Fukushima Daiichi Nuclear Power Station Plant Parameters

As of 5:00 on December 92015

[^0]| | Unit 1 | Unit 2 | | Unit 3 | | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Status of water injection to the reactor | FDW line $2.4 m^{3} / h$ CS line $1.8 \mathrm{~m}^{3} / \mathrm{h}$ (as of 5:00, 12/9) | FDW line $1.9 \mathrm{~m}^{3} / \mathrm{h}$ CS line $2.3 \mathrm{~m}^{3} / \mathrm{h}$ (as of 5:00, 12/9) | | FDW line $2.0 \mathrm{~m}^{3} / \mathrm{h}$ CS line $2.3 m^{3} / \mathrm{h}$ (as of 5:00, 12/9) | | - |
| Temperature at the bottom of RPV | VESSEL BOTTOM HEAD
 (TE-263-69L1) : $20.1^{\circ} \mathrm{C}$ VESSEL ABOVE SKIRT JOINT
 (TE-263-69H1) : $20.1^{\circ} \mathrm{C}$ VESSEL DOWNCOMMER
 (TE-263-69G2) : 20.0̊ㅡ (as of 5:00, 12/9) | ```VESSEL WALL ABOVE BOTTOM HEAD (TE-2-3-69H3) : 25.1 C RPV TEMPERATURE (TE-2-3-69R) : 22.9}\mp@subsup{9}{}{\circ}\textrm{C (as of 5:00, 12/9)``` | | VESSEL BOTTOM HEAD
 (TE-2-3-69L1) : 23.8 VESSEL BOTTOM ABOVE
 (TE-2-3-69F1) : 23.7 VESSEL WALL ABOVE BO
 (TE-2-3-69H1) : 22.2 (as of 5:00, 12/9) | IRT JOT OM HEAD | |
| Temperature in PCV | HVH-12A RETURN AIR
 (TE-1625A) : $20.4^{\circ} \mathrm{C}$
 HVH-12A SUPPLY AIR
 (TE-1625F) : $19.9^{\circ} \mathrm{C}$ (as of 5:00, 12/9) | RETURN AIR DRYWELL COOLER
 (TE-16-114B) : $26.1^{\circ} \mathrm{C}$ SUPPLY AIR D/W COOLER HVH2-16B
 (TE-16-114G\#1) : $25.3^{\circ} \mathrm{C}$ (as of 5:00, 12/9) | | RETURN AIR DRYWELL C
 (TE-16-114A) : 23.5 SUPPLY AIR D/W COOLER
 (TE-16-114F\#1) : 2 (as of 5:00, 12/9) | | |
| Pressure in PCV | $\begin{aligned} & \text { O.9kPa g } \\ & \text { (as of 5:00 , 12/9) } \end{aligned}$ | $\begin{aligned} & 3.63 \mathrm{kPag} \\ & \text { (as of 5:OO , 12/9) } \end{aligned}$ | | $\begin{aligned} & \mathrm{O} .25 \mathrm{kPa} \mathrm{~g} \\ & \text { (as of 5:00 , 12/9) } \end{aligned}$ | | |
| Flow rate of nitrogen gas injection to Reactors ※3 | RPV : $28.69 \mathrm{Nm}^{3} / \mathrm{h}$ $\mathrm{PCV}:-\mathrm{Nm}^{3} / \mathrm{h}$ (as of $5: 00,12 / 9$) | RPV : $15.87 \mathrm{Nm}^{3} / \mathrm{h}$PCV : $-\mathrm{Nm}^{3} / \mathrm{h}$(as of $5: 00,12 / 9$) | | RPV : $16.88 \mathrm{Nm}^{3} / \mathrm{h}$ PCV : - $\mathrm{Nm}^{3} / \mathrm{h}$ (as of 5:00, 12/9) | $※ 4$ | |
| Outlet flow from PCV gas control system | $\begin{aligned} & 22.7 \mathrm{~m}^{3} / \mathrm{h} \\ & \text { (as of 5:00, 12/9) } \end{aligned}$ | $19.69 \mathrm{Nm}^{3} / \mathrm{h}$
 (as of 5:00, 12/9) | | $21.5 \mathrm{Nm}^{3} / \mathrm{h}$
 (as of 5:00, 12/9) | | |
| Hydrogen concentration in PCV ※1 | System A : 0.02vol\% System B : O.O4vol\% (as of 5:00, 12/9) | System A : O.08vol\% System B : 0.08vol\% (as of 5:00, 12/9) | | System A : 0.09vol\% System B : 0.08vol\% (as of 5:00, 12/9) | | |
| Radioactive concentration in PCV (Xe 135) ※2 | System A :
 $\begin{array}{lll}\text { indicated value } & 1.23 \mathrm{E}-\mathrm{O} \\ \text { detection limit } & 5.80 \mathrm{E}-04 & \mathrm{Ba} / \mathrm{cm}^{3}\end{array}$
 System B :
 $\begin{array}{lll}\text { indicated value } & 1.05 \mathrm{E}-03 \\ \text { detection limit } & 5.50 \mathrm{E}-04 & \mathrm{Ba} / \mathrm{cm}^{3}\end{array}$ detection limit $5.50 \mathrm{E}-04 \mathrm{Ba} / \mathrm{cm}$ as of 5:00, 12/9, | System A :
 indicated value ND
 detection limit $\quad 2.5 \mathrm{E}-01 \quad \mathrm{Ba} / \mathrm{cm}^{3}$
 System B :
 indicated value ND
 detection limit 2.0E-01 $\quad \mathrm{Ba} / \mathrm{cm}^{3}$ (as of 5:00, 12/9) | | ```System A : indicated value ND detection limit 2.9E-01 System B : indicated value ND detection limit 3.1E-01 (as of 5:00, 12/9)``` | $\mathrm{Ba} / \mathrm{cm}^{3}$
 $\mathrm{Ba} / \mathrm{cm}^{3}$ | |
| Temperature in the spent fuel pool | $\begin{aligned} & 14.9^{\circ} \mathrm{C} \\ & (\text { as of } 5: 00,12 / 9) \end{aligned}$ | $\begin{aligned} & 18.2^{\circ} \mathrm{C} \\ & (\text { as of } 5: 00,12 / 9 \text {) } \end{aligned}$ | | $\begin{aligned} & 21.0^{\circ} \mathrm{C} \\ & \text { (as of } 5: 00,12 / 9) \end{aligned}$ | | $\begin{aligned} & 10.7^{\circ} \mathrm{C} \\ & \text { (as of 5:00, 12/9) } \end{aligned}$ |
| FPC skimmer surge tank level | $\binom{3.42 m}{\text { (as of } 5: 00,12 / 9}$ | $\begin{aligned} & 3.97 \mathrm{~m} \\ & \text { (as of 5:00, 12/9) } \end{aligned}$ | | $\begin{aligned} & 2.60 \mathrm{~m} \\ & \text { (as of } 5: 00,12 / 9 \text {) } \end{aligned}$ | | $\begin{aligned} & 31.05 \times 100 \mathrm{~mm} \\ & \text { (as of 5:00, 12/9) } \end{aligned}$ |
| 【Information about measurements】
 $※ 1$: In case that the instrument indicates minus hydrogen density, " 0% " is recorded. (Because there's the possibility of minus indication due to the instrumental precision when hydrogen density is very low.)
 The hydrogen concentration in the PCV gas control system is provided.
 $※ 2$: In case that the instrument reading is below measurable limit, "ND" is recorded. The radioactivity density ($\mathrm{X}_{\mathrm{e}} 135$) in the PCV gas control system is provided.
 ※3: Flow rate values are adjusted according to the temperature and the pressure under usage conditions.
 ※4 : Nitrogen gas injection is under suspension.
 $※ 5$: December 8 as of11:00 the Unit 2 PCV radioactive concentration (Xe135) is to be revised as follows: (error) System B Data missing due to operations
 System A Indicated value "ND", detection limit "2.5E-O1"
 System B Indicated value "-", detection limit "-" (correct) System A Data missing due to operations
 System A Indicated value "-", detection limit "-"
 System B Indicated value "ND", detection limit "2.OE-O1" | | | | | | |

[^0]: [Note]
 Some indicators might not be functioning properly beyond the normal condition for usage affected by the eerthquake and subsequent events.
 We comprehessively evaluate situation in plants using all the available information from indicators and also focusing on trends, taking uncertainty of indicators into consideration.

