参図-7.1.3~参図-7.1.5に示す。

参図-7.1.1 使用済燃料貯蔵プールの解析モデル概要

参 7.1-2

参図-7.1.3 原子炉建屋4階機器配置図

参図-7.1.4 原子炉建屋断面図(EW 断面) 参図-7.1.5 使用済燃料プール概要図

2.1.3 溢水量の推定結果

上記方法にて推定した基準地震動Ssにおける使用済燃料貯蔵プールスロッシングによる溢水量を参表-7.1.1 に示す。

参表-7.1.1 基準地震動 Ss における使用済燃料貯蔵プール

スロッシングによる溢れ	水量
溢水量	
590m ³	

〈参考〉

新潟県中越沖地震における溢水量は、簡易的な手法により141m³と評価されている。

2.2 溢水による使用済燃料の冷却能力への影響確認

推定した溢水量は,使用済燃料を冷却する能力に影響を与えない。すなわち, 溢水の補給は,サプレッションプールから残留熱除去系を通じて補給可能であ り,燃料が露出するものではない。

推定溢水量	590m ³
使用済燃料貯蔵プール面積	約 250.6m ²
通常時使用済燃料貯蔵プール水位	11.5m
水位低下量	約 2.6m
溢水後使用済燃料貯蔵プール水位	約 8.9m
使用済燃料貯蔵ラック高さ	4.54m

参表-7.1.2 溢水時の燃料プール水位確認結果

2.3 溢水による安全系機器への影響確認

2.3.1 溢水に対する設計上の考慮について

安全上重要な系統および機器は多重性、多様性を有するとともに、必要に

応じて互いに離隔距離をとる等の配置上の考慮がなされており,その安全機能 が喪失しないよう設計されている。

機器,配管系の破損による異常漏えい等の溢水に対しても,安全上重要な 系統および機器の安全機能を確保できるように,配置上の考慮や,床カーブ(せ き,勾配)の設置,漏えい検出系の設置等がなされている。

2.3.2 溢水に対する安全系機器の影響確認

使用済燃料貯蔵プール内から溢水した水は,床に設定されているファンネ ルより最下階の高電導度廃液系サンプピットに流入し,流入した水は当該サン プピットに設置されているサンプポンプにて収集タンクへ送水される。万が一, 当該サンプポンプが機能せず当該フロアに水が溜まったとしても,安全上重要 な設備は水密扉にて隔離されていることから,溢水により安全機能を喪失する ことはない。なお,溜まった水は必要に応じて拭き取り作業,仮設ポンプにて 汲み出す作業により対応することになると考えている。

以上により,スロッシングによる使用済燃料貯蔵プールからの溢水に対す る安全系機器への影響はない。

なお、溢水した水が原子炉建屋4階大物搬入口から下階に流出し、全て原 子炉建屋最地下階に溜まると仮定して水位を試算すると、0.8m程度となる。 (ただし、原子炉建屋4階大物搬入口には堰があることから(参図-7.1.3参照)、 溢水した水の一部は原子炉建屋4階に溜まると仮定した。)

2.4 溢水の低減措置

使用済燃料貯蔵プール水の地震による溢水を低減する措置として,使用済燃 料貯蔵プール周囲に柵を設置した。ただし,今回の溢水量評価は,柵を考慮し ていないので保守的な評価になっている。

地震応答解析結果(詳細)

7.2.2.4 項に示した大型機器解析モデルおよび炉内構造物解析モデルによる地震 応答解析結果(第 7.2.2.4-1 図~第 7.2.2.4-24 図)の詳細について、参図-7.2.1~ 参図-7.2.24 に示す。

T.M.S.L.[m]

参図-7.2.8 原子炉遮へい壁および原子炉本体基礎 水平方向最大応答加速度(EW 方向)

参図-7.2.9 原子炉遮へい壁および原子炉本体基礎 水平方向最大応答せん断力(NS 方向)

参図-7.2.11 原子炉遮へい壁および原子炉本体基礎 水平方向最大応答モーメント(NS 方向)

参図-7.2.12 原子炉遮へい壁および原子炉本体基礎 水平方向最大応答モーメント(EW方向)

参 7.2-4

参図-7.2.16 原子炉遮へい壁および原子炉本体基礎 鉛直方向最大応答軸力

参図-7.2.17 炉心シュフワド水平万回 最大応答加速度(NS 方向)

参図-7.2.20 炉心シュラウド水平方向 最大応答せん断力(EW 方向)

最大応答モーメント(NS 方向)

最大応答加速度

構造強度の評価例について

1. 対象設備

柏崎刈羽原子力発電所 6 号機の構造強度の評価例について,下記設備を代表設備とし評価手法を示す。

・原子炉圧力容器基礎ボルト

大型機器連成解析により算出される荷重(水平荷重,鉛直荷重,曲げモーメント)を入力条件とし,定式化された式を用いて評価を行う。

・シュラウドサポート

炉内構造物連成解析結果を用いて評価を行う。

·原子炉格納容器配管貫通部

配管の反力から入力荷重を作成し、評価を行う。

・使用済燃料貯蔵ラック

FEM 解析を用いて評価を行う。

・原子炉隔離時冷却系ポンプ

応答倍率法にて評価を行う。

·主蒸気系配管,残留熱除去系配管

スペクトルモーダル法にて評価を行う。

2. 原子炉圧力容器基礎ボルト

原子炉圧力容器基礎ボルトは、参図-7.3.1のように原子炉圧力容器のスカート部 を原子炉本体基礎に固定している。原子炉圧力容器基礎ボルトは設計時と同様に 参図-7.3.2のような応力分布を考え評価を行う。

参図 7.3.1 原子炉圧力容器基礎ボルト外形図

参図-7.3.2 基礎ボルトの等価円筒及び応力分布

参 7.3-3

2.1 荷重条件

評価に用いる荷重条件を参表-7.3.1 に示す。大型機器連成解析により算出される 地震荷重と、地震以外の荷重を組み合わせている。

荷重		Ss 地震荷重+地震以外の荷重	
垂直方向荷重 [kN]	最大	49960	
	最小	-30141	
水平方向荷重 [kN]		17600	
曲げモーメント [kN・m]		76200	

参表-7.3.1 荷重条件

2.2 応力算出

2.2.1 引張応力, 圧縮応力

基礎ボルトに生じる引張応力 σ_tは,原子炉本体基礎に生じる圧縮応力 σ_cと共 に以下の方法により求める。以下において,基礎ボルトは,断面積の等しい等 価な円筒として考える。この場合,等価円筒の板厚中心半径は原子炉圧力容器 スカート下端の中心半径とする。

参図-7.3.2において、中立軸の位置αと応力の関係は、次式で表される。

$\frac{\sigma_{\rm t}}{{\rm n}\cdot\sigma_{\rm c}} = \frac{1+\cos\alpha}{1-\cos\alpha}$	σ _t n	: 引張応力 : 基礎ボルトと原子炉本体基礎の縦 弾性係数の比
	σc	: 圧縮応力
	α	: 中立軸の位置を示す角度

また,軸力N及び曲げモーメントMのつり合いから,次式が得られる。

参 7.3-4

N : N 軸力 M : 曲げモーメント Wt : 基礎ボルトに生じる力の名 Wc : 原子炉本体基礎に生じる反抗 Mt : Wt によるモーメント Mc : Wc によるモーメント

上記の関係を満足するように α を仮定すると,実際のつり合い状態が求められる。

ここで,

$$Wt = 2r \cdot t_{1} \cdot \frac{(\pi - \alpha)\cos\alpha + \sin\alpha}{1 + \cos\alpha} \cdot \sigma_{t}$$

$$Wc = 2r \cdot t_{2} \cdot \frac{\sin\alpha - \alpha \cdot \cos\alpha}{1 - \cos\alpha} \cdot \sigma_{c}$$

$$Mt = r^{2} \cdot t_{1} \cdot \frac{2(\pi - \alpha)\cos^{2}\alpha + \pi - \alpha + 3\sin\alpha \cdot \cos\alpha}{1 + \cos\alpha} \cdot \sigma_{t}$$

$$Mc = r^{2} \cdot t_{2} \cdot \frac{\alpha - 3\sin\alpha \cdot \cos\alpha + 2\alpha \cdot \cos^{2}\alpha}{1 - \cos\alpha} \cdot \sigma_{c}$$

以上の関係より σ_t 及び σ_c は、次式で表される。

$$\sigma_{t} = \frac{n (1 + \cos \alpha) N}{2r \{ (t_{2} - n \cdot t_{1}) (\sin \alpha - \alpha \cdot \cos \alpha) - n \cdot \pi \cdot t_{1} \cdot \cos \alpha \}}$$
$$\sigma_{c} = \frac{(1 - \cos \alpha) N}{2r \{ (t_{2} - n \cdot t_{1}) (\sin \alpha - \alpha \cdot \cos \alpha) - n \cdot \pi \cdot t_{1} \cdot \cos \alpha \}}$$

2.2.2 せん断応力

基礎ボルトに生じるせん断応力 τ は,安全側の仮定としてベースプレートと 原子炉本体基礎の摩擦抵抗を無視し,次式で算出する。

$\tau = \frac{\mathbf{Q}}{\mathbf{Nb} \cdot \mathbf{A}}$	τ Q	: 基礎ボルトのせん断応力 : せん断力	
	Nb A	: 基礎ボルトの全本数 : 基礎ボルト1本あたりの断面積	

参 7.3-5
2.3 評価結果

評価結果を参表-7.3.2 に示す。発生値はいずれも評価基準値以下であることを確認した。

応力分類	発生値 [MPa]	評価基準值 [MPa]
引張応力	148	499
せん断応力	41	384

参表-7.3.2 評価結果

3. シュラウドサポート

シュラウドは燃料集合体を取り囲むように原子炉圧力容器内に設置され、シュ ラウドサポートはシュラウド下部でシュラウドを支えている(参図-7.3.3)。シュラ ウドサポートの評価は、設計時の地震による応力に応答比を乗じたものに、地震 以外による応力を組み合わせている。

参図-7.3.3 シュラウドサポート外形図

3.1 応答比

設計時の震度と基準地震動 Ss による震度を用いて、応答比(震度比)は次式で 算出される。

$$\alpha = \text{MAX} \left(\frac{\text{C}_{\text{HS}}}{\text{C}_{\text{H0}}} , \frac{\text{C}_{\text{VS}}}{\text{C}_{\text{V0}}} \right)$$

α	: 応答比	
$C_{\rm H0}$: 設計時の水平震度	
C_{V0}	: 設計時の鉛直震度	
$C_{\rm HS}$:Ss評価時の水平震度	į
C_{HS}	:Ss 評価時の鉛直震度	

応答比を参表-7.3.3 に示す。応答比は鉛直震度比を用いた。

参表-7.3.3 応答比

	水平震度	$C_{\rm HS}/C_{\rm H0}$	鉛直震度	C_{VS}/C_{V0}	応答比
設計時	0.44	2.49	0.28	2 70	2 70
Ss 評価時	1.09	2.48	1.06	3.19	5.79

上記の震度は,炉内構造物連成解析結果より得られた震度を用いた。参図-7.3.4, 参図-7.3.5 に震度評価点を示す。

3.2 応力算出

上記で算出された応答比を設計時の地震による応力に乗じ,主応力を算出する。 参表-7.3.4 に評価法を示す。

参図-7.3.4 震度評価点(炉内構造物水平方向解析モデル(EW 方向))

			設計時の応力 [MPa]	応答比	Ss 評価時の応 力[MPa]
		σt			
		σι]		Π
地震動に	こよる応力	σr		×3.79 =	
		$ au_{ m tl}$] Γ		Π
		$ au_{ m lr}$	1 [Π
		σt	┃ ノウハウ関連 ┃		┃ ノウハウ関連 ┃
	差圧による応	σι	の機密情報を	$\times 1 =$	の機密情報を
	力	σr	含むので,記	(変化なし)	含むので,記
地震以外に		$ au_{ m lr}$	載しない。		載しない。
よる応力		σt			
	外荷重による	σι		$\times 1 =$	
	応力	σr		(変化なし)	
		$ au_{ m lr}$			
地震による		Σστ	0.0		0.0
応力		Σσι	57.9		181.0
+	組合せ応力	Σσr	9.8		29.0
地震以外に		$\Sigma \tau_{\rm tl}$	0.0		0.0
よる応力		$\Sigma \tau_{ m lr}$	1.0		1.0
		σ1	57.9		181.0
主応	云力*1	σ2	0.0		0.0
		σ3	9.8		29.0
応力	強さ*2	σ	57.9		181.0
軸圧約		σι	46.1		170

参表-7.3.4 基準地震動 Ss によるシュラウドサポートレグに発生する応力評価

*1 主応力は、組合せ応力を下式に代入し、σについて解くことで算出される。

$$\sigma^{3} - (\sigma_{t} + \sigma_{l} + \sigma_{r})\sigma^{2} + (\sigma_{t}\sigma_{l} + \sigma_{l}\sigma_{r} + \sigma_{r}\sigma_{t} + \tau_{tl}^{2} - \tau_{lr}^{2} - \tau_{rt}^{2})\sigma$$

$$-(\sigma_t\sigma_l\sigma_r - \sigma_t\tau_{lr}^2 - \sigma_l\tau_{rt}^2 - \sigma_r\tau_{tl}^2 + 2\tau_{tl}\tau_{lr}\tau_{rt}) = 0$$

*2 応力強さは、主応力を下式に代入し、解くことで算出される。

 $\sigma = MAX\{ |\sigma_1 - \sigma_2|, |\sigma_2 - \sigma_3|, |\sigma_3 - \sigma_1| \}$

*3 軸圧縮応力= σ1 (地震による応力) + σ1 (外荷重による応力)

¦ σ _t :設計時の周方向応力	i
σ ₁ :設計時の軸方向応力	
σ _r : 設計時の半径方向応力	
σ_1 , σ_2 , σ_3 : 設計時の主応力	1
σ : 設計時の応力強さ	1
τ _u , τ _{lr} , τ _{rt} :設計時のせん断応力	
·	

3.3 評価結果

シュラウドサポートレグの評価結果を参表-7.3.5 に示す。発生値はいずれも評価 基準値以下であることを確認した。

応力分類	発生値 [MPa]	評価基準值 [MPa]
一次一般膜応力	181	334
軸圧縮応力	170	260

参表-7.3.5 評価結果

4. 原子炉格納容器配管貫通部

原子炉格納容器配管貫通部は,それに接続する配管の反力を荷重条件として与 え,評価を行う。

原子炉格納容器配管貫通部の形状を参図-7.3.6 に示す。配管貫通部の構造強度評価は、参図-7.3.6 に示す評価点で行っており、耐震安全性評価では裕度の低いフランジプレート(内側)を評価部位としている。

参図-7.3.6 原子炉格納容器配管貫通部の形状

4.1 垂直力,モーメント

原子炉格納容器配管貫通部の評価に用いる配管反力は,接続する配管に対して スペクトルモーダル解析を行うことによって算出される。解析に用いる床応答ス ペクトルを参図-7.3.7 に示す。配管解析結果を用いて,参図-7.3.8 に示す垂直力, モーメントが算出される。

参図-7.3.7 配管反力解析に用いた床応答スペクトル

参図-7.3.8 貫通部の荷重作用方向

4.2 応力算出

配管解析の結果算出された垂直力,モーメントを用いて,フランジプレート(内側)の曲げ応力を算出する。評価モデルを参図-7.3.9に示す。フランジプレート(内側)を等分布荷重を受ける3辺固定1辺自由の矩形板にモデル化し,以下の構造力学の公式を用いて算出される。

$$\sigma_{b} = \frac{\beta \cdot q \cdot b^{2}}{t_{3}^{2}}$$

$$q = \frac{F_{X}}{\pi (l_{a}^{2} - l_{b}^{2})} + \frac{4M_{B}'l_{a}}{\pi (l_{a}^{4} - l_{b}^{4})}$$

$$\beta : \mathbb{R}$$

$$\beta :$$

図-7.3.9 フランジプレート (内側) 評価モデル

4.3 評価結果

原子炉格納容器配管貫通部の評価結果を参表-7.3.6 に示す。発生値が評価基準値 以下であることを確認した。

参表_'	736	評	而結	果
	1.5.0	нии	凹小口。	~~

評価部位	応力分類	発生値 [MPa]	評価基準值 [MPa]
フランジプレート(内側)	曲げ応力	70	317

5. 使用済燃料貯蔵ラック

使用済燃料貯蔵ラックは,原子炉建屋の使用済燃料貯蔵プールの底部に基礎ボ ルトにより固定されている。6号機のラックは,角管(ボロン添加ステンレス鋼管) を直列に配列した構造の角管型と,鋼板(ボロン添加ステンレス鋼)を格子状に 組合わせた格子型があり,ここでは角管型のラックを評価例として示す。角管型 使用済燃料貯蔵ラックの外形図を参図-7.3.10に示す。

使用済燃料貯蔵ラックの評価は,設計時と同じ手法である FEM 解析を用いて行った。

参図-7.3.10 使用済燃料貯蔵ラック外形図(角管型176体ラック)

角管型 176 体ラックの解析モデルについては、はり要素及びシェル要素を用い た三次元 FEM モデルを用いた。角管はそれぞれ等価な断面特性を持つ1本のはり 要素とし、補強板 a~e についてもそれぞれ同様にはり要素とした。補強板 f~h は シェル要素とした。計算モデル図を参図-7.3.11 に示す。このモデルを用いてスペ クトルモーダル解析を行った。

参図 7.3.11 計算モデル (角管型 176 体ラック)

5.2 評価用震度

評価用震度を参表-7.3.7に示す。

				評価用震度	
設置場所及び	\/ \/ *\/	固有周期	水平方	向震度	
床面高さ	1/ 5/	[s]	床応答 スペクトル	動的震度	鉛直方向震度
原子炉建屋*1	1次	0.089	1.44	1 17	1.09
23.5m/18.1m	2 次	0.077	1.23	1.1/	1.08

参表-7.3.7 評価用震度

*1 T.M.S.L.23.5m と T.M.S.L.18.1m の大きい方の震度を用いる。 (T.M.S.L.:東京湾平均海面)

5.3 応力算出方法

5.3.1 はり部材の応力

FEM 解析によって,はり部材に働く引張力 F_x,せん断力 F_y, F_z及び曲げモー メント M_y, M_zが参図-7.3.12のように算出される。

参図-7.3.12 はり部材に働く荷重

引張力 F_x 及び曲げモーメント M_y , M_z により引張応力 σ_{ft} が, せん断力 F_y , F_z によりせん断応力 τ_f が算出される。

 $\sigma_{ft} \ge \tau_{f}$ により組合せ応力 σ_{fa} は、次式により算出される。

$\sigma_{\rm fa} = \sqrt{{\sigma_{\rm ft}}^3 + 3{\tau_{\rm f}}^2}$	F _x :部材に働く引張力 F _y , F _z :部材に働くせん断力
	M _y , M _z :部材に働く曲げモーメント
	σ_{ft} : はり部材に生じる引張り応力
	σ _{fa} : 部材に生じる組合せ応力
	τ _f :はり部材に生じるせん断応力

5.3.2 シェル部材の応力

FEM 解析によって、シェル部材に働くせん断応力 τ_{xy} , 引張応力 σ_x 、 σ_y が参図-7.3.13 のように算出される。

参図-7.3.13 シェル部材に働く応力

シェル部材の組合せ応力 σ_{fa} は、上記で算出したせん断応力 τ_{xy} 、引張応力 σ_{x} 、 σ_{y} を用いて次式により算出される。

$\sigma_{\rm fa} = \sqrt{\sigma_{\rm x}^2 + \sigma_{\rm y}^2 - \sigma_{\rm x}} \cdot \sigma_{\rm y} + 3\tau_{\rm xy}^2$	σ_x, σ_y:シェル部材に生じる引張応力
	τ _{xy} :シェル部材に生じるせん断応力

5.3.3 基礎ボルトの応力

基礎ボルトの荷重状態を参図-7.3.14に示す。

参図-7.3.14 基礎ボルトの荷重状態

(1) 引張応力

参図-7.3.14 の支点まわりのモーメントの平衡により,基礎ボルト1本当たりの引張力 f_{Ni}を算出する。

 $f_{N1}>f_{N2}> \cdot \cdot \cdot \cdot \cdot \cdot > f_{N6}$ の関係にあるので、 f_{N1} のみを算出する。

$$f_{Nl} = \frac{l_{Nl} \left\{ M_N - (1 - C_v) \cdot m \cdot g \cdot l_{Ng} \right\}}{n_{nl} \cdot l_{Nl}^2 + n_{n2} \cdot l_{N2}^2 + \cdots + n_{n6} \cdot l_{N6}^2} \qquad \begin{pmatrix} C_v : 鉛直方向評価用震度\\m : 使用済燃料貯蔵ラック\\の全質量\\g : 重力加速度\\n_{ij} : ベースの端から lij の位置にある基礎ボルトの本数$$

......

引張力 f_{N1} により,基礎ボルトに生じる引張応力 σ_b は,次式により算出される。

$\sigma_{b} = \frac{I_{NI}}{A_{b}}$ $\sigma_{b} : 基礎ボルトに生じる引張応刀$ $A_{b} : 基礎ボルトの軸断面積$

ただし, f_{N1}の値が負のときは基礎ボルトに引張力が生じないので,引張応 力の計算は行わない。

(2) せん断応力

基礎ボルトに生じるせん断応力は基礎ボルト全本数で受けるものとして 算出する。せん断応力 Fiにより基礎ボルトに生じるせん断応力 τbは,次式 により算出される。

$$\tau_b = \frac{F_i}{n \cdot A_b}$$

$$\tau_b : 基礎ボルトに生じるせん断応力$$

$$A_b : 基礎ボルトの軸断面積$$

5.4 評価結果

評価結果を参表-7.3.8 に示す。発生値はいずれも評価基準値以下であることを確認した。

評価部位	応力分類	発生値 [MPa]	評価基準値 [MPa]	
	引張応力	67	205	
角管	角管 せん断応力		118	
	組合せ応力	73	205	
	引張応力	77	205	
補強板 d*	せん断応力	 発生値 [MPa] 67 カ 19 カ 73 77 カ 16 カ 80 92 カ 25 	118	
	組合せ応力	80	205	
甘水光儿上	引張応力	92	455	
本 使 か ノレ ト	せん断応力	25	350	

参表-7.3.8 評価結果

*補強板は最も余裕の小さい部位を記載した。

6. 原子炉隔離時冷却系ポンプ

原子炉隔離時冷却系ポンプは、蒸気タービンにて駆動する横置きポンプで、基礎ボルトにて固定されている。原子炉隔離時冷却系ポンプの外形図を参図-7.3.15 に示す。

設計時の地震に対する余裕が比較的大きな設備であるため(評価基準値/設計時の発生値 = 8.95),応答倍率法にて評価を行った。

6.1 応答比

評価に用いる応答比は下式により算出される。

応答比を、参表-7.3.9に示す。応答比は鉛直震度比を用いた。

なお,評価に用いた震度は,原子炉隔離時冷却系ポンプ設置レベルである原子 炉建屋地下3階(T.M.S.L.-8.2m(T.M.S.L.:東京湾平均海面))の評価用震度を用 いた。

	水平震度	$C_{\rm HS}/C_{\rm H0}$	鉛直震度	C_{VS}/C_{V0}	応答比
設計時	0.34	2.71	0.28	2.42	3.43
Ss 評価時	0.92	2.71	0.96	5.45	

参表-7.3.9 応答比

6.2 応力算出

上記で算出した応答比を,設計時の発生値(22.6MPa)に乗じることで,基準地震動 Ss による発生値が算出される。

6.3 評価結果

原子炉隔離時冷却系ポンプ基礎ボルトの引張応力の評価結果を参表-7.3.10 に示 す。発生値は評価基準値以下であることを確認した。

参表-7.3.10 評価結果

評価部位	応力分類	応答比	設計時応力 [MPa]	発生値 [MPa]	評価基準値 [MPa]
基礎ボルト	引張応力	3.43	22.6	78	202

7. 主蒸気系配管, 残留熱除去系配管

配管系の評価に関しては、以下のように設計時と同様の手法を用いて行う。

7.1 配管系の評価法

配管系は、アンカーサポートが設置されている箇所にてモデルを分割して 3 次 元多質点系はりにてモデル化する。モデル化に際しては、曲げ、せん断、ねじり、 軸力に対する剛性を考慮し、弁等の偏心重量がある場合には、その影響を評価で きるよう考慮する。

配管系のモデル化の例を参図-7.3.16 に,主蒸気系配管のモデルを参図-7.3.17 に, 残留熱除去系配管のモデルを参図-7.3.18 に示す。

参図-7.3.17 主蒸気系配管解析モデル(耐震強化工事実施)

参図-7.3.18 残留熱除去系配管解析モデル(耐震強化工事実施)

7.2 評価結果

参図-7.3.17 および参図-7.3.18 の解析モデルを用いて、スペクトルモーダル解析 法により、主蒸気系配管及び残留熱除去系配管の基準地震動 Ss に対する応答解析 を行った。主蒸気系配管の解析に用いた床応答スペクトルを参図-7.3.19 に、残留 熱除去系配管の解析に用いた床応答スペクトルを参図-7.3.20 に、評価結果を参表 -7.3.11 に示す。なお、発生値は参図-7.3.17、参図-7.3.18 に示す耐震強化工事(サ ポート強化、追設)を行った後の値を記載した。発生値はいずれも評価基準値以 下であることを確認した。

評価設備	評価部位	応力分類	発生値 [MPa]	評価基準値 「MPal
主蒸気系配管	配管本体	一次応力	201	375
残留熱除去系配管	配管本体	一次応力	192	363

参表-7.3.11 評価結果

参図-7.3.19 主蒸気系配管に用いた床応答スペクトル

固有周期[秒]

参図-7.3.20 残留熱除去系配管に用いた床応答スペクトル