Nuclides Analysis Result of the Sub-drain Water in the Surroundings of the Central Radioactive Waste Treatment Facility

I-131(Bg/cm ³)	/cm ³)	I-131(Ba/	
----------------------------	--------------------	-----------	--

I-131(Bq	/cm ⁺)																		
Sampling																			
Location	Dec 22	Dec 23	Dec 24	Dec 25	Dec 26	Dec 27	Dec 28	Dec 29	Dec 30	Dec 31	Jan 01	Jan 02	Jan 03	Jan 04	Jan 05				
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				İ
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		Ι		ĺ
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-		1		
Ø	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	1		
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 			
Cs-134(E	Ra/cm^{3}																		
(Jq/on)																		
ampling ocation	Dec 22	Dec 23	Dec 24	Dec 25	Dec 26	Dec 27	Dec 28	Dec 29	Dec 30	Dec 31	Jan 01	.lan 02	Jan 03	Jan 04	Jan 05				
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 			
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 			
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 			
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 			
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	 			
7	0.04	0.049	0.05	0.044	0.045	0.048	0.037	0.046	0.025	0.049	0.043	0.036	0.057	0.04	0.039	 	+		 ······
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 			
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 			
-																			1
Cs-137(E	3q/cm°)																		
ampling ocation	D 00	D 00	D 01	D 05	D 00	D 07	D 00	D 00	D 00	D 01	1 04	1 00	1 00	1 01			1		
						Dec 27							Jan 03						
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 			
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 			
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 			
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 	ļ		 ļ
5	ND	ND	ND	ND	ND	ND	ND	0.018	ND	ND	ND	ND	ND	ND	ND	 			 ļ
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	 			 ļ
0	0.095	0.11	0.097	0.11	0.11	0.1	0.12	0.098	0.11	0.092	0.1	0.13	0.11	0.11	0.086	 			
8	0.019	0.018	0.032	ND	ND	ND	ND	0.021	ND	ND	ND	ND	ND	0.023	ND	 	ļ		 ļ
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				

* Hyphen "-" indicates that neither sampling nor measurement was implemented.

* 6 was selected as a sampling location in the upstream of groundwater (sampling done once a week starting from April 29, 2011) since it became unable to do sampling at ④.

* Sampling at ${\mathcal T}$ (located in the downstream of the groundwater) has been done since May 26, 2011.

* Samping at (8) since May 30, 2011

* Sampling at (9) has been done since August 2, 2011

* "ND" indicates that the measurement result is below the detection limit.

I-131: Approx. 0.008Bq/cm³, Cs-134: Approx. 0.01Bq/cm³, Cs-137: Approx. 0.02Bq/cm³ (January 5, 2013)

As the detection limit may vary depending on the detectors and sample properties, there are cases where nuclides below the detection limit are detected.

<Place of Sampling>

① Southeast of Unit 4 Turbine Building

2 Northeast of the Process Main Building

③ Southeast of the Process Main Building

④ Southwest of the Process Main Building

(5) South Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building

6 Southwest Part of the On-site Bunker Building

 $\ensuremath{\overline{\mathcal{D}}}$ West Side of the Incineration Workshop Building

8 North Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building

(9) Southeast Part of the On-site Bunker Building

Jan 6, 2014