Fukushima Daiichi Nuclear Power Station: Am and Cm analysis result in the soil ## 1. Analysis result (Unit: Bq/kg·dry soil) | Sampling spot (): Distance from the stack of Unit 1, 2 | Data
sampling/Analys
is organization | Pu-238 ^{*1} | Pu-239 ^{*1}
Pu-240 ^{*1} | U-234 ^{*2} | U-235*2 | U-238*2 | Am-241 | Cm-242 | Cm-243
Cm-244 | |--|---|---------------------------------|--|--------------------------------|-------------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------| | Playground (west-northwest approx. 500m) | May 16
Japan Chemical
Analysis Center | (1.3±0.13)
×10 ⁻¹ | (6.5 ± 0.86) × 10^{-2} | (1.4 ± 0.08)
× 10^{1} | (5.2 ± 1.0) $\times 10^{-1}$ | (1.5 ± 0.09)
× 10^{1} | N.D. | (1.5 ± 0.08)
× 10^{0} | (9.0 ± 1.3)
× 10^{-2} | | Near the industrial waste disposal plant (south-southwest approx. | | (3.8±0.60)
×10 ⁻² | (1.8 ± 0.41)
× 10^{-2} | (7.5 ± 0.48)
× 10^{0} | (5.4 ± 1.1)
$\times 10^{-1}$ | (7.0 ± 0.45)
× 10° | N.D. | (7.2±0.38)
×10 ⁻¹ | (2.2±0.51)
×10 ⁻² | | Playground (west-northwest approx. 500m) | - May 23
Japan Chemical
Analysis Center | (1.5 ± 0.13)
× 10^{-1} | (5.9 ± 0.77)
× 10^{-2} | (1.4 ± 0.06)
× 10^{1} | (7.5 ± 1.0) × 10^{-1} | (1.4 ± 0.06)
× 10^1 | (1.6 ± 0.47)
× 10^{-2} | (1.7 ± 0.07)
× 10^0 | (1.0 ± 0.12)
× 10^{-1} | | Near the industrial waste disposal plant (south-southwest approx. | | (1.0±0.11)
×10 ⁻¹ | (4.1±0.64)
×10 ⁻² | (4.8 ± 0.34)
× 10^{0} | (3.3 ± 0.82)
× 10^{-1} | (5.3±0.37)
×10° | (2.1±0.49)
×10 ⁻² | (1.3±0.06)
×10° | (9.3±1.1)
×10 ⁻² | | Average nuclide density ratio of fuel in Units 1 to 3 (ratio in case the ratio of Pu-238 is considered as 1)*3 | | 1 | - | - | - | - | 0 . 1 | 1 0 | 1 | ^{*1:} Released on June 4, 2011 *2: Released on June 25th, 2011 *3: Values calculated by ORIGEN Code (round number) ## 2.Evaluation Detected Am and Cm are considered to derive from the accident due to following reasons. - Cm-242, Cm-243 and Cm-244 are nuclides that do not exist in the natural world. In particular, Cm-242 whose half-life is relatively short (approximately 160 days) was detected. - The density ratio of each nuclides (Am-241/Cm-242/Cm-243,Cm-244) to Pu-238 in the sample , , and is almost the same as the average nuclide density ratio of fuel in Units 1 to 3. ``` Pu-238 in the sample : (Am-241/Cm-242/Cm-243,Cm-244) 1: (-/12/0.7) Pu-238 in the sample : (Am-241/Cm-242/Cm-243,Cm-244) 1: (-/19/0.6) Pu-238 in the sample : (Am-241/Cm-242/Cm-243,Cm-244) 1: (0.1/11/0.7) Pu-238 in the sample : (Am-241/Cm-242/Cm-243,Cm-244) 1: (0.2/13/0.9) ``` END