Results of the Sixth Soundness Inspection of Unit 4 Reactor Building at Fukushima Daiichi Nuclear Power Station

August 28, 2013
Tokyo Electric Power Company

1. Purpose of Inspection

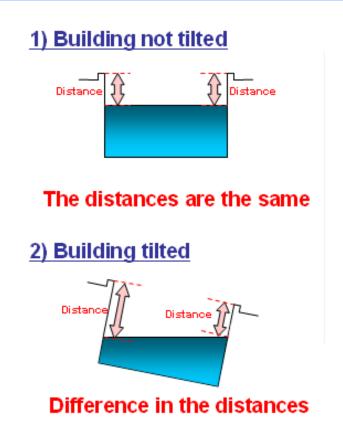
Unit 4 Reactor Building and Spent Fuel Pool are inspected on a regular basis (four times a year) for soundness. The inspections were done five times before. Based on the results, it was confirmed that the spent fuel can be stored safely. The sixth regular inspection was performed as follows.

[Overview of the regular inspections performed]

- (1) First regular inspection (May 17-25, 2012)
- (2) Second regular inspection (August 20-28, 2012)
- (3) Third regular inspection (November 19-28, 2012)
- (4) Fourth regular inspection (February 4-12, 2013)
- (5) Fifth regular inspection (May 21-29, 2013)

[Inspection items] 1. Water level measurement, 2. Outer wall measurement, 3. Visual inspection, 4. Concrete strength evaluation

[Outline of the results] No crack or building tilt was found and a sufficient level of concrete strength was maintained. The condition allows for safe storage of spent fuel. No significant change was found from the first regular inspection results.

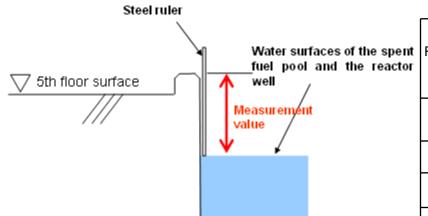

(6) Sixth regular inspection (August 6-28, 2013)


[Inspection items] 1. Water level measurement, 2. Outer wall measurement, 3. Visual inspection, 4. Concrete strength evaluation

2. Results (1) Building Tilt Measurement (Water Level)

Given that the water surface is always horizontal, the distances between the 5th floor surface and the water levels of the reactor well and spent fuel pool were measured to check if the building is tilted or not. It has already been confirmed that the building is not tilted based on the measurement results obtained on February 7, April 12, May 18, August 21, November 20, 2012, February 6, and May 21, 2013.

Measurement points (Floor surface of the 5th floor)


^{*1} The measurement points are set according to the progress status of cover installation for fuel removal.

2. Results (1) Building Tilt Measurement (Water Level)

Considering that the water level measurement values on the four corners were about the same, it has been concluded that the 5th floor surface and the water surfaces of the spent fuel pool and the reactor well are parallel and the building is not tilted similarly to the past results.

Water level*2 measurement results

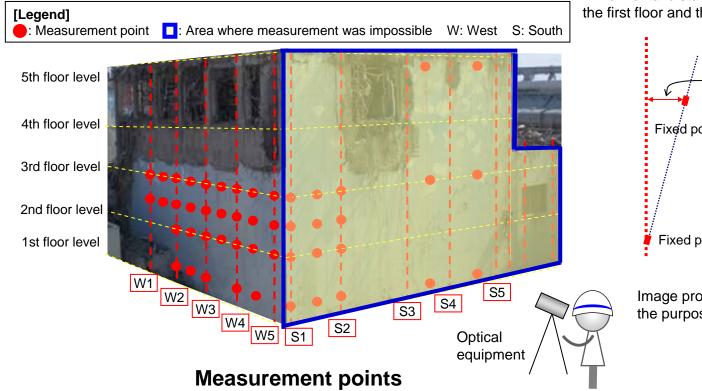
Unit [mm]

Measurement method*1

Reacto r well	Measurement date									
	Feb. 7, 2012	Apr. 12, 2012	May 18, 2012	Aug. 21, 2012	Nov. 20, 2012	Feb. 6, 2013	May 21, 2013	Aug. 6, 2013		
	462	476	492	462	463	465	467	465		
	463	475	492	462	464	464	465	465		
	462	475	492	461	463	463	464	465		
	464	475	492	461	463	463	465	466		

Spent fuel pool	Measurement date									
	Feb. 7, 2012	Apr. 12, 2012	May 18, 2012	Aug. 21, 2012	Nov. 20, 2012	Feb. 6, 2013	May 21, 2013	Aug. 6, 2013		
	(*3)	468	461	453	443	444	439	448		
		468	461	453	444	443	439	446		
		468	461	452	442	443	439	446		
		468	461	452	443	443	438	446		

^{*1} Error must be taken into account as the measurement is done visually by a person


^{*2} Water levels are subject to change daily depending on the operation status of cooling equipments.

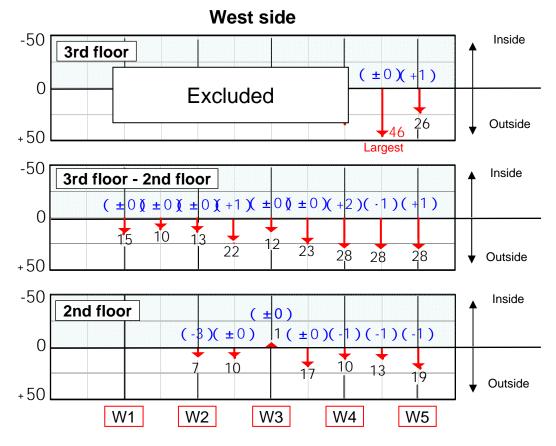
^{*3} On February 7, 2012, measurement was done only on the reactor well.

2. Results (2) Outer Wall Measurement (Measurement Points)

- The horizontal differences*1 of the outer walls were measured by an optical equipment (with fixed points set on the upper and lower sides of the walls) and the deformation characteristics of the outer walls were evaluated.
- The south wall was excluded from the measurement due to interference with the cover for fuel removal.
- 7 points of the third floor level were excluded from the measurement due to interference with deterioration prevention equipment of the Reactor Building.

Though partial bulge was found on the outer walls, it has been confirmed that the building itself is not tilted based on the results of the first regular inspection (May 2012), detailed inspection of outer walls (June 2012), and second to fifth regular inspections (August and November 2012, February and May 2013).

*1 Horizontal distance between the fixed point on the first floor and the fixed point on the upper floor


Horizontal difference
Fixed point on the upper floor

Fixed point on the first floor

Image processing was partially applied for the purpose of physical protection.

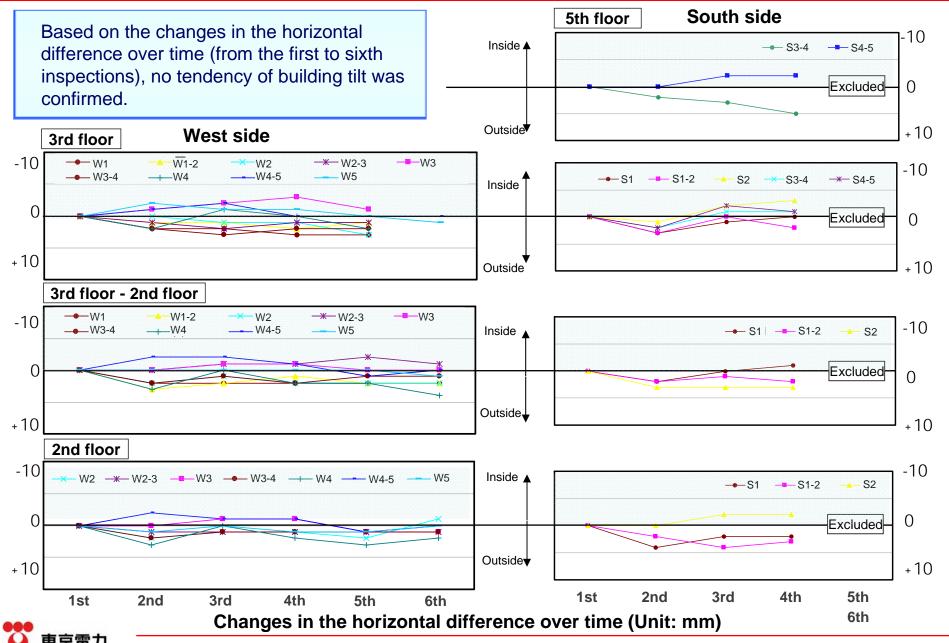
2. Results (2) Outer Wall Measurement (Measurement Results)

[Legend] (): Difference from the previous inspection results (Previous horizontal difference - horizontal difference measured this time)

Horizontal difference*1 calculation results (Unit: mm)

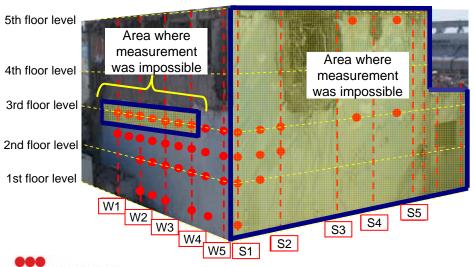
*1 Horizontal distance between the fixed point on the first floor and the fixed point on the upper floor

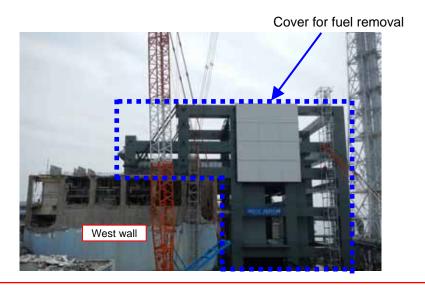
(Reference)


Average temperature during the previous inspection*2: 13.1°C

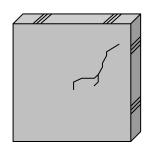
Average temperature during the present inspection*2: 25.2°C

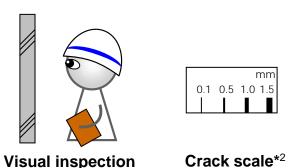
*2 Calculated using weather data of Namie obtained from the Japan Meteorological Agency website



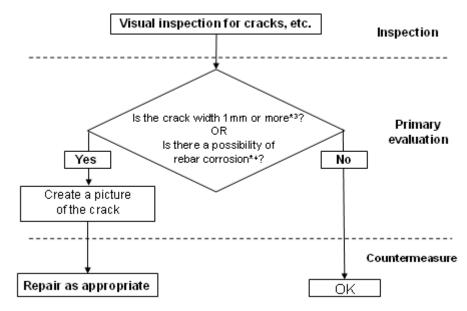

2. Results (2) Outer Wall Measurement (Measurement Results)

2. Results (2) Outer Wall Measurement (Consideration)


- The horizontal differences measured this time were about the same as those in the first to fifth inspections, and the deformation characteristics on the measurement points were also similar.
- The small difference from the previous measurement results may be due to factors such as error of the optical equipment (Measurement error of ±2mm may cause approx. 4mm (Max.) error in horizontal difference) and thermal expansion of concrete (thermal expansion coefficient: Approx. 7-13 x 10⁻⁶/) which may cause approx. 4-7mm error because of the difference of average monthly temperatures between May and August.
- The south wall was excluded from the present and future measurements due to interference with the cover for fuel removal. However, we consider that no significant change would be found with the measurement on the outer surface of the south wall, since no significant change was found with measurement results on the west wall and the inspection results for the other three inspection items.



2. Results (3) Visual Inspection (Plan, Criteria)

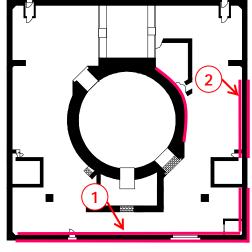

Visual inspection*1 was done on the concrete floor and walls. In the case that a crack of a width of 1mm or more is found, repair must be done as appropriate. No crack of a width of 1mm or more was found in the first inspection (May 2012), the detailed inspection of outer walls (June 2012) and the second to fifth inspections (August, November 2012 and February, May 2013).

Check for cracks on the walls and the floor

*1 The visual inspection was done while avoiding interference with the cover installation work for fuel removal.

Flow of Visual Inspection

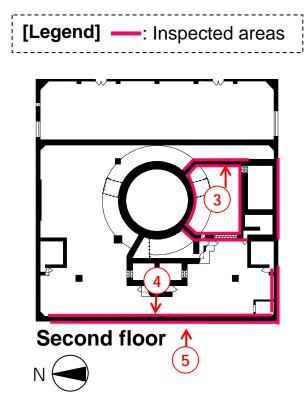
^{*4} In the case that rebar corrosion which may affect the building durability is found on the inspected area.


^{*2} Crack scale: Used to measure the width of a crack. (The scale is placed on a crack to measure its width.)

^{*3} In the case that the crack width is 1mm or more, the durability of the building must be reviewed in accordance with the "Maintenance and Management of Structures in Nuclear Facilities" specified by the Architectural Institute of Japan.

2. Results (3) Visual Inspection (Results)

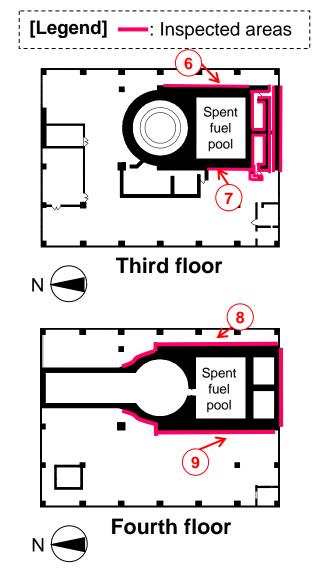
Since no crack of a width of 1mm or more or with possible rebar corrosion was found as a result of visual inspection (similarly to the past results), it has been concluded that there is no hazardous deterioration of structural durability.


1 West wall

2 South wall

2. Results (3) Visual Inspection (Results)

4 West wall (Inner surface)



(5) West wall (Outer surface)

*SFP: Spent fuel pool

2. Results (3) Visual Inspection (Results)

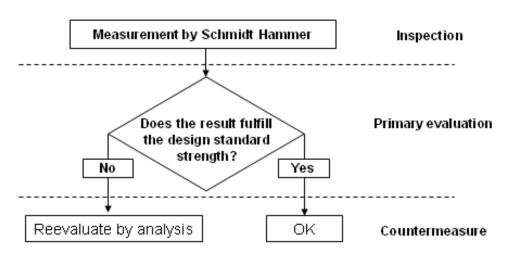
6 SFP side wall (East side)

7 SFP side wall (West side)

8 SFP side wall (East side)

9 SFP side wall (West side)

*SFP: Spent fuel pool

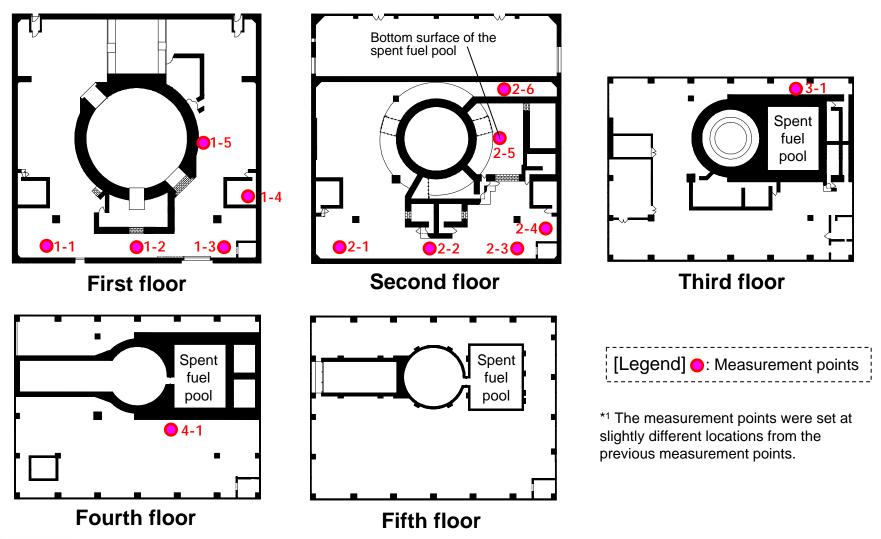


2. Results (4) Concrete Strength Evaluation (Plan, Criteria)

The concrete strength of the spent fuel pool frame was evaluated*1 by non-destructive inspection technique (Schmidt Hammer*2) to confirm that the strength fulfills the design standard.

The concrete strength fulfilled the design standard in the first inspection (May 2012), the detailed inspection of the outer walls (June 2012) and the second to fifth inspections (August, November 2012 and February, May 2013).

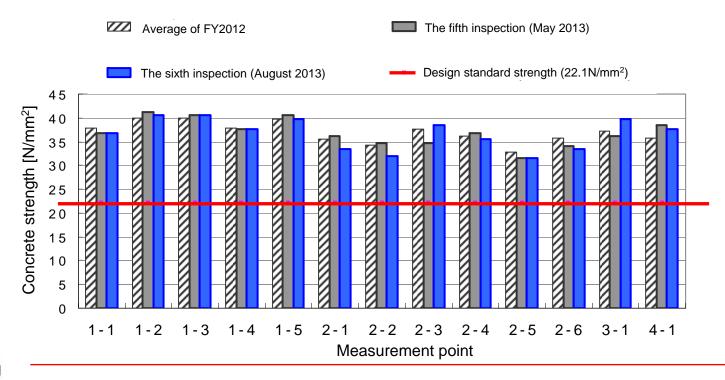
Flow of Non-destructive Inspection


^{*2} Schmidt Hammer Technique: A non-destructive inspection technique to estimate concrete strength by hammering the concrete and measuring the impact returned.

^{*1} The evaluation was done while avoiding interference with the cover installation work for fuel removal.

2. Results (4) Concrete Strength Evaluation (Measurement Points)

The concrete strength measurement points*1 are indicated below.



2. Results (4) Concrete Strength Evaluation (Result)

As a result of measurement, the concrete strengths on all the measurement points were above the design standard (22.1N/mm²) similarly to the past results. The concrete strength is considered to be about the same as the past results taking into considerations the error of Schmidt Hammer*¹ and that the measurement points were set at slightly different locations from the previous ones.

Concrete strength evaluation results

^{*1} Error of approx. 3N/mm² is assumed for the experimental value and the strength criterion formula according to the "Guidelines for evaluation of concrete compressive strength by Schmidt Hammer" (August 1958, Material Testing Research Association of Japan).

Summary

- As a result of the sixth inspection, it has been concluded that the building is not tilted and a sufficient concrete strength is maintained with no cracks that would affect the structural strength of the building.
- The condition of Unit 4 Reactor Building has not changed much from the first to fifth inspections and is capable of safely storing the spent fuel pool.
- The inspection will be conducted on a regular basis in order to check for changes over time.
- The visual inspection was performed with an outside expert (Professor Katsumi Takiguchi at Tokyo Institute of Technology).
- Additionally, the present inspection results were reviewed by another outside expert (Professor Kazuo Tamura at Chiba Institute of Technology) with whom the previous inspection was performed.

Comments and Feedbacks from Outside Experts

Professor Kazuo Tamura at Chiba Institute of Technology:

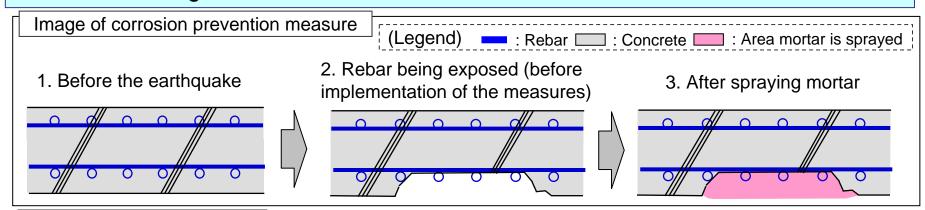
- Further regular measurement of water levels of the spent fuel pool is needed since we can know if the entire building is tilted or not. However, we must review frequency or necessity of the outer wall measurement in terms of suppressing the amount of radiation exposure to workers, since we already achieved intended goal.
- It is preferred to check the soundness of the area where mortar is sprayed by performing visual inspection regularly observing if rust leachate is occurred or not.
- It is important to acquire a behavior of the entire building for the soundness inspection, since actual strength of reinforced concrete structure is large.

Professor Katsumi Takiguchi at Tokyo Institute of Technology:

- Although the status of the building is stable now, we may as well install new measurement points to observe long-term changes. I think even an annual measurement is sufficient.

Outside expert observing the inspection (Professor Katsumi Takiguchi at Tokyo Institute of Technology)

(right)



(The third person from the left, the nearest person)

(Reference) Corrosion Prevention Measures Implemented at Unit 4 Reactor Building

Since the concrete surface of the posts, beams and walls in Unit 4 Reactor Building came off and rebar is partially visible due to the hydrogen explosion, corrosion prevention measure (spraying mortar onto the exposed parts after high-pressure washing) has been implemented for the purpose of ensuring the durability of the members starting since June 2013.

Implementation of corrosion prevention measures

Date: July 19, 2013

Location: Outer wall on the south side

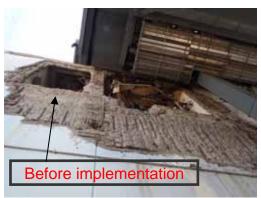


Photo 1: Before implementation of the measures

Photo 2: After implementation of the measures

Ends