March 22, 2012 Tokyo Electric Power Company

<1. Status of the Nuclear Reactor and the Primary Containment Vessel> (As of March 22 at 11:00 am)

Unit		Status of Water injection	Bottom temp. of Reactor pressure vessel	Pressure of primary containment vessel*	Hydrogen density of Primary containment vessel
Unit 1	Injecting Fresh water	Core Spray System: Approx.1.5 m ³ /h	23.9 °C	106.8 kPa abs	A system: 0.00 vol%
		Feed Water System: Approx.4.7 m ³ /h	23.9 C		B system: 0.00 vol%
Unit 2	Injecting Fresh water	Core Spray System: Approx.6.0 m ³ /h	44.6°C	16.62 kPa g	A system: 0.18 vol%
		Feed Water System: Approx.2.9 m ³ /h			B system: 0.19 vol%
Unit 3	Injecting Fresh water	Core Spray System: Approx.4.9 m ³ /h	54.1 °C	0.32 kPa g	A system: 0.19 vol%
		Feed Water System: Approx.1.8 m ³ /h			B system: 0.19vol%

* absolute pressure(kPa abs) = gauge pressure (kPa g) + atmosphere pressure (normal atmosphere pressure 101.3 kPa). [Unit 1]

Mar.21 The Xe-135 checked by the rare gas monitor of PCV gas control system was 1.7 – 2.7 X 10-3Bq/cm3 and thus we confirmed it did not exceed the re-criticality standard of 1 Bq/cm3.

At 3:00 pm on March 22, as we found a change in the water volume injected into the reactor, Unit 1, water injection volume from the feed water system was decreased from 4.7 m³/h to 4.5 m³/h, and that from the reactor core system increased from 1.5 m³/h to 2.0 m³/h.

[Unit 2]

- Mar.21 A gas sampling of PCV gas control system was conducted. As a result, the Xe-135 measured at the system entrance was below the detectible limit (9.1 X 10⁻² Bq/cm3) and hence we confirmed it did not exceed the re-criticality standard of 1 Bq/cm³. Also the Xe-135 checked by the rare gas monitor was below the detectible limit (2.3 2.4 X 10⁻¹ Bq/cm³) and therefore we confirmed it did not exceed the re-criticality standard of 1 Bq/cm³.
- At 11:20 am on March 22, in preparation for the investigation inside the PCV, Unit 2, the volume of nitrogen included into PCV was changed from 5 m³/h to 0 m³/h (No change of nitrogen included into the RPV).

[Unit 3]

Mar.21 The Xe-135 checked by the rare gas monitor of PCV gas control system was below the detectible limit (3.5 X 10⁻¹ Bq/cm³) and accordingly we confirmed it did not exceed the re-criticality standard of 1 Bq/cm³.

2. Status of the Spent Fuel Pool> (As of March 22 at 11:00 am)

Unit	Cooling type	Status of cooling	Temperature of water in Spent Fuel Pool	
Unit 1	Circulating Cooling System	Under operation * 1	17.0 °C	
Unit 2	Circulating Cooling System	Under operation	13.5 °C	
Unit 3	Circulating Cooling System	Under operation	16.5 °C	
Unit 4	Circulating Cooling System	Under operation	27 °C	

[Unit 2]

• Desalination equipment has been activated in order to reduce density of salt from the spent fuel pool since 11:50 am on January 19.

[Unit 3]

• From 1:22 pm to 3:05 pm on March 22, hydrazine was included into the SFP.

<3. Status of Water Transfer from the Basement Floor of the Turbine Building etc.>

Unit	Draining water source	\rightarrow	Place transferred	Status	
Unit 1	Unit 1 T/B	\rightarrow	Unit 2 T/B	From 9:37am on March 20 to 9:48 am on March 21: Transferred	
Unit 2	Unit 2 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Process Main Building]	From 10:13 am on March 18 to 9:48 am on March 20: Transferred	
	Unit 2 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]	From 10:14 am on March 20: Transferring	
Unit 3	Unit 3 T/B	\rightarrow	Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]	From 8:41 am on March 19: Transferring	
Unit 6	Unit 6 T/B	\rightarrow	Temporary Tank	From 10:00 am to 16:00 pm on March 22:Transferred	

<4. Status of the Treatment Facility and the Storage Facility> (As of March 22 at 7:00 am)

Facility	Cesium adsorption apparatus	Secondary Cesium adsorption apparatus (SARRY)	Decontamination instruments	Water desalinations (reverse osmosis membrane)	Water desalinations (evaporative concentration)
Operating status	In service	In service*	Shutdown	Operating intermittently according to the water balance	Operating intermittently according to the water balance

* Cleaning of filter is in progress.

• From June 8, 2011 Large tanks to store contaminated and decontaminated water are transported and installed.

<5. Others>

- October 7, 2011~: Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.
- February 23, 2012~: Test of drawing water in the Unit 6 sub drain to the temporary tank through the temporarily storage tank was implemented.
- March 6, 2012~: we have been conducting the transfer test of sub-drain Water of Unit 5 to the temporary tank via the interim storage tank.
- March 14, 2012~: In order to prevent the diffusion of ocean soil, we started the full-scale covering work of seafloor by solidification soil (covering material).