Nuclides Analysis Result of the Sub-drain Water in the Surroundings of the Central Radioactive Waste Treatment Facility

I-131(Bq/cm3)

I-131(Bq/	/cm ³)																				
Sampling																					
	Jun 23	Jun 24	Jun 25	Jun 26	Jun 27	Jun 28	Jun 29	Jun 30	Jul 1	Jul 2	Jul 3	Jul 4	Jul 5	Jul 6	Jul 7	Jul 8	Jul 9	Jul 10	Jul 11	Jul 12	Jul 13
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-
Ō	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cs-134(E	Bq/cm ³)																				
Sampling																					
Location	Jun 23	Jun 24	Jun 25	Jun 26	Jun 27	Jun 28	Jun 29	Jun 30	Jul 1	Jul 2	Jul 3	Jul 4	Jul 5	Jul 6	Jul 7	Jul 8	Jul 9	Jul 10	Jul 11	Jul 12	Jul 13
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-
$\overline{\mathcal{O}}$	0.048	0.025	0.067	0.054	0.08	0.038	0.03	0.087	0.041	0.086	0.048	0.051	0.061	0.024	0.047	0.051	0.067	0.06	0.065	0.049	0.035
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cs-137(E	3q/cm ³)																				
Sampling																					
Location	Jun 23	Jun 24	Jun 25	Jun 26	Jun 27	Jun 28	Jun 29	Jun 30	Jul 1	Jul 2	Jul 3	Jul 4	Jul 5	Jul 6	Jul 7	Jul 8	Jul 9	Jul 10	Jul 11	Jul 12	Jul 13
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-
\bigcirc	0.098	0.053	0.14	0.12	0.17	0.088	0.084	0.16	0.099	0.15	0.099	0.098	0.11	0.047	0.096	0.1	0.17	0.1	0.12	0.12	0.087
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

* Hyphen "-" indicates that neither sampling nor measurement was implemented.

* 6 was selected as a sampling location in the upstream of groundwater (sampling done once a week starting from April 29, 2011) since it became unable to do sampling at ④.

* Sampling at ⑦ (located in the downstream of the groundwater) has been done since May 26, 2011.

* Samping at (8) since May 30, 2011

* Sampling at (9) has been done since August 2, 2011

* "ND" indicates that the measurement result is below the detection limit.

I-131: Approx. 0.009Bq/cm³, Cs-134: Approx.0.02Bq/cm³, Cs-137: Approx.0.02Bq/cm³ (July 13, 2013)

As the detection limit may vary depending on the detectors and sample properties, there are cases where nuclides below the detection limit are detected.

<Place of Sampling>

① Southeast of Unit 4 Turbine Building

② Northeast of the Process Main Building

③ Southeast of the Process Main Building

- ④ Southwest of the Process Main Building
- (5) South Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building
- 6 Southwest Part of the On-site Bunker Building
- O West Side of the Incineration Workshop Building
- 8 North Part of the Miscellaneous Solid Waste Volume Reduction Treatment Building
- (9) Southeast Part of the On-site Bunker Building

Jul 14, 2013