<Appendix>

Overview of Kashima Thermal Power Station

1. Summary of power station

(1) Location 9,	Touwada, Kamisu	city, Ibaraki	prefecture,	Japan
-----------------	-----------------	---------------	-------------	-------

- (2) Station Chief Hirohisa Ishii
- (3) Site area About $997,000 \text{ m}^2$

(4) Output and fuel

	Output	Fuel	Operation started in
Unit 1	600MW	Crude oil, Heavy oil	March 1971
Unit 2	600MW	Crude oil, Heavy oil	September 1971
Unit 3	600MW	Crude oil, Heavy oil	February 1972
Unit 4	600MW	Crude oil, Heavy oil	April 1972
Unit 5	1,000MW	Crude oil, Heavy oil	September 1974
Unit 6	1,000MW	Crude oil, Heavy oil	June 1975
Group 7	420MW x 3 Units	City gas	July 2014 (planned)*

* Trial operation of Unit 1 of Group 7 started on May 1, 2014, and that of Unit 2 of Group 7 on February 5, 2014 and formal operation of Unit 2 of Group 7 will start in July 2014.

(5) Overview of Group 7 facilities

1,300°C grade combined cycle type (ACC)		
About 57% (based on lower heating value)		
Simple open cycle single shaft type		
Axial flow compressor		
Triple pressure reheat natural circulation type heat		
recovery steam generator		
Two cylinder, single exhaust, condensing and reheat $% \left({{{\left[{{{C_{{\rm{c}}}}} \right]}_{{\rm{c}}}}}} \right)$		
type		
Thyristor starting system		
Horizontal shaft tubular type revolving field		
three-phase AC synchronous generator		
Exhaust gas denitration equipment:		
Dry ammonium catalytic reduction system		
Stack: 59 m, Single stack type		

2. Construction history of Group 7, Unit 1

August 3, 2011	Gas turbine construction plan document was submitted (according to
	Article 48, Electricity Business Act).
March 29, 2012	Combined cycle construction plan document was submitted.
July 12, 2012	Gas turbine operation started.
December 2, 2013	Trial operation started.
May 1, 2014	Commercial operation started.

3. Location of the power station

4. Layout of power plant (current)

5. View of the power station

<Before combined cycle construction>

<After combined cycle construction>

*Units 1 and 2 of Group 7 from left to right (Unit 3 is located outside the photo)

1,500 °C grade 1,600 °C grade efficiency Thermal of power generation MACC MACCI (based on lower heating value) Group 2, Units 2, 3, Kawasaki 1,300 °C grade Group 1, Kawasaki (%) ACC Group 4, Futtsu Group 2, Unit 1, Kawasaki Groups 7, 8, Yokohama 65 Group 3, Chiba Groups 1, 2, Chiba 61% Group 1, Shinagawa 59% 60 Group 3, Futtsu 1,100 °C grade Group 7. Kashima 55% CC 54% 55 Groups 1, 2, Futtsu 50 47% 45 40 (Current achievement)

<Data 1> Thermal efficiency improvement history

<Data 2> Power stations of combined cycle power generation at 1,300°C grade (ACC)

Power station name	Output	Thermal efficiency (%)	Operation started in
Group 3, Units 1 to 4, Futtsu Thermal Power Station	380MW x 4 Units	55.0	November 2003
Groups 7 and 8, Units 1 to 4, Yokohama Thermal Power Station	350MW x 8 Units	54.0	January 1998
Groups 1 and 2, Units 1 to 4, Chiba Thermal Power Station	360MW x 8 Units	54.0	June 2000
Group 1, Units 1 to 3, Shinagawa Thermal Power Station	380MW x 3 Units	55.0	August 2003
Group 7, Unit 1, Kashima Thermal Power Station	420MW x 1 Unit	About 57	May 2014

Planned power station (ACC)

Power station name	Output	Thermal efficiency (%)	Operation will start in
Group 7, Units 2 and 3,	420MW x 2 Units	About 57	June 2014
Kashima Thermal Power Station			

Power station name	Output	Thermal efficiency (%)	Operation started in
Group 1, Units 1 to 3,	500MW x 3 Units	58.6	February 2009
Kawasaki Thermal Power Station			
Group 2, Unit 1,	500MW v 1 Unit*	58.6	Fobruary 2013
Kawasaki Thermal Power Station		56.0	rebruary 2010
Group 4, Units 1 to 3,	507MW x 9 Unita	59 C	October 2010
Futtsu Thermal Power Station	5071VI W X 5 Units	56.0	October 2010
Group 3, Unit 1,		About 58	April 2014
Chiba Thermal Power Station		About 98	April 2014

<Data 3> Power stations of combined cycle power generation at 1,500°C grade (MACC)

Planned power stations (MACC)

Power station name	Output	Thermal efficiency (%)	Operation will start in
Group 3, Units 2 and 3,	500MW x 2 Units	About 58	June and July
Chiba Thermal Power Station		About 58	2014

*MACCII is under construction for Group 2, Units 2 and 3, Kawasaki Thermal Power Station.

<Data 4> Change of gas turbine power generation facilities to combined cycle power generation facilities

Reconstruction to combined cycle power generation facilities is performed by adding a heat recovery steam generator, steam turbine and power generator to the gas turbine power generation facilities. This type of facility effectively utilizes the exhaust heat from the gas turbine to increase the output by about 460MW for Group 7, without consuming additional fuel, and improve the thermal efficiency. In addition, by installing exhaust gas denitration equipment in the heat recovery steam generator, the emission of nitrogen oxide during operations can be suppressed to reduce the impact on the environment.

[Construction areas for changing to combined cycle power generation facilities]

The facilities enclosed by the red line are the equipment newly installed for the change to combined cycle type facilities