Nuclides Analysis Result of the Sub-drain Water in the Surroundings of the Central Radioactive Waste Treatment Facility

I-131(Bg/cm ³)	/cm ³)	I-131(Ba/	
----------------------------	--------------------	-----------	--

I-131(Bo	/cm°)																			
Sampling																				
_ocation	Jun 30	Jul 1	Jul 2	Jul 3	Jul 4	Jul 5	Jul 6	Jul 7	Jul 8	Jul 9	Jul 10	Jul 11	Jul 12	Jul 13	Jul 14	Jul 15	Jul 16			
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		1	
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1	
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-			[
7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			[
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		1	
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		1	
]s-134(3q/cm ³)																			
Sampling	5q/011)																			
ocation	Jun 30	Jul 1	Jul 2	Jul 3	Jul 4	Jul 5	Jul 6	Jul 7	Jul 8	Jul 9	Jul 10	Jul 11	Jul 12	Jul 13	Jul 14	Jul 15	Jul 16			
1)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 		
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	<u>†</u>	
<u>(4)</u>		-	-		-	-		-		-	-	-	-		-	-	-	 		
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	••••••	
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	 	1	
7	0.087	0.041	0.086	0.048	0.051	0.061	0.024	0.047	0.051	0.067	0.06	0.065	0.049	0.035	0.045	0.081	0.051	 		
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 		
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	••••••	
_									=											L
,	3q/cm ³)																			
Sampling	Jun 30	1.1.4	Jul 2	11.0	1.1.4	Jul 5		1	Jul 8		1.1.10	Jul 11	1.1.40	1.1.40	I.I. 4.4	Jul 15	Jul 16		1	
1		Jul 1		Jul 3	Jul 4		Jul 6	Jul 7		Jul 9	Jul 10		Jul 12	Jul 13	Jul 14					
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 		
2	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	 		
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 		
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 	 	
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	 	
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	 	.	
7	0.16	0.099	0.15	0.099	0.098	0.11	0.047	0.096	0.1	0.17	0.1	0.12	0.12	0.087	0.11	0.19	0.12	 	.	
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	 	
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			1

* Hyphen "-" indicates that neither sampling nor measurement was implemented.

* 6 was selected as a sampling location in the upstream of groundwater (sampling done once a week starting from April 29, 2011) since it became unable to do sampling at ④.

* Sampling at ⑦ (located in the downstream of the groundwater) has been done since May 26, 2011.

* Samping at (8) since May 30, 2011

* Sampling at (9) has been done since August 2, 2011

* "ND" indicates that the measurement result is below the detection limit.

I-131: Approx. 0.01Bq/cm³, Cs-134: Approx.0.02Bq/cm³, Cs-137: Approx.0.02Bq/cm³ (July 16, 2013)

As the detection limit may vary depending on the detectors and sample properties, there are cases where nuclides below the detection limit are detected.

<Place of Sampling>

① Southeast of Unit 4 Turbine Building

2 Northeast of the Process Main Building

3 Southeast of the Process Main Building

④ Southwest of the Process Main Building

(5) South Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building

- 6 Southwest Part of the On-site Bunker Building
- ⑦ West Side of the Incineration Workshop Building

(8) North Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building

(9) Southeast Part of the On-site Bunker Building

Jul 17, 2013