November 11, 2011
Tokyo Electric Power Company

<Draining Water on Underground Floor of Turbine Building (T/B)>

Status of highly concentrated accumulated radioactive water treatment facility and storage tank facility

[Treatment Facility]

	, ,	
·6/17	20:00	Full operation of radioactive material removal instruments started.
·6/24	12:00	Start of desalination facilities operation (RO membrane system)
·6/27	16:20	Circulating injection cooling started.
∙8/7	16:11	Evaporative Concentration Facility has started full operation.

•8/19 19:33 We activated second cesium adsorption facility (System B) and started the treatment of accumulated water by the parallel operation of cesium adsorption instrument and decontamination instrument. At 19:41, the flow rate achieved steady state.

[Storage Facility]

· 6/8 ~

Big tanks to store and keep treated or contaminated water have been transferred and installed sequentially.

Accumulated water in vertical shafts of trenches and at basement level of building

Unit	Draining water source→Place transferred	Status
Unit 1	Unit 1T/B Unit 2T/B	·From 15:42 on November 11~ Being transferred
Unit 2	 Unit 2T/B→Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building(High Temperature Incinerator Building)] 	·From 9:10 on November 10 ~ Being transferred
Unit 3	 Unit 3T/B→Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)] 	·From 10:11 on November 2 to 15:05 on November 8 Transferred
Unit 6	·Unit 6T/B→Temporary tanks	·On November 11 No transfer

Place transferred	Status of Water Level (As of November 11 at 7:00)	
Drocos Main Building	Water level: O.P.+ 1,898mm(Accumulated total increase:3,115 mm)	
Process Main Building	113mm decrease since 7:00 on November 10	
Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)	Water level: O.P.+ 2,309 mm(Accumulated total increase:3,035 mm) 141mm increase since 7:00 on November 10	

Water level of the vertical shaft of the trench, T/B and R/B (As of November 11 at 7:00)

	Vertical Shaft of Trench	T/B	R/B
Unit 1	O.P.< + 850 mm	O.P.+ 3,968 mm	O.P.+ 4,603 mm
	(No change since 7:00 on	(37mm increase since 7:00 on	(29mm increase since 7:00 on
	November 10)	November 10)	November 10)
Unit 2	O.P.+ 3,111 mm	O.P.+ 3,121 mm	O.P.+ 3,213 mm
	(13mm decrease since 7:00 on	(12mm decrease since 7:00 on	(2mm decrease since 7:00 on
	November 10)	November 10)	November 10)
Unit 3	O.P.+ 3,238 mm	O.P.+ 3,030 mm	O.P.+ 3,221 mm
	(18mm increase since 7:00 on	(24mm increase since 7:00 on	(27mm increase since 7:00 on
	November 10)	November 10)	November 10)

Unit 4	-	O.P.+ 3,024 mm (30mm increase since 7:00 on	O.P.+ 3,033 mm (33mm increase since 7:00 on
Offic 4		November 10)	November 10)

<Monitoring of Radioactive Materials>

Nuclide Analysis of Seawater(Reference) Since Oct 24, an approach to decrease the detection limits of radioactivity density was started.

Diago of compling	Date of	Time of	Ratio of density limit (times)		
Place of sampling	sampling	sampling	I-131	Cs-134	Cs-137
Approx. 30m North of Discharge Channel	44/40	0.50	ND	0.05	0.05
of 5-6U of 1F	11/10	8:50	ND	0.05	0.05
Approx 330m South of Discharge Channel	44/40	0.20	ND	0.03	0.02
of 1-4u of 1F	11/10	8:30	ND	0.03	0.02
Around Discharge Channel of 3-4u of 2F	11/10	8:25	ND	0.03	0.02
Approx 7km South of Discharge Channel	44/40	0.00	ND	0.00	0.00
of 1-2u of 2F	11/10	8:00	ND	0.02	0.02
Approx. 15km offshore of 2F (Lower layer)	11/9	8:20	ND	ND	0.01

Results of nuclide analysis of seawater at 6 offshore points sampled on November 9 are all ND for the 3 major nuclides (iodine-131, cesium-134 and cesium-137).

<Cooling of Spent Fuel Pools> (As of November 11 at 11:00)

Unit	Cooling type	Status of cooling	Temperature of water in Pool	
Unit 1	Circulating Cooling System	Under operation(11:22 on August 10 -)	20.0	
Unit 2	Circulating Cooling System	Under operation(17:21 on May 31 -)	21.9	
Unit 3	Circulating Cooling System	Under operation(18:33 on June 30 -)	20.0	
Unit 4	Circulating Cooling System	Under operation(10:08 on July 31 -)	29	

[[]Unit 2] · 11/6 ~ We started operation of radioactive material decontamination instrument of spent fuel pool.

<u><Water Injection to Pressure Containment Vessels> (</u>As of November 11 at 11:00)

<u>Unit</u>	Status of injecting water	Feed-water nozzle Temp.	Reactor pressure vessel Bottom temp.	Pressure of primary containment vessel
Unit 1	Injecting freshwater (Feed Water System: Approx. 7.8 m³/h)	38.1	38.9	121.9 kPaabs
Unit 2	Injecting freshwater (Feed Water System: Approx. 2.9 m³/h,Core Spray System: Approx. 7.3 m³/h)	66.7	70.8	108 kPaabs
Unit 3	Injecting freshwater (Feed Water System: Approx. 2.7 m³/h,Core Spr System: Approx. 8.0 m³/h)	59.9	69.6	101.5 kPaabs

[Unit 4] [Unit 5] [Unit 6] No particular changes in parameters.

[Unit 2] It turned out that pressure in D/W of Unit 2, which is one of the plant parameter, such as water level, pressure of temperature, was incorrect from 11:00 pm on October 29 to 11:00 pm on November 10. This is because the pressure loss in the pipe for additional amount of injected nitrogen gas was not considered for the calculation of the pressure in D/W although injected amount of nitrogen gas has been increased appropriately since October 28 when the operation of gas management system of primary containment vessel started. Because revised pressure in D/W calculated by correct pressure loss in the pipe exceeds atmospheric pressure, there is no problem about its safety. The

[[]Unit 4] ·8/20 ~ 11/8 We implemented the operation of desalinating facility of the spent fuel pool.

revision of value of the past data will be informed separately.

<Others>

·10/7 ~

Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.