

Assuming the flowed liquid free-falls, calculate the amount by applying the formulas below based on the flying distances and heights.

Free-fall vertically $h = \frac{1}{2} g t$	$t^2 t = \sqrt{\frac{2h}{g}}$
Uniform motion $v = \frac{L}{t} = \frac{L}{\sqrt{\frac{2h}{g}}}$	Amount $Q = Sv = \frac{SL}{\sqrt{\frac{2h}{g}}} \cdots$
< Assumptions >	
Diameter of a duct	:10 (cm)
Width of water flow	: 6 (cm)
Sectional area of water flow in a duc	$: S = 4.1 \times 10^{-4} (m^2)$
Flying distance	: L = 0.50 (m)
Height	: h = 1.27 (m)
Gravity acceleration	: g=9.8 (m/s ²)

Calculate the amount by inputting the assumptions above into the formula as follows;

$$Q = \frac{SL}{\sqrt{\frac{2h}{g}}} \times 4 = \frac{4.1 \times 10^{-4} \times 0.5}{\sqrt{\frac{2 \times 1.27}{9.8}}} \times 4 = 1.6 \times 10^{-3} (m^3/s) \quad 6(m^3/h)$$