Americium and Curium analysis result in the ocean soil ## 1. Analysis result (Unit: Bq/kg·Dry soil) | | | | | | | | | ` ' | ng Diy con / | |--|---|--|--|---|---|---|---|--|--| | Sampling spot | Date of sampling/ Analyses organization | Pu-238 ^{*1} | Pu-239*1
Pu-240*1 | U-234 ^{*2} | U-235 ^{*2} | U-238*2 | Am-241 | Cm-242 | Cm-243
Cm-244 | | 3 km offshore of Ena | Sep. 8/ Japan Chemical Analysis Center | N.D.
[<1.4 × 10 ⁻²] | (4.5 ± 0.29)
× 10^{-1} | (5.5±0.40)
×10° | (2.2±0.71)
×10 ⁻¹ | (6.4±0.44)
×10° | (1.8±0.16)
×10 ⁻¹ | N.D.
[<1.3 × 10 ⁻²] | N.D.
[<1.2 × 10 ⁻²] | | 8km Offshore of Iwasawa
Shore
5 km offshore of Kashima | Sep. 9/
Japan Chemical
Analysis Center | N.D.
[<1.3 × 10 ⁻²]
N.D.
[<1.5 × 10 ⁻²] | (4.8 ± 0.31)
$\times 10^{-1}$
(4.0 ± 0.27)
$\times 10^{-1}$ | (6.4 ± 0.36) $\times 10^{0}$ (2.8 ± 0.21) $\times 10^{0}$ | (2.5 ± 0.56)
$\times 10^{-1}$
N.D.
$[<1.2 \times 10^{-1}]$ | $(6.1 \pm 0.35) \times 10^{0}$ $(2.2 \pm 0.18) \times 10^{0}$ | $(2.1 \pm 0.17) \times 10^{-1}$ $(1.4 \pm 0.14) \times 10^{-1}$ | N.D.
[<1.2 × 10 ⁻²]
N.D.
[<1.1 × 10 ⁻²] | N.D.
[<1.2 × 10 ⁻²]
N.D.
[<1.1 × 10 ⁻²] | | North of Discharge Channel of 5 and 6u of 1F | Sep. 12/
Japan Chemical
Analysis Center | N.D.
[<1.4 × 10 ⁻²] | (8.6±1.1)
×10 ⁻² | (1.4±0.15)
×10° | N.D.
[<1.5 × 10 ⁻¹] | (1.5±0.17)
×10° | (2.9±0.58)
×10 ⁻² | N.D.
[<1.3 × 10 ⁻²] | N.D.
[<1.1 × 10 ⁻²] | | 3km Offshore of Haramachi
Ward | Sep. 13/
Japan Chemical
Analysis Center | N.D.
[<1.3 × 10 ⁻²] | (3.9 ± 0.26)
$\times 10^{-1}$ | (2.4±0.20)
×10° | N.D.
[<1.4 × 10 ⁻¹] | (2.0±0.18)
×10° | (1.5±0.14)
×10 ⁻¹ | N.D.
[<1.3 × 10 ⁻²] | N.D.
[<1.2 × 10 ⁻²] | | Around South Discharge Channel of 1-4U of 1F | Sep. 15/
Japan Chemical
Analysis Center | N.D.
[<1.5 × 10 ⁻²] | (1.4±0.14)
×10 ⁻¹ | (2.3 ± 0.21)
× 10^{0} | N.D.
[<1.6 × 10 ⁻¹] | (2.4 ± 0.21)
× 10^{0} | (3.8 ± 0.71)
× 10^{-2} | N.D.
[<1.2 × 10 ⁻²] | N.D.
[<1.1 × 10 ⁻²] | | 3km offshore of Iwasawa shore | | N.D.
[<1.7 × 10 ⁻²] | (4.9±0.34)
×10 ⁻¹ | (6.9 ± 0.46)
× 10^{0} | (2.5 ± 0.72)
× 10^{-1} | (8.1 ± 0.52)
$\times 10^{0}$ | (2.0±0.18)
×10 ⁻¹ | N.D.
[<1.5 × 10 ⁻²] | N.D.
[<1.4 × 10 ⁻²] | | 3km offshore of Odaka Ward | | N.D.
[<1.3 × 10 ⁻²] | (1.6±0.16)
×10 ⁻¹ | (3.0 ± 0.26)
× 10^{0} | (2.4 ± 0.66)
× 10^{-1} | (3.6 ± 0.29)
$\times 10^{0}$ | (7.3 ± 0.98)
× 10^{-2} | N.D.
[<1.2 × 10 ⁻²] | N.D.
[<1.2 × 10 ⁻²] | | 15 km offshore of Fukushima
Daiichi | Sep. 25/
Japan Chemical
Analysis Center | N.D.
[<1.2 × 10 ⁻²] | (6.0 ± 0.35)
× 10^{-1} | (1.0±0.51)
×10 ¹ | (4.3 ± 0.87)
× 10^{-1} | (9.2 ± 0.48)
× 10^{0} | (2.7 ± 0.20)
$\times 10^{-1}$ | N.D.
[<1.2 × 10 ⁻²] | N.D.
[<1.2 × 10 ⁻²] | | Average nuclide density ratio in Unit 1 to 3 (Ratio when Pu-238 is assumed to be 1) $^{\circ 3}$ | | 1 | - | - | - | - | 0.1 | 10 | 1 | ^{*1 :} Announced on Oct.6 and 25, 2011. *2 : Announced on Oct.16 and 25, 2011 *3 : Value calculated by ORIGEN code ## 2. Evaluation Detected Am-241 cannot be judged to be caused by the nuclear accident of this time for reasons below. - Detected Pu-239 and 240 are within the range of past (FY1999 to FY 2008) analysis in the sea around Fukushima Daiichi Nuclear Power Station and Fukushima Daini Nuclear Power Station. - Detected U-234, U-235 and U-238 are evaluated to be as same level as those exist in the natural environment - Cm-242, Cm-243 and Cm-244, the nuclides that do not naturally exist, are not detected. **END**