Nuclides Analysis Result of the Sub-drain Water in the Surroundings of the Central Radioactive Waste Treatment Facility

I-131(Bq/cm3)

I-131(Bq	/cm³)																				
Sampling																					
Location	Nov 03	Nov 04	Nov 05	Nov 06	Nov 07	Nov 08	Nov 09	Nov 10	Nov 11	Nov 12	Nov 13	Nov 14	Nov 15	Nov 16	Nov 17	Nov 18	Nov 19	Nov 20	Nov 21	Nov 22	Nov 23
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	
Ø	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Cs-134(E	3q/cm ³)																				
Sampling																					
-	Nov 03	Nov 04	Nov 05	Nov 06	Nov 07	Nov 08	Nov 09	Nov 10	Nov 11	Nov 12	Nov 13	Nov 14	Nov 15	Nov 16	Nov 17	Nov 18	Nov 19	Nov 20	Nov 21	Nov 22	Nov 23
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
5	0.018	0.016	0.016	0.019	0.025	0.015	0.02	ND	ND	0.021	ND	0.015	ND	NE							
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	
7	0.041	0.048	0.044	0.04	0.051	0.037	0.054	0.051	0.037	0.025	0.053	0.035	0.043	0.044	0.045	0.039	0.047	0.069	0.045	0.061	0.047
8	0.025	0.025	0.022	0.03	0.023	0.016	0.02	0.023	ND	ND	ND	0.023	ND	ND	0.015	0.02	0.017	ND	0.018	ND	NE
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
Cs-137(E	3a/cm ³)																				
Sampling	. ,																				
	Nov 03	Nov 04	Nov 05	Nov 06	Nov 07	Nov 08	Nov 09	Nov 10	Nov 11	Nov 12	Nov 13	Nov 14	Nov 15	Nov 16	Nov 17	Nov 18	Nov 19	Nov 20	Nov 21	Nov 22	Nov 23
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
5	0.058	0.048	0.053	0.045	0.04	0.027	0.044	ND	ND	0.039	0.037	0.031	ND	ND	0.022	ND	0.034	0.028	ND	ND	NE
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	
Ø	0.086	0.12	0.1	0.11	0.12	0.072	0.12	0.086	0.11	0.081	0.099	0.099	0.11	0.085	0.13	0.11	0.11	0.12	0.1	0.15	0.1
8	0.063	0.066	0.052	0.072	0.051	0.053	0.043	0.05	0.046	0.053	0.047	0.046	0.035	0.022	0.022	0.048	0.05	0.037	0.046	0.037	0.023
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE

* Hyphen "-" indicates that neither sampling nor measurement was implemented.

* 6 was selected as a sampling location in the upstream of groundwater (sampling done once a week starting from April 29, 2011) since it became unable to do sampling at ④.

* Sampling at ⑦ (located in the downstream of the groundwater) has been done since May 26, 2011.

* Samping at (8) since May 30, 2011

* Sampling at (9) has been done since August 2, 2011

* "ND" indicates that the measurement result is below the detection limit.

I-131: Approx. 0.009Bq/cm³, Cs-134: Approx.0.01Bq/cm³, Cs-137: Approx.0.02Bq/cm³ (November 23, 2013)

As the detection limit may vary depending on the detectors and sample properties, there are cases where nuclides below the detection limit are detected.

<Place of Sampling>

① Southeast of Unit 4 Turbine Building

2 Northeast of the Process Main Building

③ Southeast of the Process Main Building

④ Southwest of the Process Main Building

(5) South Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building

Southwest Part of the On-site Bunker Building

⑦ West Side of the Incineration Workshop Building

8 North Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building

(9) Southeast Part of the On-site Bunker Building

Nov 24, 2013