Fukushima Daiichi Nuclear Power Station Plant Parameters
As of 11:00 on September 252012

Note]
Some indicators might not be functioning properly beyond the normal condition for usage affected by the earthquake and subsequent events.
We comprehensively evaluate situation in plants using all the available information from indicators and also focusing on trends, taking uncertainty of indicators into consideration

	Unit 1		Unit 2	Unit 3	Unit 4
Status of water injection to the reactor	FDW line $\quad 2.6 \mathrm{~m}^{3} / \mathrm{h}$ CS line $1.9 \mathrm{~m}^{3} / \mathrm{h}$ (as of 11:00,9/25)		FDW line $2.0 \mathrm{~m}^{3} / \mathrm{h}$ CS line $5.1 \mathrm{~m}^{3} / \mathrm{h}$ (as of 11:00,9/25)	FDW line $2.5 \mathrm{~m}^{3} / \mathrm{h}$ CS line $4.5 \mathrm{~m}^{3} / \mathrm{h}$ (as of 11:00, 9/25)	
Temperature at the bottom of RPV	VESSEL BOTTOM HEAD (TE-263-69L1) : $35.1^{\circ} \mathrm{C}$ VESSEL ABOVE SKIRT JOINT (TE-263-69H1) : $35.7^{\circ} \mathrm{C}$ VESSEL DOWNCOMMER (TE-263-69G2) : $35.1^{\circ} \mathrm{C}$ (as of 11:00,9/25)		VESSEL WALL ABOVE BOTTOM HEAD (TE-2-3-69H3) : $47.2^{\circ} \mathrm{C}$ (as of 11:00, 9/25)	VESSEL BOTTOM HEAD (TE-2-3-69L1) : $49.3^{\circ} \mathrm{C}$ VESSEL BOTTOM ABOVE SKIRT JOT (TE-2-3-69F1) : 48.8응 VESSEL WALL ABOVE BOTTOM HEAD (TE-2-3-69H1) : $40.5^{\circ} \mathrm{C}$ (as of 11:00, 9/25)	
Temperature in PCV	HVH-12A RETURN AIR (TE-1625A) : 37.6º HVH-12A SUPPLY AIR (TE-1625F) : $34.2^{\circ} \mathrm{C}$ (as of 11:00,9/25)		RETURN AIR DRYWELL COOLER (TE-16-114B) : 46.7 ${ }^{\circ} \mathrm{C}$ SUPPLY AIR D/W COOLER HVH2-16B (TE-16-114G\#1) : $46.7^{\circ} \mathrm{C}$ (as of 11:00,9/25)	```RETURN AIR DRYWELL COOLER (TE-16-114A) : \(45.6^{\circ} \mathrm{C}\) SUPPLY AIR D/W COOLER (TE-16-114F\#1) : \(46.2^{\circ} \mathrm{C}\) (as of 11:00,9/25)```	
Pressure in PCV	106.7kPa abs (as of 11:00, 9/25)		$\begin{aligned} & 6.19 \mathrm{kPa} \mathrm{~g} \\ & \text { (as of 11:00 , 9/25) } \end{aligned}$	$\begin{aligned} & 0.21 \mathrm{kPa} \mathrm{~g} \\ & \text { (as of } 11: 00,9 / 25 \text {) } \end{aligned}$	-
Flow rate of nitrogen gas injection to Reactors $※ 5$	RPV : $12.47 \mathrm{Nm}^{3} / \mathrm{h}$ PCV: $19.55 \mathrm{Nm}^{3} / \mathrm{h}$ (as of 11:00, 9/25		RPV: $15.10 \mathrm{Nm}^{3} / \mathrm{h}$ PCV : $5.03 \mathrm{Nm}^{3} / \mathrm{h}$ (as of 11:00, 9/25	$\begin{aligned} & \mathrm{RPV}: 16.05 \mathrm{Nm}^{3} / \mathrm{h} \\ & \mathrm{PCV}: 0 \mathrm{Nm}^{3} / \mathrm{h} \\ & \text { (as of } 11: 00,9 / 25 \text {) } \end{aligned}$	
Outlet flow from PCV gas control system	$\begin{aligned} & 26.21 \mathrm{~m}^{3} / \mathrm{h} \\ & \text { (as of } 11: 00,9 / 25 \text {) } \end{aligned}$		$\begin{aligned} & 24.00 \mathrm{Nm}^{3} / \mathrm{h} \\ & \text { (as of } 11: 00,9 / 25 \text {) } \end{aligned}$	$\begin{aligned} & 25.5 \mathrm{Nm}^{3} / \mathrm{h} \\ & \text { (as of } 11: 00,9 / 25 \text {) } \end{aligned}$	
Hydrogen concentration in PCV ※3	System A : O.O3vol\% System B : O.O3vol\% (as of 11:00,9/25		System A: O.06vol\% System B : 0.06vol\% (as of 11:00, 9/25	System A: 0.23vol\% System B : O.23vol\% (as of 11:00, 9/25	
Radioactive concentration in PCV (Xe 135) ※4	System A: indicated value 2.16E-O3 detection limit 1.13E-O3 System B: indicated value 2.56E-O3 detection limit $1.34 \mathrm{E}-03$ (as of 11:00, 9/25)	$\mathrm{Ba} / \mathrm{cm}^{3}$ $\mathrm{Ba} / \mathrm{cm}^{3}$	System A: indicated value ND detection limit $\quad 2.3 \mathrm{E}-01 \quad \mathrm{Ba} / \mathrm{cm}^{3}$ System B: indicated value ND detection limit $2.2 \mathrm{E}-01 \quad \mathrm{Ba} / \mathrm{cm}^{3}$ (as of 11:00,9/25)	```System A : indicated value 3.6E-01 detection limit 3.4E-01 Ba/cm System B : indicated value ND detection limit 3.4E-01 Ba/cm (as of 11:00,9/25)```	
Temperature in the spent fuel pool	$\begin{aligned} & 29.5^{\circ} \mathrm{C} \\ & \text { (as of 5:00, 9/25) } \end{aligned}$	※7	$\begin{aligned} & 27.1^{\circ} \mathrm{C} \\ & \text { (as of } 11: 00,9 / 25 \text {) } \end{aligned}$	$\begin{aligned} & 25.0^{\circ} \mathrm{C} \\ & \text { (as of 11:00, 9/25) } \end{aligned}$	$\left\lvert\, \begin{aligned} & 32^{\circ} \mathrm{C} \\ & \text { (as of 11:00, 9/25) } \end{aligned}\right.$
FPC skimmer surge tank level	$\begin{aligned} & 2.84 m \\ & \text { (as of } 11: 00,9 / 25 \text {) } \end{aligned}$	※8	$\begin{aligned} & 2.14 \mathrm{~m} \\ & \text { (as of } 11: 00,9 / 25 \text {) } \end{aligned}$	$\left(\begin{array}{l} 5.22 m \\ \text { (as of } 11: 00,9 / 25) \end{array}\right.$	$\left\lvert\, \begin{aligned} & 52.86 \times 100 \mathrm{~mm} \\ & \text { (as of } 11: 00,9 / 25 \text {) } \end{aligned} \quad ※ 6\right.$

- Information about measurements)

1 : Instrument falure
3 : In case that the instring the status (Meters which showed some fluctuation in the records but were not concluded as malfunction and of which the transition of the records are under observation.)
$※ 4$: In case that the instrument indicates minest hydrogen density, "O\%"" is recorded.
. Flow rate values are adjusted according to the temperature and the eressure under usage conditions
$\times 6$: Corresponding value of temporary instrument is described due to isolation of

※ 8 : The water level during the suspension of the Unit 1 spent fuel pool alternative cooling system.

