Fukushima Daiichi Nuclear Power Station Plant Parameters As of 11:00 on December 12 2024 ## December 12 2024 TEPCO Holdings Fukushima Daiichi D&D Engineering Company | | Unit 1 | Unit 2 | Unit 3 | Unit 4 | |--|---|---|--|-------------| | Status of water injection to the reactor | FDW line: 1.4 m²/h CS line: 0.0 m²/h | FDW line: - m³/h %6 CS line: 1.5 m³/h %6 | FDW line: 1.9 m³/h CS line: 1.9 m³/h | | | Temperature at the bottom of | VESSEL ABOVE SKIRT JOINT | VESSEL WALL ABOVE BOTTOM HEAD
(TE-2-3-69H3): 28.6 °C
RPV TEMPERATURE
(TE-2-3-69R): 26.0 °C | VESSEL BOTTOM ABOVE SKIRT JOT
(TE-2-3-69F1): 24.3 °C
VESSEL WALL ABOVE BOTTOM HEAD
(TE-2-3-69H1): 22.7 °C | | | Temperature in PCV | (TE-1625A) : 22.5 ℃ | RETURN AIR DRYWELL COOLER
(TE-16-114B): 28.8 °C
SUPPLY AIR D/W COOLER HVH2-16B
(TE-16-114G#1): 28.4 °C | PCV Temperature
(TE-16-002): 21.5 °C
SUPPLY AIR D/W COOLER
(TE-16-114F#1): 22.1 °C | | | Pressure in PCV | 0.08 kPa g | 1.74 kPag | 0.53 kPag | _ | | Flow rate of
nitrogen gas
injection to
Reactors | (JP-A): 15.90 Nm³/h | RPV-A: 6.65 Nm²/h
RPV-B: 6.70 Nm²/h
PCV: - Nm²/h **4 | RPV-A: 7.30 Nm²/h
RPV-B: 7.28 Nm²/h
PCV: 9.08 Nm²/h | | | Outlet flow from
PCV gas control
system | 20.4 m³/h | 15.45 Nm³/h | 26.67 Nm²/h | | | | System A : 0.00 vol% System B : - vol% **9 | System A : 0.06 vol% System B : - vol% | System A: 0.44 vol% System B: 0.42 vol% | | | Radioactive | System A: indicated value 1.65E-03 detection limit 5.00E-04 System B: indicated value - Bq/cm² **9 detection limit - Bq/cm² | System A: indicated value ND detection limit 1.2E-01 System B: indicated value - Bq/cm³ detection limit - Bq/cm³ | System A: indicated value detection limit System B: indicated value detection limit ND Bq/cm² Bq/cm² Bq/cm² | | | Temperature in the spent fuel pool | 29.1 °C | 17.5 °C | - *5 | - **5 | | FPC skimmer
surge tank level | - m | 3.97 m | 3.68 m | 31.7 ×100mm | ※9 : Data missing due to work interrupting the measurement. Some indicators might not be functioning properly beyond the normal condition for usage affected by the earthquake and subsequent events. We comprehensively evaluate situation in plants using all the available information from indicators and also focusing on trends, taking uncertainty of indicators into consideration. [[]Information about measurements] #1: In case that the instrument indicates minus hydrogen density, "0%" is recorded. Because there's the possibility of minus indication due to the instrumental precision when hydrogen density is very low.) The hydrogen concentration in the PCV gas control system is provided. #2: In case that the instrument reading is below measurable limit. "ND" is recorded. The radioactivity density 0xe135) in the PCV gas control system is provided. #3: Flow rate values are adjusted according to the temperature and the pressure under usage conditions. ^{**4 :} Nitrogen gas injection is under suspension.**5 : Not monitored as all fuel removal is complete. ^{**6} The condensation storage tank reactor water injection systems were switched over to the higher ground reactor water injection systems for the construction to lay pipes. Data sampling by flowmeters of the upland reactor water injection systems. Wata sampling by flowmeters of the upland reactor water injection systems. X7: The primary coolant pump in the Unit 1 spent fuel pool is now suspended. X8: Predicted temperature of the spent fuel pool water due to suspension of the primary pump for the Unit 1 spent fuel pool cool ing system.