Nuclide Analysis Results of Sub-drain Water in the Surroundings of "Centralized Radiation Waste Treatment Facility"

 $I-131(Bq/cm^3)$

Sampling	After tr																				
point	7/31	8/1	8/2	8/3	8/4	8/5	8/6	8/7	8/8	8/9	8/10	8/11	8/12	8/13	8/14	8/15	8/16	8/17	8/18	8/19	8/20
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	N
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ľ
	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ľ								
s-134((Bq/cm ³)																			
Sampling		ter transfer																			
point	7/31	8/1	8/2	8/3	8/4	8/5	8/6	8/7	8/8	8/9	8/10	8/11	8/12	8/13	8/14	8/15	8/16	8/17	8/18	8/19	8/20
	0.068	ND	0.037	0.035	0.042	ND	ND	0.047	ND	0.087	0.095	ND	ND	ND	ND	ND	0.053	ND	ND	0.059	N
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	N
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	0.031	ND	0.056	0.055	ND	0.053	0.09	0.05	0.037	0.04	ND	ND	0.037	ND	ND	0.037	ND	ND	ND	ND	N
	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	
	0.29	0.26	0.35	0.46	0.58	0.21	0.26	0.2	0.25	0.38	0.25	0.22	0.19	0.49	0.23	0.12	0.35	0.24	0.39	0.47	0.1
	ND	ND	ND	0.029	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N						
	-	-	ND	ND	ND	ND	ND	ND	0.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
s-137((Bq/cm ³)																			
Sampling	After tr	ransfer																			
point	7/31	8/1	8/2	8/3	8/4	8/5	8/6	8/7	8/8	8/9	8/10	8/11	8/12	8/13	8/14	8/15	8/16	8/17	8/18	8/19	8/20
	0.085	ND	0.035	0.032	0.048	ND	ND	0.051	ND	0.074	0.1	ND	ND	0.04	0.037	ND	0.055	0.039	ND	0.076	N
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	N
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	ND	ND	0.056	0.053	ND	0.064	0.073	0.045	0.039	0.033	ND	ND	ND	ND	0.036	0.054	ND	0.038	ND	ND	N
	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	[
	0.33	0.25	0.41	0.51	0.69	0.24	0.28	0.23	0.28	0.35	0.27	0.3	0.27	0.54	0.28	0.16	0.37	0.26	0.4	0.51	0.2
	0.04	ND	ND	ND	0.029	ND	ND	ND	ND	0.028	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
	_	-	ND	ND	ND	ND	ND	ND	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N

* was conducted as upstream of the groundwater once a week from April 29 since it was

* We have been sampling at since May 26, for it is located downstream of the groundwater.

* We have been sampling at since May 30.

* We have been sampling at since August 2.

* In this analysis, "ND" means that the results fall bellow the measurable threshold. (I-131: approx. 0.02Bq/cm3, Cs-134: approx. 0.03Bq/cm3, and Cs-137: approx. 0.03Bq/cm3) (as of August 20).

Please note that these nuclides are sometimes detected

Southeast part of Unit 4 Turbine Building

Northeast part of Process Main Building

Southeast part of Process Main Building

Southwest part of Process Main Building

South part of Miscellaneous Solid Waste Volume Reduction Treatment Building

Southwest part of On-site Bunker Building West part of Incineration Workshop Building

North part of Miscellaneous Solid Waste Volume Reduction Treatment

Building

Southeast part of On-site Bunker Building