Situation of Storage and Treatment of Accumulated Water containing Highly Concentrated Radioactive Materials at Fukushima Daiichi Nuclear Power Station (585th Release)

January 23, 2023 Tokyo Electric Power Company Holdings, Inc.

1. Introduction

This document is to report the following matters in accordance with the instruction of "Installment of treatment facility and storing facility of water containing highly concentrated radioactive materials at Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company (Instruction) "(NISA No. 6, June 8, 2011), dated on June 9, 2011.

<Instruction>

TEPCO should report to NISA the situation of storing and treatment of the contaminated water in the Power Station and the future forecast based upon the current situation as soon as the treatment facility starts its operation. Also, subsequently, continued report has to be submitted to NISA once a week until the treatment of the accumulated water in the Central Radioactive Waste Treatment Facility is completed.

2. Situation of storing and treatment of accumulated water in the building (actual record)

Stored amounts in each unit building (Unit 1 to 4 (including condensers and trenches)) and stored and treated amounts, and other related data in the Accumulated Water Storing Facility as of January 19, 2023 are shown in the Attachment -1.

3. Forecast of storing and treatment

(1) Short term forecast

Water transfer in Unit 1 and 2 and Unit 3 and 4 is planned based on the stored amount in the Accumulated Water Storing Facilities and the operating situation of the radioactive material treatment equipment and the subdrain catchment facility. Water is transferred to the Process Main Building and/or High Temperature Incinerator Building as Accumulated Water Storing Facilities.

Treatment is implemented considering the state of storage and transfer of Accumulated Water Storing Facilities.

We assume stored amounts in each unit building (Unit 1 to 4 (including condenser and trench)), and stored and treated amounts, and other related data in the Accumulated Water Storing Facilities as of January 26, 2023 are shown in Attachment -2.

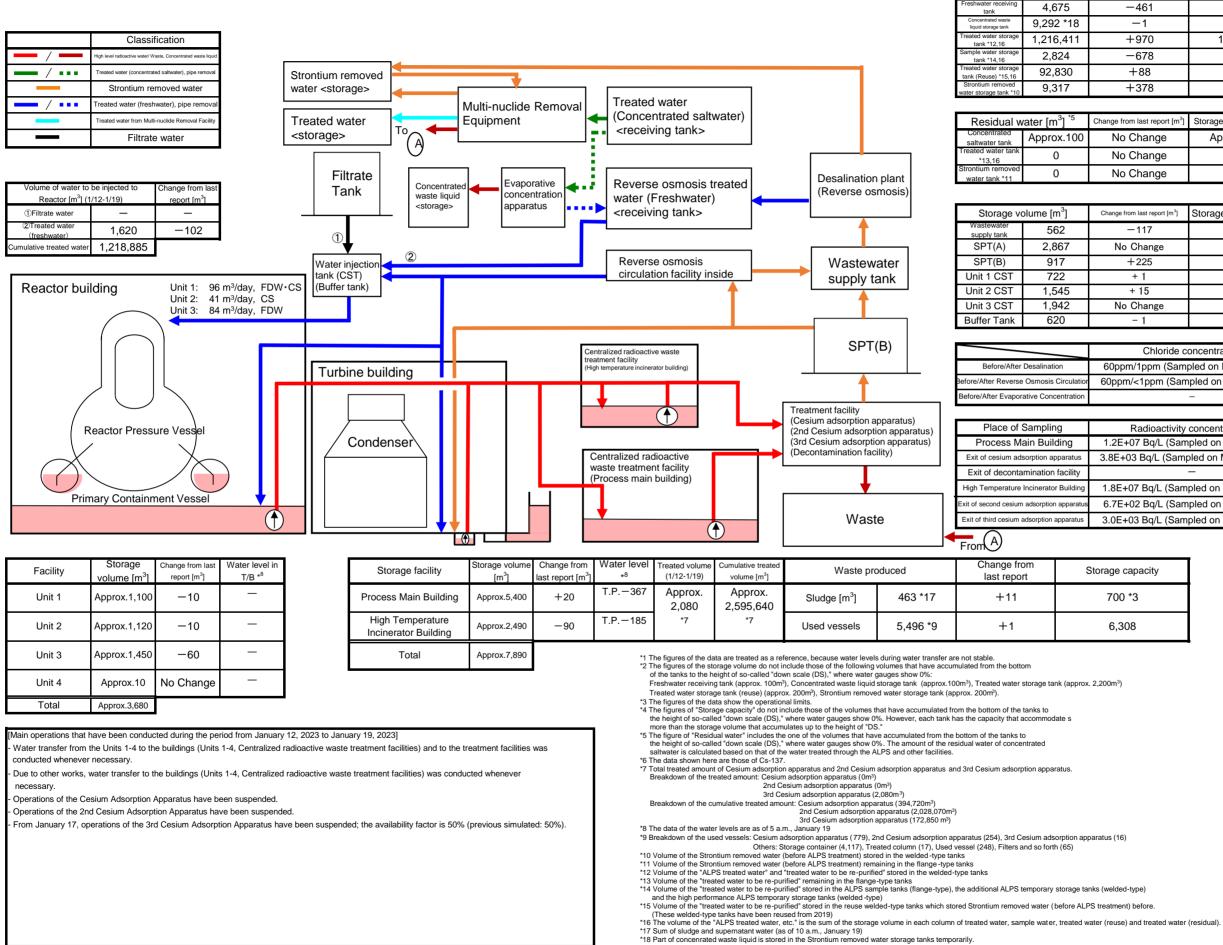
1

(2) Middle term forecast

Regarding accumulated water in Unit 1 and 2 buildings and Unit 3 and 4 buildings, from the viewpoint of reducing the risks of discharging to the ocean and leaking into the groundwater, it is necessary to keep enough capacity for the accumulated water in the building until its level reaches TP. 2,564 and to keep the accumulated water level lower than the groundwater level.

At the same time, in order to suppress the flow of groundwater into buildings and reduce the amount of accumulated water being generated, we are planning to transfer accumulated water from the Unit 1 to 3 reactor buildings, where injected cooling water is being circulated, in accordance with the status of the treatment of accumulated water containing highly concentrated radioactive materials and the amount of water being stored in accumulated water storage facilities, while ensuring a specific difference between the levels of accumulated water in buildings and the water levels of subdrains in the vicinity. At other buildings where the lowermost floors have been exposed, we are planning to transfer accumulated water to keep these floor surfaces exposed.

As for accumulated water of the Process Main Building and the High Temperature Incinerator Building, we are planning to treat the accumulated water considering the situation of construction of middle and low level waste water tanks, the operation factor of the radioactive material treatment instruments and duration for maintenance.


We forecast storing and treatment situations in the Accumulated Water Storing Facilities for the next 3 months, as shown in Attachment -3.

Stored amounts in the water storage equipment are forecasted to be unchanged in case transfer and treatment were implemented as scheduled without rain. However, it would be subject to change depending on the operation factor of the radioactive material treatment instruments and so on.

Also, the water treated at the radioactive material treatment equipment can be stored in the middle and low level waste water tanks.

END

Storage and treatment of high level radioactive accumulated water (as of January 19, 2023)

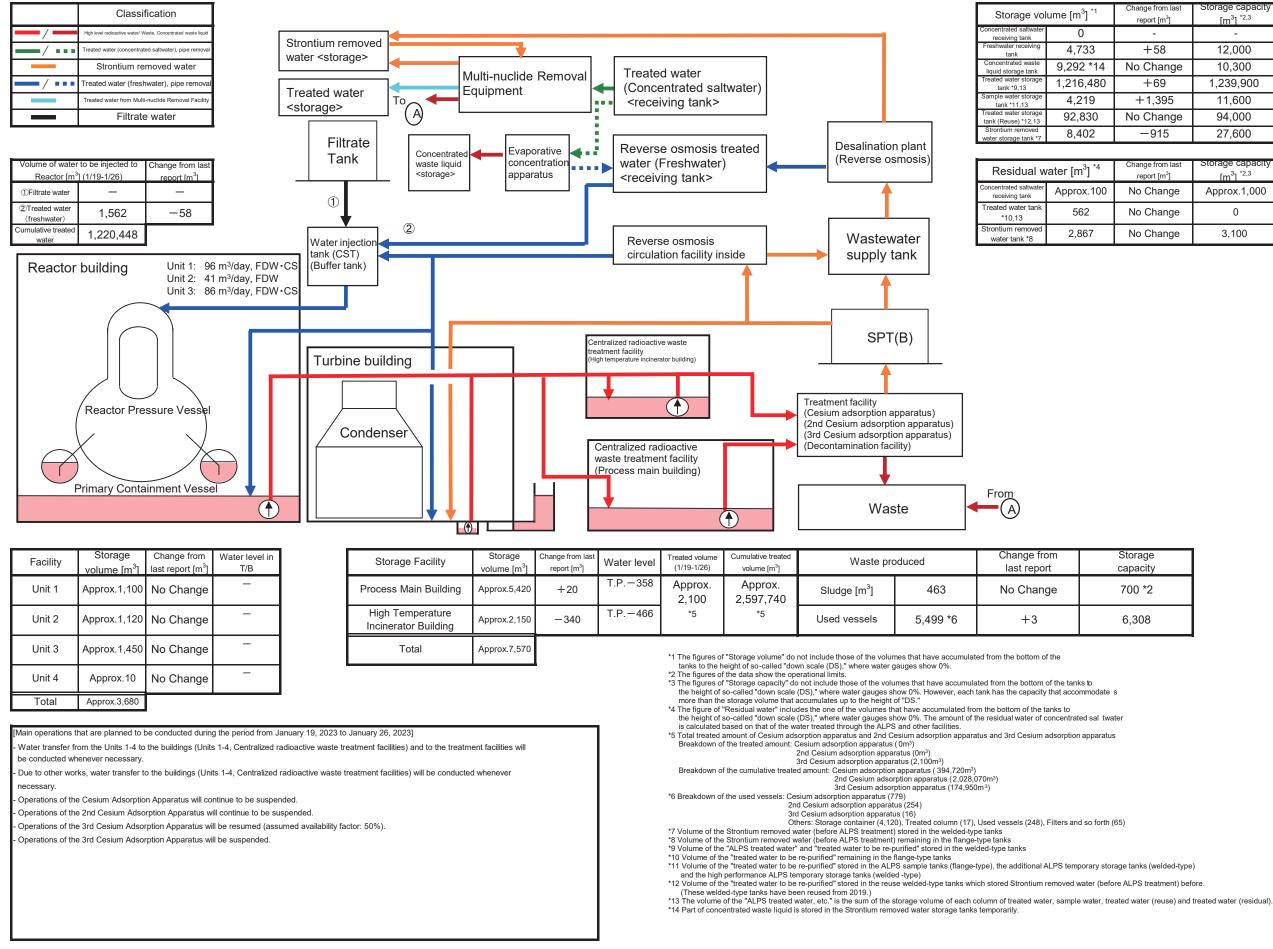
Attachment-1

³] ^{*1,2}	Change from last report [m ³]	Storage capacity [m ³] *3,4
0	_	-
675	-461	12,000
2 *18	-1	10,300
6,411	+970	1,239,900
324	-678	11,600
830	+88	94,000
317	+378	27,600

Storage volume [m

eceiving tan

n³] *5	Change from last report [m ³]	Storage capacity $[m^3]^{*3,4}$
ox.100	No Change	Approx.1,000
0	No Change	0
0	No Change	0

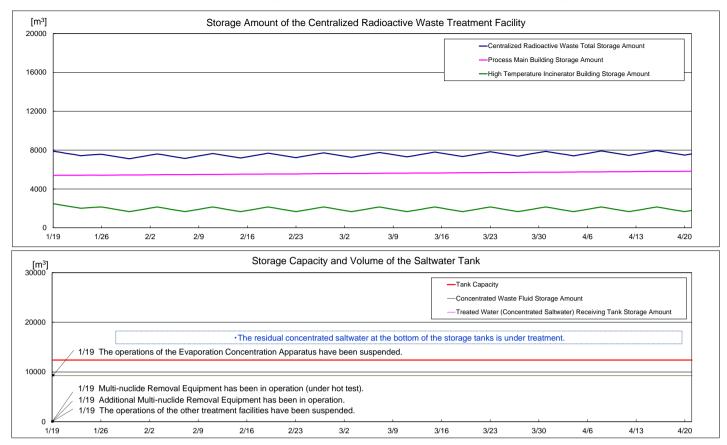

m ³]	Change from last report [m ³]	Storage volume [m ³] *3
62	-117	1,200
867	No Change	3,100
17	+225	3,100
22	+ 1	1,600
545	+ 15	2,200
942	No Change	2,200
20	- 1	700

	Chloride concentration
ion	60ppm/1ppm (Sampled on Dec. 6, 2022)
Circulation	60ppm/<1ppm (Sampled on Nov. 8, 2022)
centration	_

ng	Radioactivity concentration ^{*6}	
ding	1.2E+07 Bq/L (Sampled on Oct. 4, 2022)	
pparatus	3.8E+03 Bq/L (Sampled on Mar. 22, 2019)	
facility	-	
r Building	1.8E+07 Bq/L (Sampled on Nov. 1, 2022)	
n apparatus	6.7E+02 Bq/L (Sampled on Oct. 3, 2022)	
apparatus	3.0E+03 Bq/L (Sampled on Nov. 1, 2022)	

	Storage capacity
	700 *3
I	6,308

Storage and treatment of high level radioactive accumulated water (as of January 26, 2023)



Attachment-2

ume [m ³] ^{*1}	Change from last report [m ³]	Storage capacity [m ³] *2,3
0	-	-
4,733	+58	12,000
9,292 *14	No Change	10,300
1,216,480	+69	1,239,900
4,219	+1,395	11,600
92,830	No Change	94,000
8,402	-915	27,600

ater [m ³] ^{*4}	Change from last report [m ³]	Storage capacity [m ³] *2,3
Approx.100	No Change	Approx.1,000
562	No Change	0
2,867	No Change	3,100

m t	Storage capacity
je	700 *2
	6,308

Note
- The amount of water treated through the treatment facilities is changed depending on the factors such as stored amount in the accumulated water storing facilities.