柏崎刈羽原子力発電所1号機 「発電用原子炉施設に関する耐震設計審査指針」の 改訂に伴う耐震安全性評価

原子炉建屋基礎地盤の安定性評価について

平成22年1月29日 東京電力株式会社

原子炉建屋基礎地盤の安定性評価

- 1. 評価方針
- 2. 地質概要
- 3. 評価方法
- 4. 評価結果
- 5. まとめ

原子炉建屋基礎地盤について、基準地震動Ssによる地震 カに対して十分な支持性能をもつことの評価を行う。

東京電力

1号機周辺の地質概要

^對号機付近地質水平断面図(標高-40m)

■1号機基礎地盤は西山層からなる。西山層は、塊状無層理の泥岩を主体としている。
 ■小断層としては高角度のα断層、β断層およびV系断層、低角度のF系断層、地すべりに起因する①・②断層などが認められる。

東京電力

地質鉛直断面図(A-A')

■1号機は北側の背斜構造と南側の向斜構造の間に位置する。
 ■4号炉試掘坑で確認された低角度のF5断層は,標高-300m付近以深に分布する。
 ■へき開含有帯は,F5断層に沿って分布し,浅部では2層準分布している。

東京電力

地質鉛直断面図(B-B')

1号機は海側の背斜構造と山側の向斜構造の間に位置する。

解析手法・評価フロー

【解析手法】

- ①二次元静的有限要素法解析
- ・施工過程を考慮した自重解析
- ②二次元動的有限要素法解析
- ・水平地震動と鉛直地震動の同時入力
- ·等価線形化法による周波数応 答解析手法

解析モデル

【地盤モデル】

解析モデルは地質断面図をもとに作成。F5断層、V系断層、①・②断層、α・β断層を考慮 【建屋モデル】

原子炉建屋、タービン建屋の質点系モデルを基に作成

3. 評価方法 境界条件 【自重解析(静的解析)】 ^{▼-ビン 原子炉} ^{建屋} [●] [●] [●] [●]

θ

固定境界

【地震応答解析(動的解析)】

鉛直ローラ境界

地下水位条件

原子炉建屋汀線平行断面

既往解析用物性値と地震後取得した物性値の比較

■地震後の荒浜側調査ボーリング物性値は3・4号増設時既往解析用物性値と概ね整合することから、解析には当該物性値(3・4号増設時)を用いることを基本とする。

繰返し三軸試験結果 (参考)

繰返し三軸試験(強度特性)の試験条件

試験条件	圧密非排水条件				
拘束圧	有効土被り圧	相当			
供試体寸法	直径約5cm>	<高さ約10cm			
載荷方法	応力制御法				
	載荷荷重	各段階の前に繰返し載荷の最大軸差応 カの1/2の軸差応力を載荷			
靜的軟何	載荷速度	西山層:0.07 N/mm²/min程度 椎谷層:0.10 N/mm²/min程度			
	波形	正弦波(O.5 Hz)			
多段階繰返 し載荷	載荷回数	各段階で10回			
	載荷荷重	最大軸差応力を段階的に増加			

繰返し三軸試験による強度は三軸試験による強度を上回る。

解析用物性值設定(試験方法)

		西山層(泥岩) 西山層(へき開含有帯)		断層部				
物理 特性	密度			密度試験結果				
静的	静弹性係	数		三軸圧縮試験結果				
変形特性	静ポアソン	ン比		三軸圧縮試験結果				
	初期動せ/ 弾性係	ん断 数	P S 検層に。 および密度	PS検層によるS波速度 および密度より算定				
動的 変形特性	動せん断弾性係数 のひずみ依存性		動的単純せん断試験結果	繰返し三軸試験結果	動的単純せん断試験結果			
シルドラム 動ポアソン比		ン比	PS検層によるP波速度	弾性波速度測定試験結果				
	減衰定数		動的単純せん断試験結果	繰返し三軸試験結果	動的単純せん断試験結果			
	C _u		三軸圧縮試験結果					
強度特性	ヒーク強度	σ_{t}	圧裂試験結果 一軸引張試験結果	_	_			
	残留強度							

* 灰爪層は地震後の調査結果より設定

解析用物性值(西山層,灰爪層)

		西山層(泥岩)	西山層(へき開含有帯)	灰爪層			
物理 特性	単位体積重量 (g/cm ³)		単位体積重量 (g/cm ³)		単位体積重量 (g/cm ³) 1.58-0.00076·Z		1.71
静的	静弹性係数 E ₀ (N/mm ²)	381-2.07· <i>Z</i>	193 +178∙ <i>P</i>	255+434· <i>P</i>		
<u> </u>	静ポアソン比	ν	0.46	0.43	0.49		
初期動せん断弾性係数 <i>G</i> ₀ (N/mm ²)		E係数)	251−2.10· <i>Z</i>	332	395		
動的 変形特性	動せん断弾性係数 のひずみ依存性		$1/(1+2.65\gamma^{1.37})$	1/(1+2.97γ ^{0.95})	1/(1+3.03 y ^{0.852})		
	動ポアソン比 $\nu_{\rm d}$		0.463+0.00017· <i>Z</i>	0.44	0.46		
	減衰定数		減衰定数 27.4γ1.00+0.7		8.49 y ^{0.323}		
	ピーク強度 (N/mm ²)		低圧部: ア _R =0.58-0.0011・ <i>Z</i> 高圧部: <i>C</i> _u = 0.83-0.0056・ <i>Z</i> <i>φ</i> =6.5+0.021・Z	0.42+0.31 <i>·P</i>	0.98+0.66· <i>P</i>		
強度特性		σt	0.48	-			
	残留強度 <i>C</i> _{ur} (N/mm ²)		0.49-0.0016·Z	0.42+0.22· <i>P</i>	0.62+0.72· <i>P</i>		

▶ 注: Zは標高(m)を示す。注: Pは地下水位を考慮した圧密圧力(N/mm²)を示す。 *各要素ごとにZとPを算定して解析用物性値を設定している。

🛃 東京電力

解析用物性値(F5断層,V系断層,①・②断層)

		F5断層*	V系断層, α・β断層	①・②断層			
物理 特性	単位体積重量 (g/cm ³⁾	粘土部:1.95、破砕部:1.58 層厚の重み付き平均 = 1.77 1.58		1.59			
静的	静弹性係数 E ₀ (N/mm ²)	粘土部:96.1+147· <i>P</i> 破砕部:135+159· <i>P</i>	135+159· <i>P</i>	118+135· <i>P</i>			
复形特性	静ポアソン比 <i>v</i>	0.46	0.46	0.44			
動的 変形特性 -	初期動せん断弾性係数 <i>G</i> _O (N/mm ²)	粘土部:108、破砕部:228 層厚の重み付き平均 = 147	228	158			
	動せん断弾性係数 のひずみ依存性 0.00134 <i>G</i> ₁ · <i>G</i> ₂ /(<i>G</i> ₁ + <i>G</i> ₂) 粘土部: <i>G</i> ₁ =1100/(1+2.94 γ ^{0.99}) 破砕部: <i>G</i> ₂ =2320/(1+2.80 γ ^{0.77})		1/(1+2.80 y ^{0.77})	1/(1+2.68 y ^{0.75})			
	動ポアソン比 ν_{d}	粘土部:0.49、破砕部:0.45 層厚の重み付き平均=0.47	0.45	0.45			
	(h1G2+h2G1)/(G1+G2)減衰定数(h1G2+h2G1)/(G1+G2)粘土部: h1=21.3 r 0.96+2.8破砕部: h2=12.7 r 0.57+1.8		12.7γ ^{0.57} +1.8	11.0γ ^{0.55} +2.0			
谷田村村	ピーク強度 <i>C</i> u (N/mm ²)	0.40+0.06· <i>P</i>	低圧部:0.32+0.61· <i>P</i> 高圧部:0.73+0.18· <i>P</i>	0.41+0.19· <i>P</i>			
强度特性	残留強度 <i>C</i> ur (N/mm ²)	0.23+0.24· <i>P</i>	低圧部:0.31+0.61· <i>P</i> 高圧部:0.54+0.19· <i>P</i>	0.40+0.18· <i>P</i>			

注: Pは地下水位を考慮した圧密圧力(N/mm²)を示す。

*試掘坑等での観察結果の粘土部,破砕部の積層構造を考慮し,等価物性を設定

注: α · β 断層の解析用物性値は、V系断層と同じ試験結果を用いている。* 各要素ごとに Pを算定して解析用物性値を設定している。

東京電力

入力地震動

入力地震動は基準地震動Ss を用いる。

解析モデルの下端(T.M.S.L -300m)へ直接基準地震動 Ssを入力する。

地震	憂動	内容	方向	最大加速度 (gal)
	応答スペクト		水平	2300
F	SS-1	ルに基フく地 震動評価	鉛直	1050
B		断層モデルを	水平(NS)	847
断層	Ss-2	用いた手法に よる地震動評	水平(EW)	1703
	(価)		鉛直	510
	応答スペクト		水平	600
長	38-3	ルに至して地 震動評価	鉛直	400
岡	岡山 断層モデルを		水平(NS)	589
- 野	Ss-4	用いた手法に よる地震動評	水平(EW)	574
禄			鉛直	314
断層		断層モデルを	水平(NS)	553
帯	Ss-5	用いた手法に よる地震動評	水平(EW)	554
	の地展到評価		鉛直	266

入力地震動

評価内容

(1) すべり安全率

想定したすべり線上の応力状態をもとに、すべり線上のせん断抵抗力の 和をすべり線上のせん断力の和で除して求める。

(想定すべり線)
 原子炉建屋基礎底面沿い,断層沿いとする。
 例)
 ④
 「「「「「「」」」」」
 「「」」」」
 「「」」」」
 「「」」」」
 「「」」」」
 「「」」」」
 「「」」」」
 「「」」」」
 「「」」」」
 「「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」」
 「」」
 「」」」
 「」」
 「」」」
 「」」
 「」」
 「」」
 「」」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」」
 「」
 「」
 「」
 「」」
 「」」
 「」
 「」」
 「」
 「」」
 「」」
 「」」
 「」
 「」」
 「」
 「」
 「」」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」
 「」

(2) 原子炉建屋基礎底面の傾斜

基礎底面両端それぞれの鉛直方向の変位の差を基礎底面幅で除す。

(3) 原子炉建屋基礎地盤の支持力

動的FEM解析結果

①原子炉建屋の基礎底面の地盤に作用する <u>
鉛直方向の合力</u>が最大となる時刻

②原子炉建屋の基礎底面に接する地盤要素 の鉛直応力が最大となる時刻

- ■要素ごとの安全係数分布 安全係数が1を下回る要素が連続す るか?
- ■モビライズド面(潜在すべり面) 安全係数が1を下回る要素に連続性 がある場合、それらが潜在すべり面 の向きと整合し、連続するすべり線 として想定することができるか?

すべり安全率(汀線平行方向)

	<u>※Ss-1に対する評価においてすべり安全率が最小</u>					
すべり線形状のパターン		Ss-1	Ss-2	Ss-3	Ss-4	Ss-5
建屋底面のすべり		3.1	4.3	4.0	7.1	4.6
建屋底面のすべり		2.7	3.8	3.6	6.4	4.0
F5断層+2)断層のすべり		2.0	3.7	3.1	5.8	3.3
F5断層のすべり		2.1	3.4	3.0	5.2	3.0
F5断層のすべり		1.9	3.4	2.9	5.2	3.0
F5断層+β断層のすべり		3.8	6.6	5.9	10.3	6.0
◎評価基準値1.5を上回っ	ている	S .				

中越沖地震1号機推定地震動の概要

要素ごとの安全係数(中越沖地震1号機推定地震動)

要素ごとの安全係数

目的外使用禁止 東京電力株式会社

原子炉建屋基礎底面の傾斜(汀線平行方向)

※Ss-1に対する評価において基礎底面の傾斜が最大

	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5
原子炉建屋基礎底面両端の 鉛直方向の相対変位の最大値 $\max(\delta_{AY} - \delta_{BY})$	4.0 cm	2.1 cm	2.1 cm	1.1 cm	1.3 cm
原子炉建屋基礎底面 の傾斜の最大値 max(る _{AY} ーる _{BY} /L)	1/2,100	1/4,200	1/4,100	1/8,200	1/6,700

※安全上重要な機器・配管系の安全機能に 支障を与えるものではない。

* 1/1,000までの建屋傾斜は機器に対して影響ないことを確認済 (運営管理・設備健全性評価WG設備健全性評価SWG(第6回) において報告)

原子炉建屋基礎地盤の支持力(汀線平行方向) Ss-1,要素鉛直応力最大時(T=9.09秒)

安全係数が1を下回る要 素が連続せず,連続する すべり線を想定できない

京電力

東京電力

すべり安全率(汀線直交方向)

※Ss-1に対する評価においてすべり安全率が最小

すべり線形状のパターン	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5
建屋底面のすべり	2.1	3.1	3.5	4.4	3.7
建屋底面のすべり	2.4	2.6	3.4	4.3	3.4
建屋底面のすべり	2.4	2.5	3.4	3.9	3.2
α 断層のすべり	2.7	3.4	4.1	5.2	4.1
β 断層のすべり	3.1	3.7	4.7	5.4	4.7

◎評価基準値1.5を上回っている。

要素ごとの安全係数(汀線直交方向)

原子炉建屋基礎底面の傾斜(汀線直交方向)

※Ss-1に対する評価において基礎底面の傾斜が最大

	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5
原子炉建屋基礎底面両端の 鉛直方向の相対変位の最大値 max($ \delta_{AY} - \delta_{BY} $)	3.2cm	2.0cm	1.6cm	1.6cm	1.1cm
原子炉建屋基礎底面 の傾斜の最大値 max(る _{AY} ーる _{BY} /L)	1/2,700	1/4,400	1/5,400	1/5,500	1/7,800

※安全上重要な機器·配管系の安全機能に 支障を与えるものではない。

* 1/1000までの建屋傾斜は機器に対して影響ないことを確認済 (運営管理・設備健全性評価WG設備健全性評価SWG(第6回) において報告)

原子炉建屋基礎地盤の支持力(汀線直交方向)

Ss-1,要素鉛直応力最大時

破壊表示は当該時刻で判定

2.0<Fs 1.5<Fs≦2.0 1.0<Fs≦1.5 せん断破壊

引張破壊

要素ごとの安全係数分布

安全係数が1を下回る要 素が連続せず,連続する すべり線を想定できない

要素ごとの安全係数分布

安全係数が1を下回る要 素が連続せず,連続する すべり線を想定できない

「京電力

5. まとめ

(1) 想定すべり線におけるすべり安全率

- (2) 原子炉建屋基礎底面の傾斜
- (3) 原子炉建屋基礎地盤の支持力

【評価結果】 (1) 想定すべり線における安全率 評価基準値1.5を上回っている。 (2) 原子炉建屋基礎底面の傾斜 安全上重要な機器・配管系の安全機能に支障を与えるものではない。 (3) 原子炉建屋基礎地盤の支持力 安全係数が1を下回るような連続したすべり線は形成されない。

