Nuclides Analysis Result of the Sub-drain Water in the Surroundings of the Central Radioactive Waste Treatment Facility

I-131	Ba/c	:m ³)

-131(Bd	/cm ⁻)																			
Sampling																				
ocation	Aug 18	Aug 19	Aug 20	Aug 21	Aug 22	Aug 23	Aug 24	Aug 25	Aug 26	Aug 27	Aug 28	Aug 29	Aug 30	Aug 31	Sep 1					
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			Ι		
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			Ι		
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-					
7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 		1		
]s-134(Bq/cm ³)																			
	5q/011)																			
ampling ocation	Aua 18	Aua 19	Aug 20	Aua 21	Aua 22	Aua 23	Aua 24	Aua 25	Aua 26	Aua 27	Aua 28	Aua 29	Aua 30	Aug 31	Sep 1					
1)	ND	ND	ND	ND	ND	•	ND	ND	ND	ND	ND	ND	ND	ND	ND					
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 		<u>+</u>		
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 		-		······
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 				
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	 		 		
7	0.062	0.072	0.043	0.035	0.042	0.051	0.05	0.044	0.034	0.06	0.058	0.073	0.053	0.061	0.062	 				
© 8	0.002 ND	0.072 ND	0.040 ND	0.000 ND	0.042 ND	ND	ND	ND	0.004 ND	ND	ND	ND	0.000 ND	ND	0.002 ND	 				
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				
		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Cs-137(I	Bq/cm ³)																			
Sampling																	1	<u> </u>		
			Aug 20												Sep 1					
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 ļ	ļ	ļ		.
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 		ļ		.
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	 		_		
7	0.13	0.13	0.085	0.1	0.12	0.13	0.12	0.11	0.091	0.13	0.1	0.12	0.11	0.14	0.14	 				
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					

* Hyphen "-" indicates that neither sampling nor measurement was implemented.

* 6 was selected as a sampling location in the upstream of groundwater (sampling done once a week starting from April 29, 2011) since it became unable to do sampling at ④.

* Sampling at ⑦ (located in the downstream of the groundwater) has been done since May 26, 2011.

* Samping at (8) since May 30, 2011

* Sampling at (9) has been done since August 2, 2011

* "ND" indicates that the measurement result is below the detection limit.

I-131: Approx. 0.01Bq/cm³, Cs-134: Approx.0.01Bq/cm³, Cs-137: Approx.0.02Bq/cm³ (September 1, 2013)

As the detection limit may vary depending on the detectors and sample properties, there are cases where nuclides below the detection limit are detected.

<Place of Sampling>

① Southeast of Unit 4 Turbine Building

- 2 Northeast of the Process Main Building
- 3 Southeast of the Process Main Building
- ④ Southwest of the Process Main Building
- (5) South Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building
- 6 Southwest Part of the On-site Bunker Building
- ⑦ West Side of the Incineration Workshop Building
- (8) North Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building
- (9) Southeast Part of the On-site Bunker Building

Sep 2, 2013