Definite Results of Nuclides Analysis at Fukushima Daiichi Nuclear Power Station (Announced on May 16 - 31, 2014)

- < Legend > —: y nuclides except for the major 3 nuclides (I-131, Cs-134, Cs-137) were not detected. ⇒ Please refer to the preliminary reports for the result of the major nuclides.
 - O: y nuclides other than the major 3 nuclides (I-131, Cs-134, Cs-137) were detected. ⇒ Please refer to the following pages.
 - ✓: Not applicable or cancelled due to the bad weather.

	May															
Announcement Date of the Preliminary Report	iviay	1	1	1	1											1
Sampling Point	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Nuclides Analysis Result of the Radioactive Materials in the Air at Fukushima Nuclear Power Stations	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Nuclides Analysis Result of the Radioactive Materials in the Air at the Sea Side of Fukushima Nuclear Power Stations	_							_							_	
Nuclides Analysis Result of Radioactive Materials in the Seawater < Coast >	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Nuclides Analysis Result of the Radioactive Materials in the Seawater of the Port	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Nuclides Analysis Result of the Sub-drain of Fukushima Daiichi NPS		_			_		_		_			_		_		-
Nuclides Analysis Result of Marine Soil								0								
Nuclides Analysis Result of the Sub-drain Water in the Surroundings of the Central Radioactive Waste Treatment Facility	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Nuclide Analysis of the Radioactive Materials in the Fallouts obtained inside and outside of Fukushima Daiichi Nuclear Power Station	$\overline{}$										-					
Nuclides Analysis Results of the Radioactive Materials in the Air at the Opening of Buildings at Fukushima Daiichi NPS	$\overline{}$										_					
Nuclide Analysis Results of Radioactive Materials in the Air above the Reactor Building at Fukushima Daiichi Power Station (Upper Part of Unit 1 Reactor Building)											_					
Nuclide Analysis Results of Radioactive Materials in the Air of Exhaust System of Unit 2 Reactor Building at Fukushima Daiichi Power Station																
Nuclide Analysis Results of Radioactive Materials in the Air above the Reactor Building at Fukushima Daiichi Power Station (Upper Part of Unit 3 Reactor Building)																
Nuclide Analysis Results of Radioactive Materials in the Air above the Reactor Building at Fukushima Daiichi Power Station (Upper Part of Unit 4 Reactor Building)											_					

[Definite Report] Nuclides Analysis Result of Marine Soil

North of Unit 5-6 Discharge Channel at Fukushima Daiichi NPS (Approx. 30m North of Unit 5-6 Discharge Channel) (T-1)	Around South Discharge Channel of Fukushima Daiichi NPS (Appox. 1.3km South of Unit 1-4 Discharge Channel) (T-2-1)			
Apr 10, 2014 9:30 AM	Apr 10, 2014 12:10 PM			
		Radioactivity Density (Bq/kg • Dry Soil)		
210	230			
550	640			
ND	ND			
6.4	ND			
ND	ND			
	Channel at Fukushima Daiichi NPS (Approx. 30m North of Unit 5-6 Discharge Channel) (T-1) Apr 10, 2014 9:30 AM 210 550 ND ND ND ND ND ND ND ND ND N	Channel at Fukushima Daiichi NPS (Approx. 30m North of Unit 5-6 Discharge Channel) (T-1) Channel of Fukushima Daiichi NPS (Appox. 1.3km South of Unit 1-4 Discharge Channel) (T-2-1) Apr 10, 2014 9:30 AM Apr 10, 2014 12:10 PM 210 230 550 640 ND ND ND ND	Channel at Fukushima Daiichi NPS	Channel at Fukushima Daiichi NPS (Approx. 30 Month of Juli 14 Discharge (Approx. 30 Month of Juli 14 Discharge (Channel) (T-1) (T-2-1)

^{* &}quot;ND" indicates that the measurement result is below the detection limit.

* As for other sampling points at "Summary of Marine Soil Monitoring Result: Fukushima Daiichi Nuclear Power Station (April 2014) "
(announced on May 23, 2014, reference), nuclide other than three major nuclides was not detected.