福島第一原子力発電所5号機 安全上重要な建物・構築物及び 機器・配管系の耐震安全性評価

平成21年6月17日 東京電力株式会社

. 安全上重要な建物・構築物の耐震安全性評価

- 1 建物概要
- 2 基準地震動 S s の概要
- 3 入力地震動の算定
- 4 地震応答解析モデル
- 5 地震応答解析結果
- 6 耐震安全性評価結果

. 安全上重要な機器・配管系の耐震安全性評価

. 参考資料

新耐震指針に照らした耐震安全性評価の流れ

. 安全上重要な建物・構築物の耐震安全性評価

1 建物概要

評価対象建屋

図1-1 福島第一原子力発電所 配置図

5号機原子炉建屋の概要

5

. 安全上重要な建物・構築物の耐震安全性評価

2 基準地震動Ssの概要

新指針に基づく基準地震動Ss

7

新指針に基づく基準地震動Ss

図2-7 新・旧指針による基準地震動の比較

3 入力地震動の算定

入力地震動の算定(水平方向)

埋め込みを考慮した水平モデルであるため、 一次元波動論に基づき、解放基盤表面レベ ルに想定する基準地震動Ssに対する地盤 応答として評価

地盤の切欠き効果を考慮し、建屋基礎底面 レベルのせん断力(切欠き力)を付加して 評価

入力地震動の算定(鉛直方向)

ー次元波動論に基づき、解放基盤表面レベ ルに想定する基準地震動 S s に対する地盤 の応答を基礎底面レベルに直接入力し評価

地盤モデル及び物性値については、原子炉建屋付近の地盤の調査結果に基づき設定

標高 0.P. (m)	地質	せん断波 速度 Vs	単位体積 重量	ポ [°] アソン比	せん断 弾性係数 G	初期せん断弾 性係数 _{G0}	剛性 低下率 G/G ₀	ヤング 係数 E	減衰 定数 h	層厚 H
()		(m/s)	(kN/m³)		$(\times 10^{5} \text{kN/m}^{2})$	$(\times 10^{5} \text{kN/m}^{2})$		$(\times 10^{5} \text{kN/m}^2)$	(%)	(m)
13.0										
4.5	砂岩	380	17.8	0.473	2.20	2.62	0.84	6.48	3	8.5
-73.0	泥岩	470	17.0	0.459	2.95	3.83	0.77	8.61	3	77.5
-99.0	泥岩	530	17.4	0.447	3.83	4.98	0.77	11.08	3	26.0
-181.0	泥岩	580	17.4	0.443	4.60	5.97	0.77	13.28	3	82.0
-196.0	泥岩	750	17.6	0.410	7.78	10.10	0.77	21.94	3	15.0
	解放 基盤	750	17.6	0.410	10.10	10.10	1.00	28.48	-	-

表3-1 地盤定数(Ss-1H)

標高	地質	せん断波 速度	単位体積 重量	ポアソン比	せん断 弾性係数	初期せん断弾 性係数	剛性 低下率	ヤング 係数	減衰 定数	層厚
0.P. (m)		Vs			G	Go	G/G_0	E	h	Η
(111)		(m/s)	(kN/m ³)		$(\times 10^{5} \text{kN/m}^{2})$	$(\times 10^{5} \text{kN/m}^{2})$		$(\times 10^{5} \text{kN/m}^{2})$	(%)	(m)
13.0										
4.5	砂岩	380	17.8	0.473	2.23	2.62	0.85	6.57	3	8.5
-73.0	泥岩	470	17.0	0.459	3.06	3.83	0.80	8.93	3	77.5
-99.0	泥岩	530	17.4	0.447	3.98	4.98	0.80	11.52	3	26.0
-181.0	泥岩	580	17.4	0.443	4.78	5.97	0.80	13.80	3	82.0
-196.0	泥岩	750	17.6	0.410	8.08	10.10	0.80	22.79	3	15.0
	解放 基盤	750	17.6	0.410	10.10	10.10	1.00	28.48	-	-

表3-2 地盤定数(Ss-2H)

標高	地質	せん断波 速度	単位体積 重量	ポアソン比	せん断 弾性係数	初期せん断弾 性係数	剛性 低下率	ヤング 係数	減衰 定数	層厚
(m)		Vs (m/s)	(kN/m ³)		G (×10 ⁵ kN/m ²)	G_0 (× 10 ⁵ kN/m ²)	G/G ₀	E (×10 ⁵ kN/m ²)	h (%)	H (m)
13.0			(1.1.7.1.7)		(****************	(**********		(*****		
4.5	砂岩	380	17.8	0.473	2.25	2.62	0.86	6.63	3	8.5
-73.0	泥岩	470	17.0	0.459	2.95	3.83	0.77	8.61	3	77.5
-99.0	泥岩	530	17.4	0.447	3.83	4.98	0.77	11.08	3	26.0
-181.0	泥岩	580	17.4	0.443	4.60	5.97	0.77	13.28	3	82.0
-196.0	泥岩	750	17.6	0.410	7.78	10.10	0.77	21.94	3	15.0
	解放 基盤	750	17.6	0.410	10.10	10.10	1.00	28.48	-	-

表3-3 地盤定数(Ss-3H)

地盤定数(鉛直方向)

算定に用いる地盤モデルは、建屋底面位置より上部を剥ぎ取った地盤モデルを用いる。 疎密波速度は、水平方向の入力地震動算定に用いた地盤モデルの等価せん断波速度と ポアソン比から求めた

表3-4 地盤定数(Ss-1V)

標高 0.P.	地質	せん断波 速度	単位体積 重量	ポアソン比	せん断 弾性係数	初期せん断 弾性係数	剛性 低下率	ヤング 係数	剛性低下後 S波速度	剛性低下後 P波速度	減衰 定数	層厚
(m)		Vs (m/s)	(kN/m ³)		G (×10 ⁵ kN/m ²)	G ₀ (×10 ⁵ kN/m)	G/G ₀	E (×10 ⁵ kN/m ²)	Vs (m/s)	Vp (m/s)	h (%)	H (m)
13.0 4.5	砂岩		無視									
0.94	泥岩						無視					
-73.0	泥岩	470	17.0	0.459	2.95	3.83	0.77	8.61	413	1500	3	73.9
-99.0	泥岩	530	17.4	0.447	3.83	4.98	0.77	11.08	465	1500	3	26.0
-181.0 _	泥岩	580	17.4	0.443	4.60	5.97	0.77	13.28	509	1590	3	82.0
-196.0	泥岩	750	17.6	0.410	7.78	10.10	0.77	21.94	658	1690	3	15.0
	解放 基盤	750	17.6	0.410	10.10	10.10	1.00	28.48	750	1920	-	-

地盤定数(鉛直方向)

標高 0.P. (m)	地質	せん断波 速度 Vs	単位体積 重量	ポ アソン比	せん断 弾性係数 G	初期せん断 弾性係数 G ₀	剛性 低下率 G/G ₀	ヤング 係数 E	剛性低下後 S波速度 Vs	剛性低下後 P波速度 Vp	減衰 定数 h	層厚 H
40.0		(m/s)	(kN/m³)		(×10°kN/m²)	(×10 [°] kN/m)		(×10°kN/m²)	(m/s)	(m/s)	(%)	(m)
13.0	砂岩						無視					
4.5												
0.94	泥岩						無視					
-3.06												
-73.0	泥岩	470	17.0	0.459	3.06	3.83	0.80	8.93	420	1530	3	69.9
-99.0	泥岩	530	17.4	0.447	3.98	4.98	0.80	11.52	474	1530	3	26.0
-181.0	泥岩	580	17.4	0.443	4.78	5.97	0.80	13.80	519	1620	3	82.0
-196.0	泥岩	750	17.6	0.410	8.08	10.10	0.80	22.79	671	1720	3	15.0
	解放 基盤	750	17.6	0.410	10.10	10.10	1.00	28.48	750	1920	-	-

表3-5 地盤定数(Ss-2V)

表3-6 地盤定数(Ss-3V)

標高 0.P.	地質	せん断波 速度	単位体積 重量	ポアソン比	せん断 弾性係数	初期せん断 弾性係数	剛性 低下率	ヤング 係数	剛性低下後 S波速度	剛性低下後 P波速度	減衰 定数	層厚
(m)		Vs (m/s)	(kN/m ³)		G (×10 ⁵ kN/m ²)	G ₀ (×10 ⁵ kN/m)	G/G ₀	Ε (×10 ⁵ kN/m ²)	Vs (m/s)	Vp (m/s)	h (%)	H (m)
13.0 4.5	砂岩						無視					
0.94 -3.06	泥岩						無視					
-73.0	泥岩	470	17.0	0.459	2.95	3.83	0.77	8.61	413	1500	3	69.9
-99.0	泥岩	530	17.4	0.447	3.83	4.98	0.77	11.08	465	1500	3	26.0
-181.0	泥岩	580	17.4	0.443	4.60	5.97	0.77	13.28	509	1590	3	82.0
-196.0	泥岩	750	17.6	0.410	7.78	10.10	0.77	21.94	658	1690	3	15.0
	解放 基盤	750	17.6	0.410	10.10	10.10	1.00	28.48	750	1920	-	-

入力地震動評価法の妥当性確認

敷地内の観測記録を使用し「一次元波動論」による評価の検証を実施した 入力地震動 2003年5月26日宮城県沖の地震/(M7.0)O.P.-130mでの観測波 福島第一原子力発電所において原子炉建屋基礎版上で過去最大加速度を記録した地震

図3-3 福島第一原子力発電所 地震観測点配置図

入力地震動評価法の妥当性確認

東京電力

NS方向、EW方向とも観測波の最大応答にほぼ対応、上下方向は保守的な値となる 耐震安全性評価に用いる入力地震動の算定に際し、妥当なことを確認した

4 地震応答解析モデルの設定

地震応答解析モデル(水平方向)

地震応答解析モデル(水平方向)

表4-1 モデルの諸元 (NS方向)

質点重量 ⊮(kN)	回転慣性重量 I₀(×10 ⁶ kN・m²)	せん断断面積 A _s (m ²)	断面2次モーメント I(m ^⁴)
21,420	3.94		44.050
20,250	3.73	18.8	11,950
63,170	11.63	28.2	14,779
83 300	15 33	183.7	23,888
111 940	20.50	155.8	25,975
111,040	20.59	207.0	45,617
141,010	25.96	181.1	47,273
227,110	41.81	- 354.5	117,612
300,450	60.12	2 812 6	562 754
135,000	27.01	2,012.0	502,754
1,103,550	ヤング係数 <i>E</i> c	$2.57 \times 10^7 (kN/m^2)$	
	せん断弾性係数G	$1.07 \times 10^7 (kN/m^2)$	
	ポアソン比	0.20	
	減衰h	5%	
	質点重量 W(kN) 21,420 20,250 63,170 83,300 111,840 141,010 227,110 300,450 135,000 1,103,550	質点重量 W(kN) 回転慣性重量 I ₆ (× 10 ⁶ kN·m ²) 21,420 3.94 20,250 3.73 63,170 11.63 83,300 15.33 111,840 20.59 141,010 25.96 227,110 41.81 300,450 60.12 135,000 27.01 1,103,550 ヤング係数Ec せん断弾性係数C ポアソン比 減衰方	質点重量 W(kN) 回転慣性重量 $l_{G}(x 10^{6} kN m^{2})$ せん断断面積 $A_{G}(m^{2})$ 21,420 3.94 18.8 20,250 3.73 28.2 63,170 11.63 183.7 83,300 15.33 155.8 111,840 20.59 207.0 141,010 25.96 181.1 227,110 41.81 354.5 300,450 60.12 2,812.6 135,000 27.01 1.07 × 10 ⁷ (kN/m ²) 1,103,550 ポアソン比 0.20 減衰h 5% 5%

基礎形状 49.0m(NS方向)×57.4m(EW方向)

表4-2 モデルの諸元 (EW方向)

質点番号	質点重量 ₩(kN)	回転慣性重量 I _G (×10 ⁶ kN・m ²)	せん断断面積 A _s (m ²)	断面2次モーメント I (m ⁴)
1	21,420	2.21		
2	20,250	2.09	14.0	6,948
0	00.470	0.50	21.1	8,650
3	63,170	6.52	96.0	12,728
4	83,300	8.60	124 1	15 511
5	111,840	20.59	12 1. 1	10,011
6	141.010	25.96	172.8	34,327
7	227 110	63.36	239.2	47,077
1	227,110	02.30	348.4	140,127
8	300,450	82.49	2 812 6	772 237
9	135,000	37.07	_,	,
合計	1,103,550	ヤング係数 <i>Ec</i> せん断弾性係数 <i>G</i>	$2.57 \times 10^7 (kN/m^2)$ 1.07 × 10 ⁷ (kN/m ²)	
		ポアソン比	0.20	
		減衰h	5%	
		基礎形状	49.0m(NS方向)×57.	4m(EW方向)

地震応答解析モデル(鉛直方向)

京電力

地震応答解析モデル(鉛直方向)

表4-3 モデルの諸元 (鉛直方向)

	建屋									
質点番号	質点重量 ₩(kN)	軸断面積 A _N (m ²)	軸ばね剛性 K _A ×10 ⁸ (kN/m)							
1	14,893									
2	20,250	- 55.3	1.73							
3	63,170	62.1	2.02							
4	83.300	284.1	9.58							
	111 840	294.9	14.04							
5	111,840	385.2	12.07							
6	141,010	419.3	12.68							
7	227,110	675.5	14.16							
8	300,450	2 912 6	180.71							
9	135,000	2,012.0	100.71							
合計	1,103,550		トラス端部回転拘束							
			基礎形状							

屋根								
質点番号	質点重量 ₩(kN)	せん断断面積 A _s (×10 ⁻² m ²)	断面2次モーメント I (m ⁴)					
1	_							
1	-	11.35	0.9975					
10	4 377		010010					
10	ч,011	6 10	0.0075					
11	2 150	0.10	0.9975					
11	2,150							

コンクリート部

ヤング係数 <i>E</i> c	2.57×10^7 (kN/m ²)
せん断弾性係数 <i>G</i>	1.07×10^7 (kN/m ²)
ポアソン比	0.20
減衰h	5%

鉄骨部

ヤング係数 E_s 2.05×10⁸ (kN/m²) せん断弾性係数*G* 7.90×10⁷(kN/m²) ポアソン比 0.30 減衰h 2%

ťねK

2.31 \times 10⁷ (kN·m/rad) 49.0m(NS方向)×57.4m(EW方向)

解析に用いるコンクリートの物性値

表4-4 物性値

	強度 ^{* 1} Fc	ヤング係数 E	せん断弾性係数 G	ポアソン比	単位体積重量*2		
コンクリート	(N/mm²)	(N/mm²)	(N/mm²)		(kN/m³)		
	35.0	2.57 × 10 ⁴	1.07 × 10 ⁴	0.2	24		
鉄筋			SD345相当 (S	D35)			
鋼材 SS400,SM400A相当 (SS41,SM41A)							

*1:強度は「実状に近い強度」を採用 *2:鉄筋コンクリートの値を示す

設計基準強度	22.1	N∕mm²
試験体数	373	本
平均圧縮強度	37.4	N/mm²
解析採用値	35.0	N / mm²

表4-5 圧縮強度試験データ分析結果

コンクリート強度の設定にあたっては、 過去の圧縮強度試験データを収集し、 試験データのばらつきを考慮し圧縮強 度平均値を小さめに5N/mm²刻みで まるめた値とした

表4-6 ばね定数と減衰係数 (Ss-1H)

(NS方向)

		ばね		減衰		
ばね番号	質点 番号	地盤はね 成分	ばね定数 ^(*1)	採用振動数	減衰係数 ^(*2)	採用振動数 ^(*3)
			Kc	(Hz)	Сс	f₁(Hz)
K1	8	側面・並進	2.96 × 10 ⁶	1.16	5.92 × 10 ⁵	2.46
K2	8	側面・回転	1.92 × 10 ⁹	0.01	1.14 × 10 ⁸	2.46
K3	9	側面・並進	2.56 × 10 ⁶	1.16	5.12 × 10 ⁵	2.46
K4	9	側面・回転	1.66 × 10 ⁹	0.01	9.89 × 10 ⁷	2.46
K5	9	底面・並進	5.01 × 10 ⁷	0.00	2.09 × 10 ⁶	2.46
K6	9	底面・回転	3.70 × 10 ¹⁰	0.00	3.74 × 10 ⁸	2.46

(*1) K1,K3,K5ltkN/m K2,K4,K6ltkN·m/rad

(*2) K1,K3,K5ltkN · s/m K2,K4,K6ltkN · s · m/rad

(*3) f₁は連成系の1次固有振動数

	L L		ばれ	b	減衰			
ばね番号	質点 番号	地盤はね 成分	ばね定数 ^(*1)	採用振動数	減衰係数 ^(*2)	採用振動数 ^(*3)		
			Кс	(Hz)	Сс	f₁(Hz)		
K1	8	側面・並進	2.96 × 10 ⁶	1.16	5.92 × 10 ⁵	2.55		
K2	8	側面・回転	1.92 × 10 ⁹	0.01	1.15 × 10 ⁸	2.55		
К3	9	側面・並進	2.56 × 10 ⁶	1.16	5.12 × 10 ⁵	2.55		
K4	9	側面・回転	1.66 × 10 ⁹	0.01	9.99 × 10 ⁷	2.55		
K5	9	底面・並進	4.93 × 10 ⁷	0.00	2.02 × 10 ⁶	2.55		
K6	9	底面・回転	4.64 × 10 ¹⁰	0.00	5.70 × 10 ⁸	2.55		

(EW方向)

(*1) K1,K3,K5l\$kN/m K2,K4,K6l\$kN•m/rad

(*2) K1,K3,K5l**t**kN · s/m K2,K4,K6l**t**kN · s·m/rad

(*3) f₁は連成系の1次固有振動数

表4-7 ばね定数と減衰係数 (Ss-2H)

(NS方向)

			ばね		減衰		
ばね番号	買点 番号	地盤はね 成分	ばね定数 ^(*1)	採用振動数	減衰係数 ^(*2)	採用振動数 ^(*3)	
	Ч		Кс	(Hz)	Сс	f ₁ (Hz)	
K1	8	側面・並進	3.06 × 10 ⁶	1.18	6.02 × 10 ⁵	2.49	
K2	8	側面・回転	1.99 × 10 ⁹	0.01	1.16 × 10 ⁸	2.49	
К3	9	側面・並進	2.65 × 10 ⁶	1.18	5.21 ×10 ⁵	2.49	
K4	9	側面・回転	1.72 × 10 ⁹	0.01	1.00 × 10 ⁸	2.49	
K5	9	底面・並進	5.18 × 10 ⁷	0.00	2.12 × 10 ⁶	2.49	
K6	9	底面・回転	3.85 × 10 ¹⁰	0.00	3.81 × 10 ⁸	2.49	

(*1) K1,K3,K5ltkN/m K2,K4,K6ltkN·m/rad

(*2) K1,K3,K5ltkN · s/m K2,K4,K6ltkN · s·m/rad

(*3) f₁は連成系の1次固有振動数

			ば	h	減	衰		
ばね番号	買点 番号	地盤はね 成分	ばね定数 ^(*1)	採用振動数	減衰係数 ^(*2)	採用振動数 ^(*3)		
	田っ川以川		Кс	(Hz)	Сс	f₁(Hz)		
K1	8	側面・並進	3.06 × 10 ⁶	1.18	6.02 × 10 ⁵	2.59		
K2	8	側面・回転	1.99 × 10 ⁹	0.01	1.17 × 10 ⁸	2.59		
K3	9	側面・並進	2.65 × 10 ⁶	1.18	5.21 ×10 ^⁵	2.59		
K4	9	側面・回転	1.72 × 10 ⁹	0.01	1.02 × 10 ⁸	2.59		
K5	9	底面・並進	5.10 × 10 ⁷	0.00	2.06 × 10 ⁶	2.59		
K6	9	底面・回転	4.83 × 10 ¹⁰	0.00	5.82 × 10 ⁸	2.59		

(EW方向)

(*1) K1,K3,K5l\$kN/m K2,K4,K6l\$kN•m/rad

(*2) K1,K3,K5lJkN · s/m K2,K4,K6lJkN · s·m/rad

(*3) f₁は連成系の1次固有振動数

表4-8 ばね定数と減衰係数 (Ss-3H)

(NS方向)

			ば	h	減	衰
ばね番号	質点 番号	地盤はね 成分	ばね定数 ^(*1)	採用振動数	減衰係数 ^(*2)	採用振動数 ^(*3)
	H		Кс	(Hz)	Сс	f ₁ (Hz)
K1	8	側面・並進	2.96 ×10 ⁶	1.16	5.92 × 10 ⁵	2.46
K2	8	側面・回転	1.92 × 10 ⁹	0.01	1.14 × 10 ⁸	2.46
K3	9	側面・並進	2.56 × 10 ⁶	1.16	5.12 ×10 ⁵	2.46
K4	9	側面・回転	1.66 × 10 ⁹	0.01	9.89 × 10 ⁷	2.46
K5	9	底面・並進	5.01 × 10 ⁷	0.00	2.09 × 10 ⁶	2.46
K6	9	底面・回転	3.70 × 10 ¹⁰	0.00	3.74 × 10 ⁸	2.46

(*1) K1,K3,K5ltkN/m K2,K4,K6ltkN·m/rad

(*2) K1,K3,K5ltkN · s/m K2,K4,K6ltkN · s · m/rad

(*3) f₁は連成系の1次固有振動数

			ば	h	減	衰		
ばね番号	じ し し し し し し し し し し し し し し し し し し し	地盤はね 成分	ばね定数 ^(*1)	採用振動数	減衰係数 ^(*2)	採用振動数 ^(*3)		
	н,		Кс	(Hz)	Сс	f1(Hz)		
K1	8	側面・並進	2.96 × 10 ⁶	1.16	5.92 × 10 ⁵	2.55		
K2	8	側面・回転	1.92 × 10 ⁹	0.01	1.15 ×10 ⁸	2.55		
К3	9	側面・並進	2.56 × 10 ⁶	1.16	5.12 ×10 ⁵	2.55		
K4	9	側面・回転	1.66 × 10 ⁹	0.01	9.99 × 10 ⁷	2.55		
K5	9	底面・並進	4.93 × 10 ⁷	0.00	2.02 × 10 ⁶	2.55		
K6	9	底面・回転	4.64 × 10 ¹⁰	0.00	5.70 × 10 ⁸	2.55		

(EW方向)

(*1) K1,K3,K5ltkN/m K2,K4,K6ltkN·m/rad

(*2) K1,K3,K5lJkN · s/m K2,K4,K6lJkN · s·m/rad

(*3) f₁は連成系の1次固有振動数

表4-9 ばね定数と減衰係数 (Ss-1V:鉛直方向)

			ばれ	ばね		減衰	
ばね番号	質点 番号	地盤ばね 成分	ばね定数 Kc(kN/m)	採用振動数 ^(Hz)	減衰係数 Cc(kN·s/m)	採用振動数 ^(:*1) (Hz)	
K1	9	底面・鉛直	8.03 × 10 ⁷	0.00	4.77 × 10 ⁶	4.19	

(*1) 11は連成系の1次固有振動数

表4-10 ばね定数と減衰係数 (Ss-2V:鉛直方向)

		ばね	ばね		減衰	
ばね番号	質点 番号	地盤ばね 成分	ばね定数 Kc(kN/m)	採用振動数 ^(Hz)	減衰係数 Cc(kN·s/m)	採用振動数 ^(:*1) (Hz)
K1	9	底面・鉛直	8.32 × 10 ⁷	0.00	4.87 × 10 ⁶	4.26

(*1) f1は連成系の1次固有振動数

表4-10 ばね定数と減衰係数 (Ss-3V: 鉛直方向)

		ばれ	ばね		減衰	
ばね番号	質点 番号	地盤はね 成分	ばね定数 Kc(kN/m)	採用振動数 ^(Hz)	減衰係数 Cc(kN·s/m)	採用振動数 ^(:*1) (Hz)
K1	9	底面・鉛直	8.03 × 10 ⁷	0.00	4.77 × 10 ⁶	4.19

(*1) 11は連成系の1次固有振動数

地震応答解析モデルの変更点

表4-11 地震応答解析モデル及び手法の比較

項目	内容	工認モデル	バックチェックモデル
入力地震動 建屋のモデル化	入力地震動の算定 方法	基礎マット下端に既往波を直接 入力	一次元波動論による評価
建屋-地盤相互作用	解析モデル	S R モデル	埋込みSRモデル
材料特性		コンクリート設計基準強度 22.1N/mm ² (225kgf/cm ²) ヤング係数 2.06×10 ⁴ (N/mm ²) ポアソン比 0.167	コンクリート実強度 35.0N/mm ² ヤング係数 2.57×10 ⁴ (N/mm ²) ポアソン比 0.2
建屋のモデル化	剛性評価	耐震壁を考慮	同左
	減衰定数	R C : 5 %	同左
	せん断断面積	耐震要素の全断面積の ½	地震方向の耐震要素のせん断断面 積の和
	断面 2 次モーメン ト	有効フランジ幅 ½ 中立軸:炉心位置 (オペフロ上部は中心位置)	有効フランジ幅 ¼ 中立軸:耐震要素毎に算定
地般のエデリル	底面ばね	水平及び回転を考慮	水平及び回転を考慮
	側面ばね	水平を考慮	水平及び回転を考慮
コヒックロンパキャント	耐震壁	設定せず(線形)	非線形特性を設定
	底面ばね	設定せず(線形)	非線形特性を設定

0

地震応答解析モデルの変更点

		工認モデル	バックチェックモデル
		an a she an	59.05 1
		$m \sim m \sim \frac{1}{2}$	50.82
		· • • • • • •	42.92 🕒 3
		20. 20.00 B	35.30 4
解析		21	
モデル		te service of the	
		a Mar o .	13.20 • 7
			0.94 -3.06 -3.07 -
側面地盤	剛性	NS方向解析時 水平ばね:6.19×10 ⁷ (kN/m) 回転ばね:無し	基礎上端面までの各質点にNOVAKの方法により求め,JEAGにより 近似したばねを考慮 Ss-1H入力のNS方向解析時 水平ばね:5.52×10 ⁶ (kN/m)
1212			回転ばね:3.58×10 ⁹ (kNm/rad)
	減 衰	安全側に各モード5%として考慮	NOVAKの方法により求め, JEAGにより近似した減衰係数を考慮
底面地盤	NS方向解析時 NS方向解析時 水平ばね:4.37×10 ⁷ (kN/m) 回転ばね:3.01×10 ¹⁰ (kNm/rad)		Ss-1H入力のNS方向解析時 水平ばね:5.01×10 ⁷ (kN/m) 回転ばね:3.70×10 ¹⁰ (kNm/rad)
	減 衰	安全側に各モード5%として考慮	振動アドミッタンス理論により求め,JEAGにより近似した減衰係 数を考慮

表4-12 地震応答解析モデル及び手法の比較(2)

モデル諸元の違いが建屋応答にあたえる影響について、「建屋のコンクリート強度」 「側面回転ばね」「建屋減衰」に着目して影響検討を行った

解析ケース	コンクリート強度	建屋減衰	埋め込み効果
バックチェックモデル	実強度	5 %	水平 + 回転
ケース1 (設計強度)	設計基準強度	5 %	水平 + 回転
ケース2 (側面回転ばね無視)	実強度	5 %	水平
ケース3 (建屋減衰3%)	実強度	3 %	水平 + 回転
ケース4 (設計ベースモデル)	設計基準強度	5 %	水平

表4-13 解析ケースの一覧(水平方向)

オペフロ階以上の層で若干のばらつきがあるが、建屋モデルの違いによる影響は大きくない

原電力

図4-5 床応答スペクトル(NS方向:h=0.05)

オペフロ階以上の層で若干のばらつきがあるが、建屋モデルの違いによる影響は大きくない

東京電力

図4-6 床応答スペクトル(EW方向:h=0.05)

オペフロ階以上の層で若干のばらつきがあるが、建屋モデルの違いによる影響は大きくない

東京電力
モデル諸元の違いが建屋応答にあたえる影響について、「建屋のコンクリート強度」 「側面回転ばね」「建屋減衰」に着目して影響検討を行った

解析ケース	コンクリート強度	建屋減衰
バックチェックモデル	実強度	5 %
ケース1 (設計強度)	設計基準強度	5 %
ケース3 (建屋減衰3%)	実強度	3 %

表4-14 解析ケースの一覧(鉛直方向)

図4-8 最大応答加速度分布(鉛直方向:屋根トラス)

オペフロ階以上の層で若干のばらつきがあるが、建屋モデルの違いによる影響は大きくない

京電力

図4-9 床応答スペクトル(鉛直方向:h=0.05)

オペフロ階以上の層で若干のばらつきがあるが、建屋モデルの違いによる影響は大きくない

京電力

床の柔性を考慮した検討結果について

表4-15 解析モデルの条件

項	E	床剛モデル (耐震安全性評価モデル)	床柔モデル
	コンクリート強度	35.0N/mm ²	同左
剛性評価	ヤング係数	$25.7 \times 10^3 \text{N/mm}^2$	同左
	考慮範囲	耐震壁	同左
減衰定数	鉄筋コンクリート	5%(複素減衰:一定減衰)	同左
	建屋-地盤相互作用	埋込みSRモデル	同左
解析モデル	建屋モデル	質点系 1 軸モデル	質点系多軸モデル
	地盤ばね	JEAGによる近似法	同左
側面ばね		水平・回転を考慮	同左
1次固有周期 (sec)		0.371(NS) 0.358(EW)	0.382(NS) 0.368(EW)
解析手法		周波数応答解析	同左
入力均	也震動	基礎版上観測記録	同左

図4-10 床柔モデル(NS方向)

床の柔性を考慮した検討結果について

床の柔性を考慮した検討結果について

図4-15 床応答スペクトル(NS方向)

床の柔性を考慮した検討結果について

5 地震応答解析結果

地震応答解析

地震応答解析

基準地震動Ss(2E₀)

(Ss-1H)

図5-2 時刻歴応答波形(NS方向)

図5-3 基準地震動の応答スペクトル (NS方向)

地盤-建物連成解析モデルへの 入力地震動(E+F)の算定

(Ss-1H)

図5-4 加速度時刻歷波形(NS方向)

東京電力

地震応答解析

床応答スペクトルの算定

図5-6 床応答スペクトル (O.P.42.92m/NS方向)

地震応答解析

地震応答解析

基準地震動Ss(2E₀)

(Ss-3V)

図5-9 時刻歴応答波形(鉛直方向)

東京電力

-

地震応答解析

地盤-建物連成解析モデルへの 入力地震動(E+F)の算定

図5-11 時刻歴応答波形(鉛直方向)

図5-12 入力地震動の応答スペクトル (基礎底面2E/鉛直方向)

地震応答解析

床応答スペクトルの算定

固有値解析結果

表5-1 固有値(固有周期,固有振動数) および刺激係数(水平方向、NS方向)

(Ss-1H)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.407	2.46	1.789	地盤建屋連成一次
2	0.185	5.40	-1.005	
3	0.090	11.17	0.274	
4	0.065	15.28	-0.021	
5	0.056	17.76	-0.065	

(Ss-2H)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.401	2.49	1.794	地盤建屋連成一次
2	0.183	5.47	-1.018	
3	0.089	11.20	0.286	
4	0.065	15.32	-0.021	
5	0.056	17.77	-0.067	

(Ss-3H)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.407	2.46	1.789	地盤建屋連成一次
2	0.185	5.40	-1.005	
3	0.090	11.17	0.274	
4	0.065	15.28	-0.021	
5	0.056	17.76	-0.065	

(Ss-1H)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.392	2.55	1.841	地盤建屋連成一次
2	0.185	5.41	-1.137	
3	0.105	9.56	0.326	
4	0.069	14.57	0.023	
5	0.056	17.71	-0.063	

(Ss-2H)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.386	2.59	1.848	地盤建屋連成一次
2	0.182	5.48	-1.159	
3	0.104	9.60	0.341	
4	0.068	14.61	0.022	
5	0.056	17.72	-0.065	

(Ss-3H)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.392	2.55	1.841	地盤建屋連成一次
2	0.185	5.41	-1.137	
3	0.105	9.56	0.326	
4	0.069	14.57	0.023	
5	0.056	17.71	-0.063	

固有値解析結果

表5-3 固有値(固有周期,固有振動数) および刺激係数(鉛直方向)

(Ss-1V)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.317	3.16	3.024	屋根トラス一次
2	0.238	4.19	-2.104	地盤建屋連成一次
3	0.099	10.10	0.084	
4	0.046	21.60	-0.110	
5	0.029	34.22	0.047	

(Ss-2V)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.317	3.16	2.902	屋根トラス一次
2	0.235	4.26	-1.985	地盤建屋連成一次
3	0.099	10.10	0.087	
4	0.046	21.61	-0.114	
5	0.029	34.22	0.048	

(Ss-3V)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.317	3.16	3.024	屋根トラス一次
2	0.238	4.19	-2.104	地盤建屋連成一次
3	0.099	10.10	0.084	
4	0.046	21.60	-0.110	
5	0.029	34.22	0.047	

地震応答解析結果

地震応答解析結果

地震応答解析結果

図5-21 最大応答加速度 (鉛直方向)

京電力

図5-23 最大応答軸力 (鉛直方向)

基礎浮上りの検討結果(接地率)

表5-4 接地率

(単位:%)

	Ss - 1	Ss-2	Ss-3
NS方向	79.7	78.1	87.5
E W方向	90.6	87.3	97.6

建物の接地率は、JEAG4601-1991に基づき、地震応答解析の結果得られた最大転倒モーメントを用い、地震反力を三角形分布と仮定して算出

接地率 は下式により算出

$$\eta = \frac{1}{2} \left(3 - \frac{M}{M_0} \right) = 3 \left(\frac{1}{2} - \frac{M}{WL} \right)$$

- η :接地率 (>1.0の場合は=100%とする。)
- M:最大転倒モーメント(基礎下端の最大応答モーメント)
- $M_0: 浮上り限界転倒モーメント$
- W:建屋総重量(鉛直地震力および浮力は無視)
- L :加振方向の基礎長さ

接地率は、基礎浮上り非線形を考慮した地震応答解析結果を用いることができる65%以上 をであることを確認した

. 安全上重要な建物・構築物の耐震安全性評価

6 耐震安全性評価結果

耐震安全性評価結果(耐震壁)

表6-1 耐震壁の最大応答せん断ひずみ一覧

基準地震動Ss	N S 方向		EW方向	
	最大応答 せん断ひずみ	部位	最大応答 せん断ひずみ	部位
Ss - 1	0.15 × 10 ⁻³	1 階	0.19 × 10 ⁻³	5階
Ss-2	0.16 × 10 ⁻³	1階	0.18 × 10 ⁻³	5階
Ss-3	0.13 × 10 ⁻³	1 階	0.16 × 10 ⁻³	5階

耐震壁の最大応答せん断ひずみは、最大で0.19×10⁻³(Ss-1、EW方向、5階) であり、評価基準値(2.0×10⁻³)を超えないことを確認した

耐震安全性評価結果(耐震壁)

.安全上重要な機器・配管系の耐震安全性評価

- 基準地震動Ssに対する耐震設計上重要な機器・配管系の安全 機能の保持の観点から耐震安全性の評価を実施
- 中間報告における評価対象施設は、新耐震指針によるSクラスの施設のうち、原子炉を「止める」、「冷やす」、放射性物質を「閉じ込める」に係る安全上重要な機能を有する主要な施設

具体的な評価対象設備、評価内容等について、次ページ以降に示す

評価対象設備(福島第一原子力発電所5号機)

原子炉を「止める」、「冷やす」、放射性物質を「閉じ込める」に 係る安全上重要な機能を有する次の主要な施設

評価対象部位(福島第一原子力発電所5号機) (1/3)

評価対象部位(福島第一原子力発電所5号機) (2/3)

評価対象部位(福島第一原子力発電所5号機) (3/3)

67

■構造強度評価

- <u>応答倍率法</u>による評価や、<u>スペクトルモーダル法や定式化され</u>
 <u>た評価式を用いた解析法</u>等による詳細評価を行い、基準地震動 Ssにより設備に発生する応力を算出する。
- 基準地震動Ssにより設備に発生する応力が、<u>材料の許容され</u>
 <u>る強度(評価基準値)以下</u>であることを確認する。

1 地震以外の荷重についても,適切に考慮した上で評価を実施する。

- 動的機能維持評価(制御棒挿入性)
 - 基準地震動Ssによる燃料集合体の相対変位を求め、その相対変位が <u>試験により挿入性が確認された相対変位以下</u>であることを 確認。

動的機能維持評価の流れ(制御棒挿入性)

炉内構造物の解析モデル例(福島第一原子力発電所5号機)

水平方向は、多質点モデル化し、それぞれの質点間を曲げ、 せん断剛性を有するはり、またはばねにより結合する。

炉内構造物の解析モデル例(福島第一原子力発電所5号機)

鉛直方向は,質点間を軸剛性(圧縮,引張に対する剛性)を 有するばねにより結合する。

床応答スペクトル(福島第一原子力発電所5号機)

- 建物・構築物,大型機器の地震応答解析で得られた各位置の加速 度応答時刻歴を用いて水平方向および鉛直方向について算定
- 算定にあたっては、地盤や建屋の物性等のばらつきが床応答に与える影響を考慮し、「原子力発電所耐震設計技術指針 JEAG4601-1987」等を参考に周期軸方向に±10%拡幅

原則として「原子力発電所耐震設計技術指針JEAG4601-1991追補版」に規定された値とし,試験等で妥当性が確認 された値も用いる。

☆+ / 本 + / エ = ル	減衰定数	牧(%)	(# +2	
刘家旭武	水平方向	鉛直方向	1佣	
溶接構造物	1.0	1.0	原子炉圧力容器(基礎ボルト) 原子炉格納容器(ドライウェル) 炉心支持構造物(シュラウドサポート)	
ポンプ・ファン等の 機械装置	1.0	1.0	残留熱除去系ポンプ(基礎ボルト)	
燃料集合体	7.0	1.0	制御棒挿入性	
配管系	0.5 ~ 3.0	0.5 ~ 3.0	残留熱除去系配管 主蒸気系配管	

荷重の組合せ(1/3)

- 中間報告においては、「通常運転時に生じる荷重」および「運転時の異常な過渡変化時に生じる荷重」と基準地震動Ssによる地震力を組み合わせて評価する。
 - 福島第一原子力発電所における基準地震動Ssの年超過確率は,概ね 10⁻⁴/年から10⁻⁶/年である。
 - 「原子力発電所耐震設計技術指針JEAG4601-1984」における運転 状態と地震動との組合せに関する記載の中で,基準地震動S₂の発生確 率は5×10⁻⁴~10⁻⁵/年としている。
 - JEAG4601-1984の考え方に基づけば, JEAG4601-1984にて 想定しているS₂の発生確率よりも福島第一原子力発電所における基準 地震動Ssの年超過確率が小さいことから, <u>これまでの工事計画認可に</u> <u>おいて実績のある荷重組合せの考え方が適用できる</u>と考えている。
- 最終報告においては、上記の組み合わせに加えて、「事故時に生じる荷重」の発生確率と継続時間および地震動の超過確率の関係を踏まえ、「事故時に生じる荷重」については弾性設計用地震動Sdとの組み合わせを考慮した評価を実施する。

荷重の組合せ(2/3)

荷重の組合せ(3/3)

東京電力

評価結果(福島第一原子力発電所5号機)

■ 基準地震動Ssによる応答値,相対変位が評価基準値以下である ことを確認した。

● 構造強度評価

河価対象設備	河(田立(六	応力	発生値	評価基準値	評価 1
	고 여마 폐 구마	分類	(MPa)	(MPa)	手法
原子炉圧力容器	基礎ボルト	引張	39	222	
原子炉格納容器	ドライウェル	膜	90	255	
炉心支持構造物	シュラウドサポート	膜	86	300	
残留熱除去系ポンプ	基礎ボルト	引張	29	202	
残留熱除去系配管	配管本体	一次	197	364	
主蒸気系配管	配管本体	一次	356	417	

1 :応答倍率法による評価、 :詳細評価

• 動的機能維持評価

制御棒(挿入性) 13.8 40.0	評価対象設備	地震時の相対変位(mm)	評価基準値(mm)
	制御棒(挿入性)	13.8	40.0

構造WG Aサブグループにおける主な論点

	コメント概要	回答概要
(1)	【地震応答解析手法および応力評価手法】 応答倍率法の適用性について説明すること	「応答倍率法の基本的な考え方」にて、応答 倍率法を適用しない設備、適用する設備の例 を提示し、詳細評価が必要か否かのスクリー ニングに用いる手法としては妥当であるとの 考えを説明。
(2)	【評価が厳しい機器・配管系の評価】 機器・配管系の評価では、設備ごとに厳し い部位が異なるのでそれを踏まえて結果を 確認すること。	中間報告においては、評価対象設備の耐震安 全性を確認する観点から重要な評価部位を建 設工認時の耐震計算書を参考に選定している。 機器毎に評価部位を説明。

構造WGAサブグループの主な論点(1)応答倍率法の適用性について

新耐震指針に照らした耐震安全性評価では,機器・配管系設備の評価手法として応答倍率法を適用

応答倍率法による評価の適用に関する整理を行い、本手法の適用性について検討

耐震設計の流れ

構造強度評価の流れ(再掲)

応答倍率法の基本的な考え方

■応答倍率法とは

- ✓設計条件から基準地震動Ssによる評価条件への倍率(応答比)を算 定して、設計時応力に乗じることで許容基準値を超えるかどうかの判 定を行うもの。
- ✓応答倍率法による算出応力が許容基準値を超えるかどうか判断が困難 なものについては詳細評価を行う。

■応答倍率法の目的

- ✓原子力発電所は多数の設備を有しているため、耐震安全性評価に長期 間を要している。
- ✓できるだけ早期に評価結果を報告することは重要と考えており、その ための評価手法として、設備の発生応力を推定し、許容基準値を超え ないことを速やかに確認することを目的に応答倍率法を採用。
- ✓従って、応答倍率法による算出値は地震による発生応力そのものを示しているわけではないが、詳細評価を行う設備を選定するスクリーニングのための値と考えており、便宜上、発生応力として報告書に記載。

応答比

■応答荷重比を用いた評価

設備の発生応力値を算出するにあたり、せん断力、モーメント、軸力を用いる機器は、基準地震動Ssによる地震力と既往評価の地震力との 比を応答比とする。

■応答加速度比を用いた評価

設備の発生応力値を算出するにあたり,加速度を用いる機器は,基準 地震動Ssによる床応答スペクトル等からの水平加速度と鉛直加速度の 二乗和平方根と,既往評価で用いた床応答スペクトル等からの水平加速 度と鉛直加速度の二乗和平方根との比を応答比とする。

■構造WGの審議等を踏まえ、今後評価を行う設備に関しては、応答加速度比の算出方法を以下の様に変更することとしている。

応答比 = MAX
$$\left(\frac{C_{H}}{C_{H0}}, \frac{C_{V}}{C_{V0}}\right)$$

に
による水平方向評価震度
 C_{H0} : 既往評価による北平方向評価震度
 C_{V0} : 既往評価による鉛直方向評価震度
 C_{V0} : 基準地震動Ssによる鉛直方向評価震度

応答比を用いた評価

応答倍率法の適用に関する整理(1/4)

■応答倍率法を適用する設備

設計時の余裕が比較的大きい設備

例)ポンプ,ファン等の床置機器

応答倍率法の精度の高さが期待できる設備

例)原子炉圧力容器,原子炉格納容器,炉内構造物

■応答倍率法を適用しない設備

地震に対する応答が比較的複雑な設備

例) 配管類

指針改訂に伴い、従来の設計手法とは異なる手法の採用が適切な設備 例)原子炉建屋クレーン

耐震強化等の工事により、応答倍率法が適用できない設備 例)配管類

応答倍率法の適用に関する整理(2/4)

設備	設計手法の特徴	適用する 応答比	応答倍率法の適用に あたってのスタンス	設備の割合
原子炉 格納容器	建物と継程の演成の		荷重を用いて設計を行っ ている設備については, 基準地雲動Sola トム評価	
原子炉 圧力容器	建物と機器の建成解 析により,各評価部 位の荷重,加速度に 其づき、応力を質出	応答荷重比	本学地展到35による計画 荷重が算出されていれば, 加速度設計の設備よりも 比較的特度上く応答値の	約4割
炉内構造物	巫ノC, 応乃を弁山。 		<u> 11段的相反なて応答値の</u> <u> 予測が可能なので,応答</u> <u> 倍率法を適用</u> する。	
			加速度を用いて設計している 設備のうち, <u>設計時の余裕が</u> 大きい設備については,詳細	約4割
床置き機器 (ポンプ, ファン,熱交 換器,盤等)	主に建物の応答解析 により,算出される 床の応答加速度に基 づき応力を算出。	応答加速度比	設計を行わすとも, 評価基準 値以下になることが容易に推 定できるため, 応答倍率法を 適用する。比較的余裕が小さ い設備に対しては, 設計時の 評価手法や地震の寄与等を検 討し, 必要に応じて詳細評価 を実施する。	(このうち,設計 時の裕度*が10を 下回る設備は2割 程度(2F-4の例)) *裕度 (評価基準値 / 発生値)

応答倍率法の適用に関する整理(3/4)

設備	設計手法の特徴	適用する 応答比	応答倍率法の適用に あたってのスタンス	設備の 割合
配管	振動モードを考慮したスペク トルモーダル解析により応力 を算出。	なし (詳細評価)	多数の振動モードを持つ特 性を有する設備であり,応 答倍率による <u>応答予測が困</u> <u>難であることから詳細評価</u> <u>を実施</u> する。	約2割
クレーン	建物の応答解析による応答加 速度に基づき応力を算出。	なし (詳細評価)	鉛直方向地震力を動的に考 慮することは, <u>設計時の手</u> <u>法にて適切な評価が困難で</u> <u>あるため,詳細評価を実施</u> する。	数設備

応答倍率法の適用に関する整理(4/4)

■まとめ

応答倍率法は,

(1)評価基準値に対して大きな余裕がある中での適用
 (2)比較的精度良く評価を行える設備への適用
 であり,<u>評価基準値を超えるかどうかの判定を適切に行える</u>

ものと考えている。

1.構造WGAサブグループの主な論点

(2)機器・配管系の評価について

■福島第一原子力発電所5号機

√原子炉圧力容器

√原子炉格納容器

✓ 炉心支持構造物

✓残留熱除去系ポンプ

✓配管(残留熱除去系配管,主蒸気配管)

√制御棒挿入性

福島第一5号機 原子炉圧力容器(基礎ボルト)

原子炉格納容器 - 原子炉圧力容器連成解析(以下, PCV-RPV連成解析)により,地震による荷重(せん断力,モーメント,軸力)を算出する。また,地震以外の荷重については,設計時の値をそのまま用い,各荷重のつり合い計算により原子炉圧力容器基礎ボルトに発生する応力値を求める。

福島第一5号機 原子炉格納容器(サンドクッション部)

PCV-RPV連成解析により地震による荷重(せん断力,モーメント,鉛直震度)が算出 される。設計時の当該荷重,耐震安全性評価時の当該荷重をそれぞれ比較することにより,水平方向応答比,鉛直方向応答比を求め,それぞれの比のうち最大の値を応答比と する。設計時の発生値に応答比を乗じ,原子炉格納容器サンドクッション部の発生値を 算出する。

福島第一5号機 炉心支持構造物(シュラウドサポートレグ)

炉内構造物連成解析により、荷重(せん断力、モーメント、軸力)を算出し、計算機コードによる解析を実施することで地震による応力を算出する。また、地震以外の条件である内圧、差圧、外荷重については、設計時の値をそのまま用いて、それらの応力値を組合せてシュラウドサポートレグの発生値を算出する。

福島第一5号機 残留熱除去系ポンプ(基礎ボルト)

福島第一5号機 配管(残留熱除去系配管,主蒸気系配管)

原子炉建屋の応答解析,あるいはPCV-RPV連成解析による床応答スペクトルに基づいて,スペクトルモーダル解析を実施し,配管の発生値を算出する。

福島第-5号機 残留熱除去系配管の評価に用いた 水平方向床応答スペクトル(1/2)

<u>原子炉建屋のO.P.35.3m, O.P.29.9m, O.P.21.7m, O.P.13.2m,</u>
 <u>O.P.0.94m各フロアそれぞれにおいて, Ss-1(NS, EW), Ss-2(NS, EW),</u>
 <u>Ss-3(NS, EW)による床応答スペクトルを包絡, ±10%拡幅</u>した上で, 各フロアのスペクトルを包絡して作成。

福島第一5号機 残留熱除去系配管の評価に用いた 水平方向床応答スペクトル(2/2)

原子炉建屋のO.P.35.3m, O.P.29.9m, O.P.21.7m, O.P.13.2m,
 O.P.0.94m各フロアそれぞれにおいて, Ss-1(NS, EW), Ss-2(NS, EW),
 Ss-3(NS, EW)による床応答スペクトルを包絡, ±10%拡幅した上で, <u>各フ</u>
 <u>ロアのスペクトルを包絡</u>して作成。

福島第一5号機 残留熱除去系配管の評価に用いた 鉛直方向床応答スペクトル(1/2)

■<u>原子炉建屋のO.P.35.3m, O.P.29.9m, O.P.21.7m, O.P.13.2m</u>, <u>O.P.0.94m各フロアそれぞれにおいて, Ss-1, Ss-2, Ss-3による床応答ス</u> ペクトルを包絡, ±10%拡幅した上で, 各フロアのスペクトルを包絡して作成。

福島第一5号機 残留熱除去系配管の評価に用いた <u>鉛直方向床応答スペクトル(2/2)</u>

原子炉建屋のO.P.35.3m, O.P.29.9m, O.P.21.7m, O.P.13.2m,
 O.P.0.94m各フロアそれぞれにおいて, Ss-1, Ss-2, Ss-3による床応答スペクトルを包絡, ±10%拡幅した上で, 各フロアのスペクトルを包絡して作成。

福島第一5号機 主蒸気系配管の評価に用いた 水平方向床応答スペクトル

 ■配管の重心に近い位置(原子炉遮へい壁のO.P.19.68m)において,_Ss-1(NS, EW), Ss-2(NS, EW), Ss-3(NS, EW)による床応答スペクトルを包絡し, ±10%拡幅して作成。

福島第一5号機 主蒸気系配管の評価に用いた 鉛直方向床応答スペクトル

■配管の重心に近い位置(原子炉遮へい壁のO.P.19.68m)において,_Ss-1, Ss-2, Ss-3による床応答スペクトルを包絡し,±10%拡幅して作成。

102

福島第一5号機 制御棒(挿入性)

制御棒の地震時挿入性については、地震による燃料集合体の相対変位が試験により挿入 性が確認された相対変位以下であることを確認した。

(参考資料)モーダル減衰と地盤ばねの減衰定数について(水平)

参表 -1 ひずみエネルギー比例型モーダル 減衰定数の算定結果

(NS方向, Ss-1H)

参表	-2	モーダル減衰定数及び算定に用いた数値
		(NS方向, Ss-1H)

					-
次数	固有周期 (s)	固有振動数 (Hz)	刺激係数*	モーダル 減衰定数 (%)	備考
1	0.407	2.46	1.789	17.07	地盤建屋連成一次
2	0.185	5.40	-1.005	33.39	
3	0.090	11.17	0.274	9.46	

	1F5		1次		2次			3次					
			各部材の 減衰定数	歪エネルギ ー の比率	×	各部材の 減衰定数	歪エネルギー の比率	×	各部材の 減衰定数	歪エネルギー の比率	×		
	建屋		5.0%	17.8%	0.9%	5.0%	18.1%	0.9%	5.0%	87.0%	4.4%		
			並進	58.8%	2.6%	1.5%	65.4%	2.6%	1.7%	68.2%	0.1%	0.1%	
	0.1.0.94	個番	回転	36.2%	2.2%	0.8%	52.7%	1.1%	0.6%	61.9%	0.5%	0.3%	
地盤	地盤	则囬	並進	58.8%	1.6%	1.0%	65.4%	2.7%	1.8%	68.2%	0.1%	0.1%	
ばね	U.F3.00		回転	36.3%	1.9%	0.7%	52.7%	1.0%	0.5%	61.9%	0.4%	0.2%	
	O.P3.06		면	並進	28.2%	31.7%	8.9%	46.0%	53.0%	24.4%	58.2%	2.9%	1.7%
		瓜田	回転	7.7%	42.2%	3.3%	16.4%	21.5%	3.5%	30.4%	8.9%	2.7%	
合	計(モーダル減	衰定数	女)			17.1%			33.4%			9.5%	

注*:各モードごとに固有ベクトルの最大値を1に基準化して得られる刺激係数を示す。

原電力

1次が地盤建屋連成のスウェイモード、2次が地盤建屋連成のロッキングモード、3次が建屋単独の モードとなっている。したがって、参表 -1及び参表 -2に示すモーダル減衰定数は、1次および 2次では地盤減衰の影響が大きく、3次では地盤減衰の影響が比較的小さくなっている。

参表 -3 ひずみエネルギー比例型モーダル減衰定数の算定結果 (鉛直方向, Ss-1V)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数*	モーダル 減衰定数 (%)	備考
1	0.317	3.16	3.024	3.50	屋根トラス一次
2	0.238	4.19	-2.104	45.39	地盤建屋連成一次
3	0.099	10.10	0.084	2.08	屋根トラス二次

注*:各モードごとに固有ベクトルの最大値を1に基準化して得られる刺激係数を示す。

原電力

1次が屋根トラスの一次モード、2次が地盤建屋連成の一次モード、3次が屋根トラスの二次 モードとなっている。したがって、参表 -3に示すモーダル減衰定数は、2次で地盤減衰の 影響が大きく、1次および3次では地盤減衰の影響が比較的小さくなっている。

(参考資料)弾性設計用地震動 Sd の設定について

弾性設計用地震動Sdは、基準地震動Ssによる安全機能維持をより確実なものとする観点から、弾性設計用地震動Sdと基準地震動Ssの比率(Sd/Ss)を0.5とし、旧耐震設計指針における基準地震動S(最大加速度振幅180cm/s²)の応答スペクトルを下回らないよう配慮し設定した。

