

Flying distance $L(m)$
Assuming the flowed liquid free-falls, calculate the amount by applying the formulas below based on the flying distances and heights.

Free-fall vertically

$$
h=\frac{1}{2} g t^{2} \quad \Leftrightarrow \quad t=\sqrt{\frac{2 h}{g}}
$$

$\begin{aligned} & \text { Uniform motion } \\ & \text { horizontally }\end{aligned} v=\frac{L}{t}=\frac{L}{\sqrt{\frac{2 h}{g}}} \quad$ Amount $\quad Q=S v=\frac{S L}{\sqrt{\frac{2 h}{g}}}$
< Assumptions >
Diameter of a duct :10 (cm )
Width of water flow

$$
\text { : } 6 \text { ( cm ) }
$$

Sectional area of water flow in a duct : $S=4.1 \times 10^{-4}\left(\mathrm{~m}^{2}\right)$
Flying distance
$: L=0.50(\mathrm{~m})$
Height
: h = $1.27(\mathrm{~m})$
Gravity acceleration

$$
: g=9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)
$$

Calculate the amount by inputting the assumptions above into the formula as follows;
$Q=\frac{S L}{\sqrt{2 h}} \times 4=\frac{4.1 \times 10^{-4} \times 0.5}{\sqrt{2 \times 1.27}} \times 4=1.6 \times 10^{-3}\left(\mathrm{~m}^{3 / \mathrm{s}} \mathrm{s}\right) \fallingdotseq 6\left(\mathrm{~m}^{3 / \mathrm{h}}\right)$

