Underground Reservoir Nuclide Analysis Results (As of November 17, 2013)

		Underground Reservoir (Drain hole water)													
			i		ii		iii		iv		V		vi		vii
			Southwest						Southwest		Southwest				Southwest
		side	side	side	side	side	side	side	side	side	side	side	side	side	side
Sampled time		8:17 AM	8:24 AM	8:05 AM	8:32 AM	8:01 AM	8:12 AM	7:47 AM	7:53 AM	8:05 AM	8:01 AM	8:15 AM	8:08 AM	8:21 AM	8:34 AM
Chloride cor	Chloride concentration (ppm)		6	9	7	9	6	11	17	7	4	9	7	5	8
	I-131	<2.8E-2	<2.5E-2	<2.7E-2	<2.2E-2	<2.7E-2	<2.8E-2	<2.5E-2	<2.6E-2	<2.9E-2	<2.7E-2	<2.3E-2	<2.1E-2	<2.4E-2	<2.2E-2
Radioactive	Cs-134	<4.8E-2	<4.6E-2	<4.6E-2	<4.7E-2	<4.9E-2	<4.6E-2	<4.7E-2	<4.5E-2	<4.9E-2	<4.9E-2	<4.6E-2	<4.8E-2	<4.8E-2	<4.9E-2
concentration	Cs-137	<6.6E-2	<6.5E-2	<6.5E-2	<6.4E-2	<6.4E-2	<6.6E-2	<6.6E-2	<6.6E-2	<6.5E-2	<6.5E-2	<6.6E-2	<6.5E-2	<6.5E-2	<6.5E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	9.6E-1	<2.8E-2	<2.8E-2	<2.8E-2	1.4E-1	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	5.0E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

			Underground Reservoir (Leakage detector hole water)												
		i		ii		iii		iv		v /		vi		\	ίi
									Southwest				Southwest		Southwest
Sampled time		side 7:48 AM	side 8:30 AM	side 7:53 AM	side 8:21 AM	side 7:57 AM	side 8:09 AM	side 7:50 AM	side Not sampled	side	sid⁄e	side 8:12 AM	side Not sampled	side 8:24 AM	side 8:30 AM
	'								rtot dampida				rtot dampida		
Chloride cor	ncentration (ppm)	16	6	11	18	11	10	12				9		8	6
	I-131	<3.0E-2	<2.1E-2	<2.5E-2	<2.7E-2	<2.6E-2	<2.5E-2	<2.6E-2		/	,	<2.4E-2		<2.5E-2	<2.2E-2
Radioactive	Cs-134	<5.0E-2	<4.6E-2	<4.8E-2	<4.9E-2	<4.9E-2	<4.7E-2	<4.6E-2				<4.7E-2		<4.8E-2	<4.6E-2
concentration	Cs-137	<6.7E-2	<6.5E-2	<6.5E-2	<6.4E-2	<6.5E-2	<6.6E-2	<6.4E-2				<6.7E-2		<6.6E-2	<6.6E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND				ND		ND	ND
(Bq/cm ³)	All β	3.2E+2	<2.8E-2	2.4E+1	<2.8E-2	1.4E+0	4.2E+1	<2.8E-2				<2.8E-2		<2.8E-2	<2.8E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of y nuclides other than the major 3 nuclides are below the detection limit.

Underground Reservoir Observation Holes Nuclide Analysis Results (As of November 17, 2013)

		Underground reservoir observation holes (i - iii)												
	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
Sampled time	8:03 AM	8:13 AM	8:24 AM	8:36 AM	9:04 AM	8:38 AM	8:32 AM	8:24 AM	8:19 AM	8:13 AM	9:11 AM	9:02 AM	8:53 AM	8:45 AM
Chloride concentration (ppm)	8	9	10	6	10	8	9	10	9	13	34	10	9	13
All β(Bq/cm ³)	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

	Under	ground rese	ervoir obser	Underground reservoir observation holes (vi)				
	A15	A16	A17	A18	A19	B1	B2	В3
Sampled time	8:37 AM	8:27 AM	8:18 AM	8:55 AM	8:48 AM	8:51 AM	9:03 AM	9:12 AM
Chloride concentration (ppm)	10	11	6	7	10	16	6	10
All β(Bq/cm ³)	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

(Note 1) O.OE \pm O is the same as O.O x $10^{\pm O}$.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.