Nuclide Analysis Results of Sub-drain Water in the Surroundings of "Centralized Radiation Waste Treatment Facility" I-131(Bq/cm³)

Sampling	After tra	insfer		-		-												-			
point	Dec 18	Dec 19	Dec 20	Dec 21	Dec 22	Dec 23	Dec 24	Dec 25	Dec 26	Dec 27	Dec 28	Dec 29	Dec 30	Dec 31	Jan 01	Jan 02	Jan 03	Jan 04	Jan 05	Jan 06	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	-	ND	-	-	-	-	-	-	ND	-	-	-	-	-	-	ND	-	-	-	-	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Cs-134(Ba/cm ³)																				
Sampling		nsfer																			
point			Dec 20	Dec 21	Dec 22	Dec 23	Dec 24	Dec 25	Dec 26	Dec 27	Dec 28	Dec 29	Dec 30	Dec 31	Jan 01	Jan 02	Jan 03	Jan 04	Jan 05	Jan 06	
	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND		0.022	ND	ND	ND	ND	ND	ND	
	ND	ND	ND	ND	ND	ND	ND		ND												
	ND	ND	ND	ND	ND	ND	ND		ND												
		-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-		
	0.026	0.038	0.022	ND	0.026	0.036	ND	0.034	ND	0.037	ND	0.032	ND								
		ND		-					ND		-			-		ND	-		-		
	0.13	0.22	0.09	0.088	0.17	0.057	0.22	0.16	0.11	0.076	0.19	0.062	0.072	0.083	0.17	0.11	0.091	0.089	0.065	0.077	
	ND	ND	0.032	0.023	0.03	ND	ND		ND	ND	ND	0.033	ND	ND	ND	0.025	ND	ND	ND	ND	
	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND		ND							
0 40=																					
Cs-137(<u> </u>																				
Sampling point			D	Decit	D	D	Dec	D	D	D 07	D	D 00	D	Decisi	1 01	1 00	1 00	1 0.1	1 05	1 00	
P0								Dec 25							Jan 01		Jan 03	Jan 04			
	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	0.039	ND	ND	ND	ND	ND	ND	
	ND	ND	ND	ND	ND	ND	ND		ND												
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

ND

0.094

0.039

ND

0.026

0.24

0.025

ND

0.038

0.087

0.046

ND

0.028

0.072

0.038

ND

ND

0.11

ND

ND

ND 0.028

0.2

ND

0.028

ND

0.13

0.026

ND

ND * Hyphen "-" indicates that neither sampling nor measurements were implemented.

* was conducted as upstream of the groundwater once a week from April 29 since it was unable to sample at .

ND

0.3

ND

ND

ND 0.032

0.2

ND

0.033

ND

0.16

0.027

ND

* We have been sampling at since May 26, for it is located downstream of the groundwater

ND

0.08

ND

* We have been sampling at since May 30.

0.028

0.16

ND

ND

ND

ND

0.31

0.03

ND

0.026

0.14

ND

ND

* We have been sampling at since August 2.

* "ND" means the sampled data is below measurable limit.

0.034

0.09

0.025

ND

0.035

0.22

ND

ND

I-131: approx. 0.01Bq/cm3, Cs-134: approx. 0.02Bq/cm3, Cs-137: approx. 0.03Bq/cm3 (1/6) Please note that these nuclides are sometimes detected even when they are below the limits, contingent on the detector or samples.

<Place of sampling>

ND

0.11

0.026

ND

Southeast part of Unit 4 Turbine Building Northeast part of Process Main Building Southeast part of Process Main Building Southwest part of Process Main Building South part of Miscellaneous Solid Waste Volume Reduction Treatment Building Southwest part of On-site Bunker Building

ND

0.13

ND

ND

Jan 07, 2012

West part of Incineration Workshop Building

North part of Miscellaneous Solid Waste Volume Reduction Treatment Building

Southeast part of On-site Bunker Building

ND

0.097

0.036

ND

ND

0.12

0.038

ND