15-Jul-11

Nuclide Analysis Results of Sub-drain Water in the Surroundings of "Centralized Radiation Waste Treatment Facility"

 $I-131(Bq/cm^3)$

Sampling	After tra	ansfer																			
point	6/26	6/27	6/28	6/29	6/30	7/1	7/2	7/3	7/4	7/5	7/6	7/7	7/8	7/9	7/10	7/11	7/12	7/13	7/14		
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-		
	ND	ND	0.017	ND	ND	ND	ND	ND	ND	ND	ND										
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
$Cs-134(Bq/cm^3)$																					
Gamping	After tra	After transfer																			
point	6/26	6/27	6/28	6/29	6/30	7/1	7/2	7/3	7/4	7/5	7/6	7/7	7/8	7/9	7/10	7/11	7/12	7/13	7/14		
	ND	ND	ND	0.014	ND	ND	0.036	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	ND	ND	ND	0.008	ND	ND	ND	ND	ND	ND	0.049	0.029		l							
	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	0.11	0.041	0.083	0.028	0.03	0.085	0.034	0.056	0.051	0.077	0.071	ND	ND	0.081	ND	0.08	0.043	0.081	ND		
	-	ND	-	-	-	-	-	-	0.039	-	-	-	-	-	-	ND	-	-	-		
	0.27	0.36	0.38	0.4	0.32	0.22	0.46	0.2	0.21	0.14	0.53	0.41	0.32	0.5	0.27	0.53	0.31	0.48	0.3		
	0.037	0.03	0.035	ND	0.035	ND	0.06	ND	ND	ND	ND	0.043	0.036	ND	ND	0.028	ND	ND	0.041		
Cs-137	(Bq/cm	3)																			
	After tra	ansfer																			
point	6/26	6/27	6/28	6/29	6/30	7/1	7/2	7/3	7/4	7/5	7/6	7/7	7/8	7/9	7/10	7/11	7/12	7/13	7/14		
	ND	0.021	ND	0.024	0.023	ND	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.037	ND		
	ND	ND	0.024	0.02	ND	ND	ND	ND	ND	0.13	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	0.11	0.054	0.075	0.054	0.044	0.098	ND	0.067	0.031	0.094	0.12	ND	ND	0.082	ND	0.12	0.039	0.083	0.049		
	-	ND	-	-	-	-	-	-	0.045	-	-	-	-	-	-	ND	-	-	-		
	0.32	0.4	0.41	0.47	0.37	0.3	0.51	0.25	0.26	0.26	0.57	0.44	0.35	0.57	0.32	0.58	0.34	0.52	0.32		
	0.032	0.034	0.027	0.035	0.039	0.038	0.039	ND	ND	ND	ND	0.055	0.049	ND	ND	0.051	ND	ND	0.035		
	* Hyphen "-" indicates that neither sampling nor measurements were implemented.											<place of="" sampling=""></place>									

* was conducted as upstream of the groundwater once a week from April 29 since it was unable to sample at .

* In this analysis, "ND" means that the results fall bellow the measurable threshold. (I-131: approx. 0.02Bq/cm3, Cs-134: approx. 0.03Bq/cm3, and Cs-137: approx. 0.04Bg/cm3)

(as of July 14). Please note that these nuclides are sometimes detected even when they are below the threshold, contingent on the detector or samples.

* We have been sampling at since May 26, for it is located downstream of the groundwater.

* We have been sampling at since May 30.

Southeast part of Unit 4 Turbine Building

Northeast part of Process Main Building Southeast part of Process Main Building

Southwest part of Process Main Building

South part of Miscellaneous Solid Waste Volume Reduction Treatment Building

Southwest part of On-site Bunker Building

West part of Incineration Workshop Building

North part of Miscellaneous Solid Waste Volume Reduction Treatment Building