May 28, 2012 Nuclides Analysis Result of the Sub-drain Water in the Surroundings of the "Centralized Radiation Waste Treatment Facility"

I-131(Bq/cm³)

I-131(Bq	/cm²)																			
	After tra	nsfer																		
point	May 13	May 14	May 15	May 16	May 17	May 18	May 19	May 20	May 21	May 22	May 23	May 24	May 25	May 26	May 27					
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	1			1
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	1			1
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 	1			1
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				
	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	 				
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				
Cs-134(E	Ra/cm^{3}							1												
i	After tra	nsfer																		
			May 15	May 16	May 17	May 18	May 19	May 20	May 21	May 22	May 23	May 24	May 25	May 26	May 27					
	ND	ND	ND	-	-	ND		ND	ND	ND	ND	ND		ND	ND					
	ND	ND	ND			ND		ND	ND	ND	ND	ND		ND	ND	 	-			
	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND		ND	ND	 	-			
	110	-	-	-	110	-	-	ND -	-	-	-	110		-	-	 				
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	ND	ND	 				
	ND	ND	ND -		ND -				ND							 	+			
	0.14	0.14	0.14	0.1	0.12	0.2	0.12	0.13	0.12	0.12	0.19	0.23	0.16	0.14	0.13	 	+			
	0.14 ND	0.14 ND	0.14 ND	ND	ND	0.2 ND	ND	0.13 ND	0.12 ND	0.12 ND	ND	0.23 ND		0.14 ND	0.13 ND	 	+			
	ND	ND	ND			ND		ND	ND	ND	ND	ND		ND	ND	 	+			
		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					L
Cs-137(E																				
Sampling point					1		1					1	1			1	1	-	1	
point								May 20												
	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND		ND	ND	 				.
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	 ļ	.		ļ	ļ
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 ļ	.			ļ
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 	_			
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 	ļ			
	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	 	ļ			
	0.2	0.19	0.19	0.15	0.16	0.29	0.16	0.18	0.21	0.2	0.26	0.32	0.25	0.21	0.21	 	<u> </u>			
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					
T	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	 				

* Hyphen "-" indicates that neither sampling nor measurement was implemented.

* was selected as a sampling location in the upstream of groundwater (sampling done once a week starting from April 29, 2011) since it became unable to do sampling at .

* Sampling at (located in the downstream of the groundwater) has been done since May 26, 2011.

* Samping at since May 30, 2011

* Sampling at has been done since August 2, 2011

* "ND" indicates that the measurement result is below the detection limit.

I-131: approx. 0.01Bq/cm³, Cs-134: approx. 0.02Bq/cm³, Cs-137: approx. 0.03Bq/cm³ (May 27, 2012) As the detection limit may vary depending on the detectors and sample properties, there are cases where nuclides below the detection limit are detected.

<Place of sampling>

add of barriping-		
Southeast part of Unit 4 Turbine Building		
Northeast part of Process Main Building		
Southeast part of Process Main Building		
Southwest part of Process Main Building		
South Part of the Miscellaneous Solid Waste Volume Reduction Treatment Buil	ding	
Southwest part of On-site Bunker Building		
West part of Incineration Workshop Building		
North Part of the Miscellaneous Solid Waste Volume Reduction Treatment Build	ling	
Southeast part of On-site Bunker Building		