福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第 I 章 2 リスク評価 2.3 特定原子力施設における主なリスク)

変更前	変 更 後	変更理由
2.3 特定原子力施設における主なリスク	2.3 特定原子力施設における主なリスク	
(中略)	(中略)	
2.3.2. 燃料デブリ(1~3号機)	2.3.2. 燃料デブリ(1~3号機)	
燃料デブリに関するリスクとしては、原子炉圧力容器・格納容器注水設備(以下、原子炉注水系という)が	燃料デブリに関するリスクとしては、原子炉圧力容器・格納容器注水設備(以下、原子炉注水系という)が	
機能喪失することにより原子炉注水が停止し、原子炉圧力容器及び格納容器内の燃料デブリ等の温度が上昇	機能喪失することにより原子炉注水が停止し、原子炉圧力容器及び格納容器内の燃料デブリ等の温度が上昇	
し、放射性物質が環境中に放出されるリスクが考えられる。原子炉の安定的な冷却状態を維持し、冷温停止状	し、放射性物質が環境中に放出されるリスクが考えられる。原子炉の安定的な冷却状態を維持し、冷温停止状	
態を維持することは福島第一原子力発電所の最重要課題の一つであることから、このリスクに対しては、原子	態を維持することは福島第一原子力発電所の最重要課題の一つであることから、このリスクに対しては、原子	
炉注水系の継続的な信頼性向上を図ってきており、水源・ポンプ・電源等について多重性及び多様性を有した	炉注水系の継続的な信頼性向上を図ってきており、水源・ポンプ・電源等について多重性及び多様性を有した	
十分信頼性の高い系統構成としている。	十分信頼性の高い系統構成としている。	
確率論的リスク評価による原子炉注水系のリスク評価では,炉心再損傷頻度が約 5.9×10⁵/年と評価され	確率論的リスク評価による原子炉注水系のリスク評価では、炉心再損傷頻度が約 5.9×10 ⁻⁵ /年と評価され	
ており、「施設運営計画に係る報告書(その1)(改訂2)(平成23年12月)」で評価された約2.2×10 ⁻⁴ /年	ており、「施設運営計画に係る報告書(その1)(改訂2)(平成23年12月)」で評価された約2.2×10 ⁻⁴ /年	
の炉心再損傷頻度からリスクが低減していることが確認できる。今後も、原子炉注水系の小ループ化等により	の炉心再損傷頻度からリスクが低減していることが確認できる。今後も、原子炉注水系の小ループ化等により	
信頼性の向上を図り、リスク低減に努めていく。	信頼性の向上を図り、リスク低減に努めていく。	
また, 原子炉注水系の異常時の評価では, 想定を大きく超えるシビアアクシデント相当事象 (注水停止 12 時	また,原子炉注水系の異常時の評価では,想定を大きく超えるシビアアクシデント相当事象(注水停止12時	気象条件の変更
間)で3プラント分の放射性物質の放出を考慮した場合においても、実効線量は敷地境界で年間約 6.3×10-	間) で3プラント分の放射性物質の放出を考慮した場合においても、実効線量は敷地境界で年間約 2.0×10-	に伴う実効線量
⁵ mSv,特定原子力施設から 5km 地点で約 <u>1.1×10⁻⁵</u> mSv,特定原子力施設から 10km 地点で約 <u>3.6×10⁻⁶</u> mSv であ	⁴ mSv,特定原子力施設から 5km 地点で約 <u>2.1×10⁻⁵mSv</u> ,特定原子力施設から 10km 地点で約 <u>7.6×10⁻⁶mSv</u> であ	評価値の変更
り、周辺の公衆に対し、著しい放射線被ばくのリスクを与えることはない。「施設運営計画に係る報告書(そ	り、周辺の公衆に対し、著しい放射線被ばくのリスクを与えることはない。「施設運営計画に係る報告書(そ	
の1)(改訂2)(平成23年12月)」では、シビアアクシデント相当事象で3プラント分の放射性物質の放	の1)(改訂2)(平成23年12月)」では、シビアアクシデント相当事象で3プラント分の放射性物質の放	
出を考慮した場合に敷地境界の実効線量が年間約11.1mSvと評価されており、燃料デブリの崩壊熱減衰等によ	出を考慮した場合に敷地境界の実効線量が年間約11.1mSvと評価されており、燃料デブリの崩壊熱減衰等によ	
って、原子炉注水系の異常時における被ばくリスクが大きく低減していることが分かる。今後も、燃料デブリ	って,原子炉注水系の異常時における被ばくリスクが大きく低減していることが分かる。今後も,燃料デブリ	
の崩壊熱は減衰していくため、原子炉注水系の異常時におけるリスクは低減する方向である。	の崩壊熱は減衰していくため、原子炉注水系の異常時におけるリスクは低減する方向である。	
燃料デブリに関するリスクとしては、水素爆発と臨界も挙げられる。	燃料デブリに関するリスクとしては、水素爆発と臨界も挙げられる。	
水素爆発に関するリスクとしては、水の放射線分解によって発生する水素が可燃限界を超えることが想定さ	水素爆発に関するリスクとしては、水の放射線分解によって発生する水素が可燃限界を超えることが想定さ	
れるが,原子炉格納容器内窒素封入設備を用いて,原子炉圧力容器及び格納容器に窒素を連続的に封入するこ	れるが、原子炉格納容器内窒素封入設備を用いて、原子炉圧力容器及び格納容器に窒素を連続的に封入するこ	
とにより、その雰囲気中の水素濃度を可燃限界以下としている。原子炉圧力容器もしくは格納容器内で水の放	とにより、その雰囲気中の水素濃度を可燃限界以下としている。原子炉圧力容器もしくは格納容器内で水の放	
射線分解により発生する水素が,窒素供給の停止から可燃限界の水素濃度に至るまでの時間余裕は100時間以	射線分解により発生する水素が,窒素供給の停止から可燃限界の水素濃度に至るまでの時間余裕は100時間以	
上と評価されており、水素爆発のリスクは十分小さいものと考えられる。「施設運営計画に係る報告書(その	上と評価されており、水素爆発のリスクは十分小さいものと考えられる。「施設運営計画に係る報告書(その	
1)(改訂2)(平成23年12月)」では、この時間余裕は約30時間と評価されており、燃料デブリの崩壊熱	1)(改訂2)(平成23年12月)」では、この時間余裕は約30時間と評価されており、燃料デブリの崩壊熱	
減衰によってリスクが低減していることが分かる。	減衰によってリスクが低減していることが分かる。	
臨界については、一般に、溶融した燃料デブリが臨界に至る可能性は極めて低いと考えられており、また、	臨界については、一般に、溶融した燃料デブリが臨界に至る可能性は極めて低いと考えられており、また、	
「施設運営計画に係る報告書(その1)(改訂2)(平成23年12月)」において燃料デブリ形状等について	「施設運営計画に係る報告書(その1)(改訂2)(平成23年12月)」において燃料デブリ形状等について	
不確かさを考慮した評価がなされており、臨界の可能性は低いとされている。実際に、ガス放射線モニタによ	不確かさを考慮した評価がなされており、臨界の可能性は低いとされている。実際に、ガス放射線モニタによ	
り短半減期核種の放射能濃度を連続的に監視してきており、これまで臨界の兆候は確認されていない。これら	り短半減期核種の放射能濃度を連続的に監視してきており、これまで臨界の兆候は確認されていない。これら	
を踏まえると、燃料デブリの形状等については十分に把握できていないものの、燃料デブリの配置変化等の現	を踏まえると、燃料デブリの形状等については十分に把握できていないものの、燃料デブリの配置変化等の現	
状の体系からの有意な変化が生じない限り、臨界となることはないと考えられる。当面、燃料デブリの移動を	状の体系からの有意な変化が生じない限り、臨界となることはないと考えられる。当面、燃料デブリの移動を	
伴う作業は予定されていないことから、現在の臨界リスクは工学的に極めて小さいものと考えられる。なお、	伴う作業は予定されていないことから、現在の臨界リスクは工学的に極めて小さいものと考えられる。なお、	
将来の燃料デブリ取り出し工程の際には燃料デブリ形状等が大きく変化する可能性があることから,十分に臨	将来の燃料デブリ取り出し工程の際には燃料デブリ形状等が大きく変化する可能性があることから,十分に臨	
界管理を行いつつ,作業を進めていく必要がある。	界管理を行いつつ,作業を進めていく必要がある。	
(以下、省略)	(以下、省略)	

	施計画変更比較表(第11章2.1 原于炉圧刀谷器・格納谷器注水設備) 変 軍 後	変 更 理 由
	2 特定原子力施設の構造及び設備,工事の計画	
2.1 原子炉圧力容器・格納容器注水設備	2.1 原子炉圧力容器・格納容器注水設備	
(中略)	(中略)	
 2.1.1.8.3 異常時の評価 原子炉注水系が異常事象により機能喪失し、原子炉注水が停止した場合について、評価を実施した(得 (竹賀料-6参照)。 数地使用での年間の実効線量の評価結果は、過渡相当事象(注水停止1時間)で約9.3×10°,m2v,事若 相当事象(注水停止7時間)で約9.3×27シト相当事象(注水停止12時間)における数地度界での年間の 実効線量は約2.1×10^mm2vであり、3プラント分の放射性物質の放出を考慮した場合では約6.3×10% である。また、特定原子力加減から5km、10km地点での年間の実効線量は、3プラント分の放射性物質の 放出を考慮した場合でそれぞれ約1.1×10°,m2v,約3.6×10°,m2vであり、周辺の公衆に対し、著しい方 射線被ばくのリスクを与えることはない。 (以下,省略) 	 2.1.1.8.3 異常神の評価 原子炉注水系が異常事象により機能喪失し、原子炉注水が停止した場合について、評価を実施した(添 付資料-5参照)。 敷地境界での年間の実効線量の評価結果は、過渡相当事象(注水停止1時間)で約2.9×10⁴ mSv,事故 相当事象(注水停止7時間)で約1.4×10⁵ mSv であり、周辺の公衆に対し、著しい放射線被ぼくのリス クを与えることはない。 規定を大きく超える、シビアアクシデント相当事象(注水停止12時間)における敷地境界での年間の 実効線量は約6.6×10⁴ mSv であり、3プラント分の放射性物質の 広知と考慮した場合では約2.0×10⁴ mSv であり、成プラント分の放射性物質の 広告考慮した場合でそれぞれ約2.1×10⁴ mSv,約7.6×10⁴ mSv であり、周辺の公衆に対し、著しい放 射線被ばくのリスクを与えることはない。 (以下,省略) 	気象条件の変更 に伴う実効線量 評価値の変更

<u> </u>	
原子炉注水停止時評価の説明資料	原子炉注水停止時評価の説明資料
1. 評価方法	1. 評価方法
(中略)	(中略)
1.2 核分裂生成物の放出量評価	1.2 核分裂生成物の放出量評価
(中略)	(中略)
(6)評価に用いる式を以下に示す。	(6) 評価に用いる式を以下に示す。
$M_{CsOH} = P_{CsOH} V_{g} / (RT)$	$M_{CsOH} = P_{CsOH} V_{g_{c}} / (RT)$
$C_{CsOH} = M_{CsOH} / \left(V_g + v_{grav} A_{grav} + v_{dif} A_{dif} \right)$	$C_{csOH} = M_{csOH} / \left(V_g + v_{grav} A_{grav} + v_{dif} A_{dif} \right)$
$M_{leak} = C_{CSOH}V_{g}$	$M_{leak} = C_{CsOH} V_g$
M _{сsoн} : CsOH 発生量[mol/s]	<i>M_{csoh}</i> : CsOH 発生量[mo1/s]
P _{CsOH} : CsOH 飽和蒸気圧[N/m ²]	P _{CsOH} : CsOH 飽和蒸気圧 [N/m ²]
V_g : 発生蒸気流量 $[m^3/s]$	V_g : 発生蒸気流量 $[m^3/s]$
R : 気体定数[J/(mol-K)]	R : 気体定数[J/(mol-K)]
T : 上部構造材温度[K]	T :上部構造材温度[K]
C _{cson} : CsOH 平衡濃度[mo1/m ³]	C_{csOH} : CsOH 平衡濃度 $[mo1/m^3]$
v _{grav} : 重力沈降速度[m/s]	v _{grav} : 重力沈降速度[m/s]
A_{grav} : 重力沈降面積[m ²]	A_{grav} : 重力沈降面積[m ²]
v _{dif} : ブラウン拡散沈着速度[m/s]	v _{dif} : ブラウン拡散沈着速度[m/s]
A _{dif} : ブラウン拡散沈着面積[m ²]	A_{dif} : ブラウン拡散沈着面積 $[m^2]$
M _{leak} : CsOH 放出量[mo1/s]:	M _{leak} : CsOH 放出量[mol/s]
(中略)	(中略)
1.3 線量影響評価	1.3 線量影響評価
(1) 大気中へ放出されるセシウムは、原子炉建屋から地上放散されるものとし、周辺の公衆に対する、放射線	(1) 大気中へ放出されるセシウムは、原子炉建屋から地上放散されるものとし、周辺の公衆に対する、放射線
被ばくのリスクを年間の実効線量を用いて評価する。	被ばくのリスクを年間の実効線量を用いて評価する。
(2)評価対象核種はセシウム 134 とセシウム 137 とする。	(2) 評価対象核種はセシウム 134 とセシウム 137 とする。
(3) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算す	(3) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算す
る。被ばく経路としては、放射性雲中のセシウム <u>からの</u> 外部被ばくと内部被ばくと、地表沈着したセシウ	る。被ばく経路としては、放射性雲中のセシウム <u>による</u> 外部被ばくと内部被ばくと、地表沈着したセシウ
ムによる外部被ばくと内部被ばくを考慮する。	ムによる外部被ばくと内部被ばくを考慮する。
(4) 放射性雲のセシウムからの γ 線 <u>の</u> 外部被ばく <u>による</u> 実効線量の評価に用いる式を以下に示す。	(4) 放射性雲のセシウムからの γ 線 <u>による</u> 外部被ばく実効線量の評価に用いる式を以下に示す。
$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{Cs} \cdot 1000$	$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{Cs} \cdot 1000$
H _γ :放射性雲のセシウムからの γ 線 <u>の</u> 外部被ばく <u>による</u> 実効線量[mSv]	<i>H_γ</i> : 放射性雲のセシウムからの γ 線 <mark>による</mark> 外部被ばく実効線量[mSv]
K :空気カーマから実効線量への換算係数[Sv/Gy]	K : 空気カーマから実効線量への換算係数[Sv/Gy]
E_{γ} : γ 線の実効エネルギー[MeV]	E_{γ} : γ 線の実効エネルギー[MeV]
D/Q:相対線量[Gy/Bq]	D/Q:相対線量[Gy/Bq]
Q_{c_s} :事故期間中のセシウムの大気放出量[Bq]	Q_{cs} :事故期間中のセシウムの大気放出量[Bq]

	1
Ī)

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.1 原子炉圧力容器・格納容器注水設備)

変更前	変更後	変更理由
 (5) 放射性雲のセシウム<u>から</u>の吸入摂取による内部被ばく<u>の</u>実効線量の評価に用いる式を以下に示す。 <i>H_{cs}</i> = <i>K_{in}</i> · <i>R₁</i> · <i>χ</i>/<i>Q</i> · <i>Q_{cs}</i> <i>H_{cs}</i> : 放射性雲のセシウム<u>から</u>の吸入摂取による内部被ばく<u>の</u>実効線量[mSv] <i>K_{in}</i> : 内部被ばく線量換算係数[mSv/Bq] <i>R₁</i> : 呼吸率[m³/s] <i>χ</i>/<i>Q</i> : 相対濃度[s/m³] 	 (5) 放射性雲のセシウムの吸入摂取による内部被ばく実効線量の評価に用いる式を以下に示す。 <i>H_{cs}</i> = <i>K_{in}</i> · <i>R₁</i> · <i>χ</i>/<i>Q</i> · <i>Q_{cs}</i> <i>H_{cs}</i> : 放射性雲のセシウムの吸入摂取による内部被ばく実効線量[mSv] <i>K_{in}</i> : 内部被ばく実効線量係数[mSv/Bq] <i>R₁</i> : 呼吸率[m³/s] <i>χ</i>/<i>Q</i> : 相対濃度[s/m³] 	記載の適正化
 (6) 地表沈着したセシウムからの外部被ばく<u>による</u>実効線量の評価に用いる式を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊については保守的に考慮しない。 <i>G_{ex}</i> = <i>K_{ex}</i> · χ/Q·V·<i>f</i> · Q_{cs} · <i>T</i> · 1000 <i>G_{ex}</i> : 地表沈着したセシウムからの外部被ばく<u>による</u>実効線量[mSv] <i>K_{ex}</i> : 外部被ばく線量換算係数[(Sv/s)/(Bq/m²)] <i>V</i> : 沈降速度[m/s] <i>f</i> : 残存割合[-] <i>T</i> : 被ばく時間[s] 	(6) 地表沈着したセシウムからの <u>y線による</u> 外部被ばく実効線量の評価に用いる式を以下に示す。1年間居住 し続ける場合を考慮し,1年間の線量を評価する。セシウムの崩壊については保守的に考慮しない。 $G_{ex} = K_{ex} \cdot \chi/Q \cdot V \cdot f \cdot Q_{cs} \cdot T \cdot 1000$ G_{ex} : 地表沈着したセシウムからの <u>y線による</u> 外部被ばく実効線量[mSv] K_{ex} : 外部被ばく <u>実効</u> 線量換算係数[(Sv/s)/(Bq/m ²)] V : 沈降速度[m/s] f : 残存割合[-] T : 被ばく時間[s]	
(7) 地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部被ばく <u>の</u> 実効線量の評価に用いる 式を以下に示す。1年間居住し続ける場合を考慮し,1年間の線量を評価する。セシウムの崩壊について は保守的に考慮しない。 $G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_{cs} \cdot T$ G_{in} : 地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部 被ばく <u>の</u> 実効線量[mSv] R_2 : 呼吸率[m ³ /s] F : 再浮遊率[m ⁻¹]	(7) 地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部被ばく実効線量の評価に用いる式 を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊については 保守的に考慮しない。 $G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_{Cs} \cdot T$ G_{in} :地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部被ばく実効線量[mSv] R_2 :呼吸率[m ³ /s] F : 再浮遊率[m ⁻¹]	
(8)相対濃度と相対線量については、本事象では核分裂生成物は主排気筒より放出されないことから、地上放散を想定し、下表の値を用いる。	(8) 相対濃度と相対線量については、本事象では核分裂生成物は主排気筒より放出されないことから、地上放散を想定し、 <u>別紙1の計算方法により求めた</u> 下表の値を用いる。 <u>敷地境界については、福島第一原子力発</u> <u>電所原子炉設置許可申請書添付書類六に記載の主蒸気管破断事故と同じ計算条件とした。5km 地点及び</u> <u>10km</u> 地点については、風下距離を除き敷地境界と同じ計算条件とした。	気象条件の変更 に伴う計算方法 等の変更
敷地境界 5km 地点 10km 地点 相対濃度[s/m³] 2.6×10 ⁻⁵ 4.3×10 ⁻⁶ 1.5×10 ⁻⁶ 相対線量[Gy/Bq] 3.0×10 ⁻¹⁹ 8.9×10 ⁻²⁰ 3.8×10 ⁻²⁰	敷地境界 5km 地点 10km 地点 相対濃度 <u>(\chi/Q)</u> [s/m³] 8.1×10 ⁻⁵ 8.6×10 ⁻⁶ 3.1×10 ⁻⁶ 相対線量(D/Q) [Gy/Bq] 7.3×10 ⁻¹⁹ 1.7×10 ⁻¹⁹ 7.1×10 ⁻²⁰	
(中略)	(中略)	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.1 原子炉圧力容器・格納容器注水設備)

変更前	変更後
3. 評価結果	3. 評価結果
3.1 過渡相当	3.1 過渡相当

炉心燃料温度と上部構造材温度の時間変化を図-4に示す。原子炉注水停止から炉心燃料温度は上昇 し、注水停止から1時間の注水再開の時点で約170℃まで上昇するが、注水再開により速やかに冷却さ

れ、事象は収束する。また、事象期間を通じて上部構造材温度はほとんど上昇しない。

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果は下表のとおり となる。

セシウム 134 放出量	約 5.0×104 Bq
セシウム 137 放出量	約 6.1×104 Bq
年間の実効線量	約

3.2 事故相当

炉心燃料温度と上部構造材温度の時間変化を図-5に示す。原子炉注水停止から温度は上昇し,注水 停止から7時間の注水再開の時点で炉心燃料温度は約260℃,上部構造材温度は約110℃まで上昇する が、注水再開により速やかに冷却され、事象は収束する。

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果は下表のとおり となる。

セシウム 134 放出量	約 2.3×10 ⁵ Bq
セシウム 137 放出量	約 2.8×10 ⁵ Bq
年間の実効線量	約 <u>4.3×10⁻⁶</u> mSv

3.3 シビアアクシデント相当

炉心燃料温度と上部構造材温度の時間変化を図-6に示す。原子炉注水停止から温度は上昇し,注水 停止から 12 時間の注水再開の時点で炉心燃料温度は約 330℃,上部構造材温度は約 120℃まで上昇する が、注水再開により速やかに冷却され、事象は収束する。

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果は下表のとおり となる。

セシウム 134 放出量	約 1.1×10 ⁶ Bq
セシウム 137 放出量	約1.4×10 ⁶ Bq
年間の実効線量	約 <u>2.1×10⁻⁵ m</u> Sv

また,特定原子力施設から5km,10km 地点での年間の実効線量はそれぞれ約3.5×10⁻⁶ mSv,約1.2×10⁻ └mSvとなる。3プラント分の放射性物質の放出を考慮した場合においても、敷地境界での年間の実効線量 は約 6.3×10⁻⁵ mSv, 特定原子力施設から 5km 地点で約 1.1×10⁻⁵ mSv, 10km 地点で約 3.6×10⁻⁶ mSv とな る。 (以下,省略)

炉心燃料温度と し, 注水停止から 事象は収束する。 本事象時に放出 なる。

変	更後	変更理由
上部構造材温度の時間変化を図	3-4に示す。原子炉注水停止から炉心燃料温	1度は上昇
1 時間の注水再開の時点で約 17	0℃まで上昇するが、注水再開により速やかに	冷却され,
また,事象期間を通じて上部構	造材温度はほとんど上昇しない。	
されるセシウム量及び敷地境界	そでの実効線量について評価した結果は下表の)とおりと
セシウム 134 放出量	約 5.0×10 ⁴ Bq	気象条件の変更
セシウム 137 放出量	約 6.1×10 ⁴ Bq	に伴う実効線量
年間の実効線量	約 <u>2.9×10⁻⁶</u> mSv	評価値の変更
と上部構造材温度の時間変化を	図-5に示す。原子炉注水停止から温度は上昇	早し、注水
の注水再開の時点で炉心燃料温	度は約 260℃,上部構造材温度は約 110℃まで	ご上昇する
より速やかに冷却され、事象は	収束する。	
出されるセシウム量及び敷地境	電界での実効線量について評価した結果は下表	そのとおり
セシウム 134 放出量	約 2.3×10 ⁵ Bq	
セシウム 137 放出量	約 2.8×10 ⁵ Bq	
年間の実効線量	約 <u>1.4×10⁻⁵</u> mSv	
一下相当		
と上部構造材温度の時間変化を	図-6に示す。原子炉注水停止から温度は上昇	寻し, 注水
引の注水再開の時点で炉心燃料消	温度は約 330℃, 上部構造材温度は約 120℃まで	ご上昇する
より速やかに冷却され、事象は	収束する。	
出されるセシウム量及び敷地境	「界での実効線量について評価した結果は下表	そのとおり
セシウム 134 放出量	約 1.1×10 ⁶ Bq	
セシウム 137 放出量	約 1.4×10 ⁶ Bq	
年間の実効線量	約 6.6×10 ⁻⁵ mSv	
力施設から 5km、10km 地点での4	軍間の実効線量はそれぞれ約 7.0×10 ⁻⁶ mSv. 約	52.5×10^{-1}
ラント分の放射性物質の放出を	考慮した場合においても、敷地境界での年間の) 三 三 三 三 三 三 三 三 三 三 三 三 三
7. 特定原子力施設から 5km 地点	気で約2.1×10 ⁻⁵ mSv. 10km 地点で約7.6×10 ⁻⁶	⁶ mSv とな

3.2 事故相当

炉心燃料温度 停止から7時間 が、注水再開に

本事象時に放 となる。

変	更後	変	更	理	由
上部構造材温度の時間変化を図	図-4に示す。原子炉注水停止から炉心燃料温度は上	.昇			
時間の注水再開の時点で約17	70℃まで上昇するが, 注水再開により速やかに冷却され	ι,			
また,事象期間を通じて上部構	造材温度はほとんど上昇しない。				
されるセシウム量及び敷地境界	界での実効線量について評価した結果は下表のとおり	と			
セシウム 134 放出量	約 5.0×10 ⁴ Bq	気象	泉条件	‡の3	至更
セシウム 137 放出量	約 6.1×10 ⁴ Bq	に作	半うう	 東効総	泉量
年間の実効線量	約 <u>2.9×10⁻⁶ m</u> Sv	評佰	h値の)変更	•
と上部構造材温度の時間変化を	:図-5に示す。原子炉注水停止から温度は上昇し,注	水			
の注水再開の時点で炉心燃料温	温度は約 260℃,上部構造材温度は約 110℃まで上昇す	3			
より速やかに冷却され、事象は	収束する。				
出されるセシウム量及び敷地均	^{寛界での実効線量について評価した結果は下表のとお}	り			
セシウム 134 放出量	約 2.3×10 ⁵ Bg				
セシウム 137 放出量	約 2. 8×10 ⁵ Bg				
年間の実効線量	約1.4×10 ⁻⁵ mSv				
1月10天初床里					
人口					
- 10-3 と上部構造材温度の時間変化を	図-6に示す 原子恒注水停止から温度け上昇し 注				
の注水再開の時点で何心燃料	国産け約 330℃ 上部構造材温度け約 120℃まで上昇す	·Z			
トリーズ 日前の 日本 「「「「「」」 「「」 「」 「」 「」 「」 「」 「」 「」 「」 「」		.9			
出されるセシウム量及び動地は	ベベイナン。 音界での実効線量について評価した結果け下表のとお	n			
山にれいるビジノの重次の放地の		,			
セシウム 134 故出島	$\times 1.1 \times 10^{6}$ Ba				
センウム 134 放山里	かり1.1×100 Bq				
	赤り1.4~10 ⁻ Bq				
年间の夫効様重	示J <u>6. 6×10°</u> mSV				
		1.0-			
「施設から 5km, 10km 地点での	年間の美効線量はそれぞれ約 $\frac{7.0 \times 10^{\circ}}{100}$ mSv,約 $\frac{2.5 \times 10^{\circ}}{2.5 \times 10^{\circ}}$ mSv,約	<u>10</u>			
フント分の放射性物質の放出を	考慮した場合においても、敷地境界での年間の実効線	.重			
, 特定原子力施設から 5km 地	点で約 <u>2.1×10⁻</u> mSv, 10km 地点で約 <u>7.6×10⁻⁶</u> mSv と	な			
					l

3.3 シビアアクシデ

炉心燃料温度 停止から 12 時 が、注水再開に

本事象時に放 となる。

変	史 後	変	更	理	由
と上部構造材温度の時間変化を認	図-4に示す。原子炉注水停止から炉心燃料温度は上昇				
1時間の注水再開の時点で約17	70℃まで上昇するが、注水再開により速やかに冷却され、				
また、事象期間を通じて上部構	造材温度はほとんど上昇しない。				
されるセシウム量及び敷地境	界での実効線量について評価した結果は下表のとおりと				
セシウム 134 放出量	約 5. 0×10 ⁴ Bq	気象	き条件	キの 3	変更
セシウム 137 放出量	約 6.1×10 ⁴ Bq	に住	ドう身	€効ネ	泉量
年間の実効線量	約 <u>2.9×10⁻⁶</u> mSv	評伯	値の)変更	
そと上部構造材温度の時間変化を	·図-5に示す。原子炉注水停止から温度は上昇し,注水				
引の注水再開の時点で炉心燃料温	温度は約 260℃,上部構造材温度は約 110℃まで上昇する				
より速やかに冷却され、事象に	収束する。				
女出されるセシウム量及び敷地均	意界での実効線量について評価した結果は下表のとおり				
セシウム 134 放出量	約 2.3×10 ⁵ Bq				
セシウム 137 放出量	約 2.8×10 ⁵ Bq				
年間の実効線量	約 <u>1.4×10⁻⁵ m</u> Sv				
ント相当					
こと上部構造材温度の時間変化を	:図-6に示す。原子炉注水停止から温度は上昇し,注水				
間の注水再開の時点で炉心燃料	温度は約 330℃, 上部構造材温度は約 120℃まで上昇する				
より速やかに冷却され、事象は	収束する。				
女出されるセシウム量及び敷地均	寛界での実効線量について評価した結果は下表のとおり				
セシウム 134 放出量	約 1.1×10 ⁶ Bq				
セシウム 137 放出量	約 1.4×10 ⁶ Bq				
年間の実効線量	約 6.6×10 ⁻⁵ mSv				
・ 力 施 設 か ら 5 km 10 km 地 占 で の	年間の実効線量けそれぞれ約70×10 ⁻⁶ mSv 約25×10-				
。ラント分の放射性物質の放出を	老歯」た場合においても、動地倍鬼での年間の主効線量				
、 特定原子力協設から 5km 地	5.mm、Crewin (1997、CO), AABADI CV/TEIV/天初林里 与で約91×10 ⁻⁵ mSv 10km 地占で約76×10 ⁻⁶ mSv とか				
ハ、「NALDES J ノJJ世民 /パック JKIII 地	M C / J <u>2.1 / 10 </u> m 3 / 10 Km 2回 m C / J <u>1.0 / 10</u> m 3 / こ / よ				

また,特定原子 ⁶mSv となる。3プ は約2.0×10⁻⁴ mS る。 (以下,省略)

変更前	変 更 後	変更理由
	<u></u>	
	相対濃度及び相対線量の計算方法	
		相対濃度及び相
(現行記載なし)	(新規記載)	対線量の計算方
		法について新規
	(中略)	記載

変 更 前	変更後	変更理由
添付資料-9	添付資料-9	記載の適正化
処理水バッファタンク及び処理水バッファタンク接続配管の具体的な安全確確保策	処理水バッファタンク及び処理水バッファタンク接続配管の具体的な安全確確保策	
(中略)	(中略)	
 2. 構造強度及び耐震性(添付資料-2参照) (1)構造強度 処理水バッファタンク及び処理水バッファタンク接続配管は、「実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年6月28日原子力規制委員会規則第6号)」上、非常用炉心冷却設備に相当する クラス2機器と位置付けられ、「ISME S NC-1 発電用原子力設備規格 設計・建設規格(以下, JSME 規格とい う。)」、日本工業規格(IIS 規格)等の国内外の民間規格に適合した工業用品の採用、または、これらと同等の技術的妥当性を有する規格での設計・製作・検査を行う。 (以下、省略) 	 2. 精造独度及び耐躁性(添付資料-2参照) (1)構造強度 処理ホパッファタンク及び処理ホパッファタンク接続記管は、「実用発電用原子炉及びその附属施設の技術 基準に関する規則(平成25年6月28日原子力規制委員会規則第6号)」上、非常用炉心冷却設備に相当す るクラス2機器と位置付けられ、「ISME SNC-1 発電用原子力設備規格 設計・建設規格(以下、JSME 規格と いう.)」、日本確整規格(JTS 規格)等の国内外の民間規格に適合した工業用品の採用、または、これらと同 等の技術的妥当性を有する規格での設計・製作・検査を行う。 (以下、省略) 	

福島第一原子力発電所 特定原子力施設に係る実施計画	面変更比較表(第Ⅱ章2.4 原子炉圧力容器・格納容器ホウ酸水注入設備)	
変更前	変更後	変更理由
2.4 原子炉圧力容器・格納容器ホウ酸水注入設備	2.4 原子炉圧力容器・格納容器ホウ酸水注入設備	
(中略)	(中略)	
2.4.1.8.3 臨界時の評価	2.4.1.8.3 臨界時の評価	
(中略)	(中略)	
(2) 評価結果(添付資料-5参照) 原子炉格納容器ガス管理設備に設置されたガス放射線モニタによる未臨界監視は,臨界判定基準として Xe-135 放射能濃度 1Bq/cm ³ を設定している。ここでは,保守的にその100 倍の100Bq/cm ³ 相当の Xe-135 が 測定される出力レベルの臨界を想定し,臨界発生からホウ酸水投入までの時間遅れを考慮して1日間臨界 が継続した場合の <u>,</u> 敷地境界における被ばく線量を評価する。その結果,敷地境界での被ばく量は約 2.4 ×10 ⁻² mSv となり,周辺の公衆に対し,著しい放射線被ばくのリスクを与えることはないと考えられる。	(2) 評価結果(添付資料-5参照) 原子炉格納容器ガス管理設備に設置されたガス放射線モニタによる未臨界監視は,臨界判定基準として Xe-135 放射能濃度 1Bq/cm ³ を設定している。ここでは,保守的にその100 倍の100Bq/cm ³ 相当の Xe-135 が 測定される出力レベルの臨界を想定し,臨界発生からホウ酸水投入までの時間遅れを考慮して1日間臨界 が継続した場合の敷地境界における被ばく線量を評価する。その結果,敷地境界での被ばく量は約 <u>6.9×</u> <u>10⁻²mSv</u> となり,周辺の公衆に対し,著しい放射線被ばくのリスクを与えることはないと考えられる。	気象条件の変更 に伴う被ばく線 量評価値の変更
(中略)	(中略)	

发 更 前	发 更 後	変 史 埋 田
「「「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」	添付資料-5 添付資料-5	
府田芝注の翌日次当	府田河(王の弐田次生)	
品 介計 価 の 説 明 貞 科	品が計価の説明資料	
1. 臨界時の線量評価	 1. 臨界時の線量評価	
1.1 評価前提	1.1 評価前提	
原子炉格納容器ガス管理設備に設置されたガス放射線モニタによる未臨界監視は、臨界判定基準として Xe-	原子炉格納容器ガス管理設備に設置されたガス放射線モニタによる未臨界監視は、臨界判定基準として Xe-	記載の適正化
135 放射能濃度 1Bq/cm ³ としている。(「別紙-1 臨界判定基準について」参照) ここでは,保守的にその 100	135 放射能濃度 1Bq/cm ³ としている(「別紙-1 臨界判定基準について」参照)。ここでは,保守的にその 100	
倍の 100Bq/cm ³ 相当の Xe-135 が測定される出力レベルの臨界を想定し, 臨界発生からホウ酸水投入までの時	倍の 100Bq/cm ³ 相当の Xe-135 が測定される出力レベルの臨界を想定し, 臨界発生からホウ酸水投入までの時	
間遅れを考慮して1日間臨界が継続した場合の,敷地境界における被ばく線量を評価する。	間遅れを考慮して1日間臨界が継続した場合の敷地境界における被ばく線量を評価する。	
(中略)	(中略)	
1.4 線量の評価方法	1.4 線量の評価方法	
敷地周辺における実効線量は,希ガスのγ線外部被ばくとよう素の内部被ばくによる実効線量の和として計	敷地周辺における実効線量は,希ガスのγ線外部被ばくとよう素の内部被ばくによる実効線量の和として計	気象条件の変更
算する。よう素の <u>呼吸</u> 摂取による内部被ばく線量は、感受性の高い小児を対象に行う。また、相対線量、相対	算する。よう素の <u>吸入</u> 摂取による内部被ばく <u>実効</u> 線量は、感受性の高い小児を対象に行う。また、相対線量(以)	に伴う評価方法
濃度については、地上放散を想定していることから、 福島第一原子力発電所設置許可申請書添付六に記載の主	<u>下, D/Qという)</u> ,相対濃度 <u>(以下, χ/Qという)</u> については,地上放散を想定していることから, <u>II2.1</u>	の明確化
<u>蒸気管破断事故における</u> 値を用いる。ただし、2/3号機については、値の大きい3号機のものを用いる。	原子炉圧力容器・格納容器注水設備 添付資料-5別紙1」に記載の値を用いる。ただし、2/3号機について	
	は、値の大きい3号機のものを用いる。	
(1) 放射性雲 <u>からの希ガスのγ線による外部被ばく</u>	(1) 放射性雲 <u>の希ガスからのγ線による外部被ばく実効線量</u>	記載の適正化
$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q$	$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q$	
<i>Η_γ</i> :希ガス <u>のγ線外部被ばくによる実効線量</u> (Sv)	<i>H_γ</i> : 希ガス <u>からの γ 線による外部被ばく実効線量</u> (Sv)	
K : 空気カーマから実効線量への換算係数 (<u>1.0</u> Sv/Gy)	K : 空気カーマから実効線量への換算係数 (<u>1</u> Sv/Gy)	
E_{γ} : γ線の実効エネルギ (MeV)	E_{γ} : γ線の実効エネルギ (MeV)	
D/Q :相対線量(1号機: $2.5 imes 10^{-19} m Sv}/ m Bq$, 3号機: $3.0 imes 10^{-19} m Sv}/ m Bq$)	D/Q :相対線量(1号機: 6.1×10^{-19} Gy/Bq, 3号機: 7.3×10^{-19} Gy/Bq)	気象条件の変更
Q : 核分裂生成希ガスの大気放出量 (Bq)	Q : 核分裂生成希ガスの大気放出量 (Bq)	に伴う相対線量
		の変更
(2) 放射性雲からのよう素の吸入摂取による内部被ばく	(2) 放射性雲 <u>のよう素の吸入摂取による内部被ばく実効線量</u>	記載の適正化
$H_I = K_{in} \cdot R \cdot \chi / Q \cdot Q_I$	$H_I = K_{in} \cdot R \cdot \chi / Q \cdot Q_I$	
<i>H_I</i> :よう素の <u>内部被ばくによる実効線量</u> (Sv)	<i>H_I</i> :よう素の <u>吸入摂取による内部被ばく実効線量</u> (Sv)	
K _{in} : I-131 の吸入摂取による小児の実効線量係数 (1.6×10 ⁻⁷ Sv/Bq)	K _{in} : I−131 の吸入摂取による小児の実効線量係数 (1.6×10 ⁻⁷ Sv/Bq)	
R :小児の呼吸率(活動時:8.61×10 ⁻⁵ m^3/s)	R :小児の呼吸率(活動時: $8.61 imes10^{-5} \mathrm{m}^3/\mathrm{s}$)	
χ/Q :相対濃度(1 号機: <u>1.9×10⁻⁵</u> s/m³, 3 号機: <u>2.6×10⁻⁵</u> s/m³)	χ/Q :相対濃度(1号機: <u>6.0×10⁻⁵</u> s/m³,3号機: <u>8.1×10⁻⁵</u> s/m³)	気象条件の変更
Q_I :よう素の大気放出量(I-131 等価量) (Bq)	Q_I :よう素の大気放出量(I-131 等価量) (Bq)	に伴う相対濃度
		の変更
1.5 線量の評価結果	1.5 線量の評価結果	
上記の評価方法に基づき敷地境界の実効線量を評価した結果は、1号機で約 <u>2.2×10⁻²mSv</u> ,2/3号機で約	上記の評価方法に基づき敷地境界の実効線量を評価した結果は、1号機で約 <u>6.4×10⁻²mSv</u> ,2/3号機で約	気象条件の変更
│ <u>2.4×10⁻²</u> mSv であり,周辺の公衆に対し,著しい放射線被ばくのリスクを与えることはないと考えられる。	6.9×10 ⁻² mSv であり,周辺の公衆に対し,著しい放射線被ばくのリスクを与えることはないと考えられる。	に伴う実効線量
また,放出量が大きい1号機についての,特定原子力施設からの距離が5km及び10kmにおける評価結果は,	また,放出量が大きい1号機についての,特定原子力施設からの距離が5km及び10kmにおける評価結果は,	評価値の変更
それぞれ約 <u>6.2×10⁻³</u> mSv,約 <u>2.4×10⁻³</u> mSv となる。	それぞれ約 <u>1.2×10⁻²</u> mSv,約 <u>4.7×10⁻³</u> mSv となる。	
(以下、省略)	(以下、省略)	

変更前	変更後	変更理由
 2.5 汚染水処理数備等 (中席) 2.5.3 添付資料 第付資料-1 系統概要 第付資料-2 芸要設備概要図 添付資料-3 汚染水処理数備等に関する構造塊度及び耐震性等の評価結果 満付資料-4 廃スフッジー時保管施設の崩震性に関する検討結果 添付資料-7 廃スフッジー時保管施設の崩壊地評価 満付資料-7 廃スフッジー時保管施設の崩壊地評価 満付資料-9 汚染水処理数備等の工事計画及び工程について 添付資料-9 汚染水処理数備等の工事計画及び工程について 添付資料-10 No.1ろ過水タシクへの逆浸透腰要置廃水の時間について 添付資料-11 中低濃度なシノクの設計で超になしていって 添付資料-12 使用済セシウム吸着容量一時保管施設(第三施設) 添付資料-13 建国内和6億歳度度なジンの設計・確認の方針について 添付資料-14 需な水管型を認知がさる周辺機器の設計・確認の方針について 添付資料-15 センウム吸着容量におけるないなごの除水について 添付資料-17 廃工・クム吸着装置により方なトロンチウムの除水について 添付資料-18 廃止(10 濃縮塩水管器) 添付資料-17 薄化水管水装置によう水体調整が不可能な立りアの対応について 添付資料-18 廃止(10 濃縮塩水が装置によう水体調整が不可能な立りアの対応について 添付資料-21 開始水管水装置による水体調整が不可能なエリアの対応について 添付資料-22 別で電塩の構造で度及び耐震性について 添付資料-23 新産についる 添付資料-23 新産症での以高量が可能なたいいて 添付資料-24 開水性や設備の設計・確認力まについて 添付資料-25 第三さシクルの発音していて 添付資料-26 主要配管の確認事項について 添付資料-26 主要配管の確認事項について <td>2.5 汚染水処理設備等 (中略) 2.5.3 添付資料 添付資料-1 系統既要 添付資料-2 主要設備既要因 添付資料-5 汚染水処理設備等に関する構造強度及び耐震性等の評価結果 添付資料-7 院スラッジー時保管施設の崩躁性に関する検討結果 影付資料-7 院スラッジー時保管施設の崩躁結構 添付資料-7 院スラッジー時保管施設の原始許価 添付資料-7 院スラッジー時保管施設の選び置くい設計 添付資料-10 No.13過水タンクへの逆浸透機装置基水の所留について 添付資料-11 中低濃度タンのの設計・確認の方針について 添付資料-12 使用済セシウム吸着塔一時保管施設(第三施設) 部付資料-13 建量内 80 構築運輸はび通設する関準機器の設計・確認の方針について 添付資料-14 滞留水移送装置により高温地が同能がな分離活水を停止こいで 添付資料-15 セシウム吸着装置により高温地が可能水とついて 添付資料-18 廃止 (00 濃縮塩水を移送する配管の過設について) 添付資料-18 廃止 (00 濃縮塩水を移送する配管の)の設法について 添付資料-18 廃止 (00 濃縮塩水を移送する配管の)の設法について 添付資料-19 滞留水移送装置による水位調整が不可能なよりアの対応について 添付資料-21 ディセンウム吸着装置による水位調整が不可能なないて) 添付資料-21 滞留水移送装置による水位調整が不可能なながです。 添付資料-22 SFT 注墨の構造強度及び耐震性について 添付資料-23 濃縮廃設時構 (決成品)の完全爆集度について 添付資料-25 第二ゼンウム吸着装置について 添付資料-25 第二ゼンウム吸着装置について 添付資料-25 第二ゼンウム吸着装置について 添付資料-27 汚染水処理設備等に係る確認項目 (中略)</td><td>汚染水処理設備等に係る確認 項目について新規作成</td>	2.5 汚染水処理設備等 (中略) 2.5.3 添付資料 添付資料-1 系統既要 添付資料-2 主要設備既要因 添付資料-5 汚染水処理設備等に関する構造強度及び耐震性等の評価結果 添付資料-7 院スラッジー時保管施設の崩躁性に関する検討結果 影付資料-7 院スラッジー時保管施設の崩躁結構 添付資料-7 院スラッジー時保管施設の原始許価 添付資料-7 院スラッジー時保管施設の選び置くい設計 添付資料-10 No.13過水タンクへの逆浸透機装置基水の所留について 添付資料-11 中低濃度タンのの設計・確認の方針について 添付資料-12 使用済セシウム吸着塔一時保管施設(第三施設) 部付資料-13 建量内 80 構築運輸はび通設する関準機器の設計・確認の方針について 添付資料-14 滞留水移送装置により高温地が同能がな分離活水を停止こいで 添付資料-15 セシウム吸着装置により高温地が可能水とついて 添付資料-18 廃止 (00 濃縮塩水を移送する配管の過設について) 添付資料-18 廃止 (00 濃縮塩水を移送する配管の)の設法について 添付資料-18 廃止 (00 濃縮塩水を移送する配管の)の設法について 添付資料-19 滞留水移送装置による水位調整が不可能なよりアの対応について 添付資料-21 ディセンウム吸着装置による水位調整が不可能なないて) 添付資料-21 滞留水移送装置による水位調整が不可能なながです。 添付資料-22 SFT 注墨の構造強度及び耐震性について 添付資料-23 濃縮廃設時構 (決成品)の完全爆集度について 添付資料-25 第二ゼンウム吸着装置について 添付資料-25 第二ゼンウム吸着装置について 添付資料-25 第二ゼンウム吸着装置について 添付資料-27 汚染水処理設備等に係る確認項目 (中略)	汚染水処理設備等に係る確認 項目について新規作成

変 更 前	変 更 後
	汚染水処理設備等に係る確認項目
(現行記載なし)	(新規記載)

		変	更	理	由
<u> 添付資料-27</u>	汚染水 項目に	:処理 :つい	設備 て新	う等に 規作	- 係る確認 成

変更前		変更後		変 更 理 由		
2.10 放射性固体廃棄物等の管理施設		 2.10 放射性固体廃棄物等の管理施設 				
(中略)		(中略)	(中略)			
添 放射性固体廃棄物等の管理施設に係る確認項目 放射性固体廃棄物等の管理施設の工事に係る主要な確認項目を表-1,表-2に示す。 (中略)	《付資料-6	添付資料-6 放射性固体廃棄物等の管理施設に係る確認項目 放射性固体廃棄物等の管理施設(<u>覆土式一時保管施設,伐採木一時保管槽,一時保管エリアA1,A2</u>) の工事に係る主要な確認項目を表-1,表-2 <u>,表-3</u> に示す。 (中略)			 放射性固体廃棄物等の管 理施設に係る確認項目に 関する記載の追加 	
(現行記載なし)		(八下和古) 確認事項 遮蔽機能 保管容量 (以下,省略)	表一3 一 確認項目 寸法確認 密度確認 外観確認 据付状況 寸法確認	確認内容 実施計画Ⅲ3.2.2 に記載されている遮蔽の高さ、厚さを確認する。 実施計画Ⅲ3.2.2 に記載されている遮蔽の密度を確認する。 運廠機能を損なう異常がないことを確認する。 遮蔽壁の設置間隔を確認する。 認する。 必要なエリア面積**を有していること。 ※:一時保管エリアA1:863	J加定基準 高さ3m以上,厚さ120 mm以上であること。 密度2.1g/cm ³ 以上で あること。 高さ3m以上,厚さ120 mm以上を確保できない 施設・欠けがないこと。 遮蔽壁設置間隔20mm以下 であること。 エリア面積A1:863+19 m²,A2:1,902+40m² であること。 3m²,一時保管エリアA2:1,902m²	
		(以下,省略)				

		変 更 前				変更後		変更理由
			添付資料-8				添付資料-8	
	固体廃棄物	か貯蔵庫の具体的な安全確保策等			固体	廃棄物貯蔵庫の具体的な安全確保策等		
(中略)				(中略)				
			別紙-4				別紙-4	
<i></i> .	固体廃棄物貯蔵庫第	第10棟の耐震クラスの位置付けについて			固体廃棄物貯	庁蔵庫第10棟の耐震クラスの位置付けについて		
(中略)				(中略)				
			参考				参考	
	固体廃棄物貯蔵庫第	10棟の耐震クラス分類に関する補足説明			固体廃棄物貯慮	蔵庫第10棟の耐震クラス分類に関する補足説明		
(中略)				(中略)				
		바 ~ 티/배크./ㅠ		。四仏南玄仏		地をませっての思うで		
2. 固体廃棄物則	「 咸庫第10棟の 安全機能 喪	天の影響評価		2. 固体廃業物	貯蔵庫第10棟の安全根	筬 能 喪 矢 の 影 響 評 価		
	(目いこよ桜台)ぶ市牛したり	日人によいよて「古際宏ふ」との載地位田本の払い			(明いことをかた) ふ声み	- こ と 相 人 に よいよ 2 一 丁 微 探 ふ こ の 載 地 逆 田 べ の 长 山 け		
2.2. 女主機能(闭し込め機能 が代大した物	易合にわける, 丸礫頬からの敷地現外での放西/	以別 肥による 影響 辞	2.2. 女主機能	(闭し込め機能)が投入	こしに場合にわける, 瓦礫頬からの敷地現外での放田/	以別 肥による 影響辞	
1Щ (由較)				10000000000000000000000000000000000000				
(甲略)				(中峪)				
〇計画点	丰_ 9	地出占・ 評価占のパラメータ			±	ミーク 故山占・評価占のパラメータ		
	次 Z				百日			
	放出点	平常時と同様の放出点			放出点	平常時と同様の放出点		
	放出点高さ	0m			放出点高さ	0m		
	評価点	A, B棟:SW C棟:W			評価点	A, B棟:SW C棟:WSW		
		(放出点からの各16方位内における敷地境界のうち, 相対濃度が最大となる地点)				(放出点からの各16方位内における敷地境界のうち, 相対濃度が最大となる地点)		与免冬��の亦軍
								风家木叶の友父
	Δ 插 B 插				A棟 B林	谏		
	ENE	E ESE SE			EN	$NE \downarrow I I I I I I I I I I I I I I I I I I $	-	
	NE	SSI	3		NE	SSI	5	
	NNE	Contraction of the second	-		NNE	I I I I I I I I I I I I I I I I I I I	-	
	R713672				8713672			
	N	R1616269 S			N	R1616209 S		
	R746028	Range C			R746028	A20740		
	NNW Start				NNW Marine			
	NW				NW			
	WNW	w SSW			W	VNW W \ SSW		
		WSW SW				WSW SW		

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.10 放射性固体廃棄物等の管理施設)

遮蔽機能および閉じ込め機能の喪失による影響評価結果は以下となる。 (1) 一時的運用

表	長-5 安全機能喪失	時の評価結果(一時的
	遮蔽機能 喪失	閉じ込め機能 喪失
10-A棟	約0.0018mSv	約 <u>0.29</u> mSv
10-B棟	約0.00099mSv	約 <u>0.29</u> mSv
10-C棟	約0.0015mSv	約0.015mSv

(2) 将来的運用

表-6 安全機能喪失時の評価結果(将来的

	遮蔽機能 喪失	閉じ込め機能 喪失
10-A棟	約1.7µSv	約 <u>12</u> µSv
10-B棟	約0.95µSv	約 <u>12</u> µSv
10-C棟	約1.5µSv	約 <u>15</u> µSv

(以下省略)

	変更理由
	気象条件の変更
SSE	
SW	
]運用)	
合計	気象条件の変更
約10 30mSy	に伴う評価結果
約 <u>0.30</u> mSv	の変更
¥50.017 mSv	
<5mSv	
〕運用)	
合計	
約14 // Sy	
約 <u>13</u> µSv	
約 <u>17</u> µ Sv	
<50 μ Sv	

変 更 前	変 更 後	変更理由
2.11 使用済燃料プールからの燃料取り出し設備	2.11 使用済燃料プールからの燃料取り出し設備	
(中略)	(中略)	
添付資料-3-1	添付資料-3-1	
放射性物質の飛散・拡散を防止するための機能に関する説明書	放射性物質の飛散・拡散を防止するための機能に関する説明書	
(中略)	(中略)	
2 4号機放射性物質の飛散・拡散を防止するための機能について	2 4号機放射性物質の飛散・拡散を防止するための機能について	
(中略)	(中略)	
2.2.2 敷地境界線量	2.2.2 敷地境界線量(本換気設備は, 2013 年 11 月に運用開始しており,運用後の放出管理及び線量評価は	記載の適正化
(中略)	「Ⅲ特定原子力施設の保安 第3 編2放射性廃棄物等の管理に関する補足説明」により行っている。) 	
	(中略)	
9 9 - 9 - 1 地址ないによてたいの地北について	9 9 日本地は日本地面の武事、世界なに止まてたみの地名について	
3 3 万機成別性物質の飛取・拡散を防止するための機能について	3 3万機成別性物質の飛取・拡散を防止するための機能について	
3.2.2 敷地境界線量	3.2.2 敷地境界線量(本換気設備は,2018年8月に運用開始しており,運用後の放出管理及び線量評価は「Ⅲ	
(中略)	特定原子力施設の保安 第3 編2放射性廃棄物等の管理に関する補足説明」により行っている。)	
	(中略)	
4 2 号機放射性物質の飛散・拡散を防止するための機能について	4 2号機放射性物質の飛散・拡散を防止するための機能について	
(中略)	(中略)	
4.2.2 敷地境界線量	4.2.2 敷地境界線量	
4.2.2.1 評価条件	4.2.2.1 評価条件	
(1) 原子炉建屋オペレーティングフロア及び燃料取り出し用構台内が,表 4-2 に示す2号機原子炉建屋オ	(1) 原子炉建屋オペレーティングフロア及び燃料取り出し用構台内が,表 4-2 に示す2号機原子炉建屋オペ	
ペレーティングフロア上の放射性物質濃度であった場合に排気フィルタユニットを介して大気に放出	レーティングフロア上の放射性物質濃度であった場合に排気フィルタユニットを介して大気に放出さ	
されるものと仮定する。	れるものと仮定する。	
(2) 減衰は考慮しない。	(2) 減衰は考慮しない <u>(地表沈着を除く)</u> 。	記載の適正化
(3) 地上放出と仮定する。	(3) 地上放出と仮定する。	
(4) 燃料取り出し用構台の供用期間である5年間(想定)に放出される放射性物質が地表に沈着し蓄積し	(4) 燃料取り出し用構台の供用期間である5年間(想定)に放出される放射性物質が地表に沈着し蓄積した	
た時点のγ線に起因する実効線量と仮定し評価する。	時点のγ線に起因する実効線量と仮定し評価する。	
(5) 大気拡散の評価に用いる気象条件は、 <u>福島第一原子力発電所原子炉設置変更許可申請書で採用</u> したも	(5) 大気拡散の評価に用いる気象条件は, <u>「Ⅲ特定原子力施設の保安 第3 編 2.2 線量評価」で示</u> したもの	気象条件の変更
のと同じ気象データを使用する。	と同じ気象データを使用する。	に伴う引用先の
		変更
4.2.2.2 評価方法	4.2.2.2 評価方法	
	(甲略)	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.11 使用済燃料プールからの燃料取り出し設備)

変更前	変更後	変更理由
 4.2.2.3 評価結果 表 4-3 に示す濃度の放射性物質の放出が燃料取り出し用構台の供用期間である5年間(想定)続くと仮定 して算出した結果,年間被ばく線量は敷地境界で約0.0004mSv/年であり,法令の線量限度1mSv/年に比べ ても十分低いと評価される。(表 4-4 参照) また,「III特定原子力施設の保安 第 3 編 2 放射性廃棄物等の管理に関する補足説明」での評価(約 0.03mSv/年)に比べても低いと評価される。 表 4-4 原子炉建屋オペレーティングフロア及び燃料取り出し用構台排気フィルタ ユニットからの放射性物質の放出による一般公衆の実効線量(mSv/年) 	 4.2.2.3 評価結果 表 4-3 に示す濃度の放射性物質の放出が燃料取り出し用構台の供用期間である5年間(想定)続くと仮定して算出した結果,年間被ばく線量は敷地境界で約0.00029mSv/年であり,法令の線量限度1mSv/年に比べても十分低いと評価される(表 4-4 参照)。 また,「Ⅲ特定原子力施設の保安 第3編 2 放射性廃棄物等の管理に関する補足説明」での評価(約0.0088mSv/年)に比べても低いと評価される。 表 4-4 原子炉建屋オペレーティングフロア及び燃料取り出し用構台排気フィルタ ユニットからの放射性物質の放出による一般公衆の実効線量(mSv/年) 	評価方法等の変 更に伴う実効線 量評価値の変更
(中略)	(中略)	
 5 1号機放射性物質の飛散・拡散を防止するための機能について (中略) 5.2.2 敷地境界線量 5.2.2.1 評価条件 ガレキ撤去実施時において、大型カバー内が、表 5-2 に示す放出率で放射性物質が飛散した場合に排気 フィルタユニットを介して大気に放出されるものと仮定する。 減酸は考慮しない(地表注着を除く)。 地上放出と仮定する。 大型カバーの供用期間である6年間(想定)に放出される放射性物質が地表に注着し蓄積した時点のγ 線に起因する実効線量と仮定し評価する。 大気拡散の評価に用いる気象条件は、福島第一原子力発電所原子炉設置変更許可申請書で採用したもの と同じ気象データを使用する。 	 5 1号機放射性物質の飛散・拡散を防止するための機能について (中略) 5.2.2 敷地境界線量 5.2.2.1 評価条件 ガレキ撤去実施時において、大型カバー内が、表 5-2 に示す放出率で放射性物質が飛散した場合に排気 フィルタユニットを介して大気に放出されるものと仮定する。 減衰は考慮しない(地表沈着を除く)。 地上放出と仮定する。 大型カバーの供用期間である6年間(想定)に放出される放射性物質が地表に沈着し蓄積した時点のγ 線に起因する実効線量と仮定し評価する。 大気拡散の評価に用いる気象条件は、「皿特定原子力施設の保安 第3 編 2.2 線量評価」で示したもの と同じ気象データを使用する。 	気象条件の変更 に伴う引用先の 変更

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.11 使用済燃料プールからの燃料取り出し設備)

		婆	ご 更 前					Z Z	变更後	
5.2.2.2 評価	5.2.2.2 評価方法 5.				5.2.2.2 評伯	西方法				
(中略)						(中略)				
5.2.2.3 評価	結果					5.2.2.3 評伺	而結果			
表 5-3 にき	示す放出率で放射性	生物質の放出が大型	シカバーの供用期	間である6年間	(想定) 続くと仮定して算	表 5-3 に	示す放出率で放射性	生物質の放出が大数	型カバーの供用期	間であ
出した結果,	年間被ばく線量に	は敷地境界で約 <u>0.0</u>	<u>001</u> mSv/年であり),法令の線量限	度 1mSv/年に比べても十	出した結果	, 年間被ばく線量に	は敷地境界で約 <u>0.</u>	<u>00070</u> mSv/年でま	ちり, ネ
分低いと評価	西される <u>。</u> (表 5-4	参照)				十分低いと	評価される(表 5-4	4 参照) <u>。</u>		
また,「Ⅱ	【特定原子力施設の)保安 第 3 編 2	放射性廃棄物等	の管理に関する	補足説明」での評価(約	また,「I	■特定原子力施設の)保安 第 3 編 2	放射性廃棄物等	の管理
<u>0.03</u> mSv/年)	に比べても低いと	:評価される。				<u>0.0088</u> mSv/	年)に比べても低い	いと評価される。		
	表 5-4 大型カバ	ー排気フィルタユ	ニットからの				表 5-4 大型カバ	ー排気フィルタユ	ニットからの	
	放射性物質	重の放出による一般	22日の ない しんしゅう しんしゅ しんしゅ	: (mSv/年)			放射性物質	質の放出による一般	股公衆の実効線量	: (mSv/
		評価項目		A∋L				評価項目		
	放射性雲	吸入摂取	地表沈着	合訂			放射性雲	吸入摂取	地表沈着	
	約 <u>1.2×10⁻⁸</u>	約 <u>1.6×10⁻⁶</u>	約 <u>1.1×10⁻³</u>	約 <u>1.1×10⁻³</u>			約 <u>3.5×10⁻⁸</u>	約 <u>3.0×10⁻⁵</u>	約 <u>6.7×10⁻⁴</u>	約7
							\			
「以上、自哈」						(以下、 1哈)			

	変	更	理	由
oる6年間(想定)続くと仮定して算 法令の線量限度 1mSv/年に比べても 里に関する補足説明」での評価(約				
<u>(年)</u> 合計 <u>7.0×10⁻⁴</u>	評 更 量	五 二 平 価 価	去 等 の 変	つ カ 逆変 線 更

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.11 使用済燃料プールからの燃料取り出し設備)

変更前	変更後	変更理由
<u>添付資料-3-2</u>	添付資料-3-2	
移送操作中の燃料集合体の落下	移送操作中の燃料集合体の落下	
(中略)	(中略)	
3. 第4号機核分裂生成物の放出量及び線量の評価	3. 第4号機核分裂生成物の放出量及び線量の評価	
(中略)	(中略)	
2.0. 始見以見の冠任	2.0 始見で萩原	記載の済まれ
3.2. 禄里 <u>当里</u> の計価 (1) 誕年の前相	3.2.	記載の週上化
	(1) 計価の削定	
人気中へ放山される核力表生成物は、地上放山されるものとし、これによる美効緑重の計算は、次の 仮定に其づいて行き	人気中、放山される核力表生成初は,地工放山されるものとし,これによる美効緑重の計算は, (人の 仮定に其づいて行る	
		気免冬砒の亦雨
a.	a.	ス家未中の 夏 文 に伴ら記載の 亦
<u>にに起これの</u> 加利限及に依力及工成物の主成田重を不して不のる。 かお 相対濃度(\sim / O)は設置許可由詩書記載の主苏気管破断(地上放出)の値 3 $4 \times 10^{-5} \text{s/m}^3$ を		正円り記載の反
h - 敷地境界外の希ガスによる v 線空気吸収線量は、設置許可申請書添付書類六の [5,5 安全解析に使	b. 敷地境界外の希ガスからのχ線による空気吸収線量は、「Ⅱ2.1原子炉圧力容器・格納容器注水設備	
用する気象条件」に記述される相対線量に希ガスの全放出量を乗じて求める。	添付資料 5 別紙 1」に記載の計算方法により求めた相対線量 (D / Q : 8.2×10 ⁻¹⁹ Gy/Ba) に希ガスの全	
なお、相対線量(D/Q)は設置許可申請書記載の主蒸気管破断(地上放出)の値 3.4×10^{-19} Gv/Ba	放出量を乗じて求める。	
<u>を適用する。</u>		
$(0) = \overline{z} \overline{z} \overline{z} \overline{z}$		
	(2) 評価力伝 載地培用力にわけて宝劫須見け、次に述べて内如如げくに上て宝劫須是ひびか如如げく(…須及びの	
数地境外かにわける天効隊重は、低に近くる内部板はくによる天効隊重及いか部板は、(γ 隊及い p 鎮)による実効線量の和トレイ製管オス		
旅/による天効旅星の和として計算する。 上ら妻の内部独居ノレトス宝が線長日(Su)は (2.9-1) 式で計算する	脉)による天効脉重の相として計算する。 よう表の吸入摂取による内部独立と実効線長日(Su)は (2.2-1) 式で計算する	記載の演正化
$H_{\tau} = \mathbf{R} \cdot \mathbf{H} \cdot \mathbf{\alpha} / \mathbf{O} \cdot \mathbf{O} \cdot$	$H_{-} = R \cdot H \cdot \alpha / O \cdot O_{-} \cdots \cdots$	市山邦スマノルロエイレ
$\prod_{i=1}^{n} \prod_{i=1}^{n} \chi_{i} \langle Q_{i} \rangle \langle Q_$	$\prod_{i=1}^{n} \prod_{i=1}^{n} \chi_{i}^{n} $	
$\mathbf{R} \qquad \cdot \mathbf{w} \mathbf{w} \mathbf{x} (\mathbf{m}^3/\mathbf{s})$	ここで, R · 呼吸索 (m ³ /s)	
「発電用軽水型原子炉施設の安全評価に関する案査指針」の活動中の呼吸率(小	「発奮用軽水型原子炬旛設の安全評価に関すろ審査指針」の活動中の呼吸率(小	
児:0.31m ³ /h. 成人:1.2m ³ /h)を秒当たりに換算して用いる。	児: $0.31m^{3}/h$, 成人: $1.2m^{3}/h$)を秒当たりに換算して用いる。	
H_{∞} : よう素(I-131)を 1Ba 吸入した場合の実効線量	H _∞ :よう素 (I-131)を 1Bg 吸入した場合の実効線量	
(I-131, 小児: 1.6×10 ⁻⁷ Sv/Bq, 成人: 2.0×10 ⁻⁸ Sv/Bq)	(I-131, 小児:1.6×10 ⁻⁷ Sv/Bq, 成人:2.0×10 ⁻⁸ Sv/Bq)	
χ / Q :相対濃度 (s/m ³)	χ/Q :相対濃度 (s/m ³)	
Q _I : 事故期間中のよう素の大気放出量 (Bq) (I-131 等価量)	Q _I : 事故期間中のよう素の大気放出量 (Bq) (I-131 等価量)	
希ガス <u>のγ線外部被ばくによる</u> 実効線量H _γ (Sv)は, (3.2-2)式で計算する。	希ガス <u>からのγ線による外部被ばく</u> 実効線量H _γ (Sv)は, (3.2-2)式で計算する。	
$H_{\gamma} = K \cdot D \neq Q \cdot Q_{\gamma} \cdots \cdots$	$H_{\gamma} = K \cdot D / Q \cdot Q_{\gamma} \cdots (3.2-2)$	
ここで,	ここで,	
K :空気吸収線量から実効線量への換算係数(K=1Sv/Gy)	K :空気吸収線量から実効線量への換算係数(K=1Sv/Gy)	
D/Q :相対線量(Gy/Bq)	D/Q :相対線量 (Gy/Bq)	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.11 使用済燃料プールからの燃料取り出し設備)

変更前		変	更後	変 更 理 由
Q _y : 事故期間中の希ガスの大気放出量 (Bq)	Q _y	:事故期間中の希ガスの大	気放出量 (Bq)	
(γ線実効エネルギ 0.5MeV 換算値)		(γ線実効エネルギ 0.5)	MeV 換算値)	
希ガス <u>のβ線外部被ばくによる</u> 実効線量H _β (Sv)は, (3.2-3)式で計算する。	希ガス <u>からのβ</u>	線による外部被ばく 実効線量I	H _β (Sv)は, (3.2-3)式で計算する。	記載の適正化
$H_{\beta} = 6.2 \times 10^{-14} \cdot \chi / Q \cdot Q_{\beta} \cdot E_{\beta} \cdot W_{TS} \cdots (3.2-3)$	H _{β} =6.2×1	$10^{-14} \cdot \chi / \mathbf{Q} \cdot \mathbf{Q}_{\beta} \cdot \mathbf{E}_{\beta} \cdot \mathbf{W}$	$_{\rm TS}$ (3. 2–3)	
ここで、	ここで,			
χ/Q :相対濃度 (s/m^3)	χ / Q	:相対濃度(s/m ³)		
\mathbf{Q}_{β} : 事故期間中の希ガスの大気放出量 (Bq)	\mathbf{Q}_{eta}	: 事故期間中の希ガスの大	気放出量 (Bq)	
E _β : β線のエネルギ (MeV) (0.251MeV Kr-85 実効エネルギ)	Eβ	:β線のエネルギ (MeV) ((0.251MeV Kr-85 実効エネルギ)	
W _{TS} :皮膚の組織荷重係数は ICRP Publication.60 の値を用いる。	W _{TS}	:皮膚の組織荷重係数は I	CRP Publication.60 の値を用いる。	
(0.01)		(0.01)		
(3) 評価結果	(3) 評価結果			
上記の評価前提及び方法に基づき敷地境界外の実効線量を評価した結果は表 3.2の通りである。	上記の評価前提	及び方法に基づき敷地境界外の	の実効線量を評価した結果は表 3.2 の	〕通りである。
表 3.2 燃料集合体の落下時の実効線量		表 3.2 燃料集合体	本の落下時の実効線量	
実効線量(小児) 実効線量(成人)		実効線量 (小児)	実効線量 (成人)	気象条件の変更
約 <u>7.8×10⁻⁴</u> mSv 約 <u>7.8×10⁻⁴</u> mSv		約 <u>2.1×10⁻³</u> mSv	約 <u>2.1×10⁻³</u> mSv	に伴う実効線量
				評価値の変更
上記の値から判断して、本事象による周辺の公衆に与える放射線被ばくのリスクは十分に小さいもの	上記の値から判論	断して,本事象による周辺の	公衆に与える放射線被ばくのリスクに	は十分に小さいもの
と考えられる。	と考えられる。			
	ムロ荻伝した宇		近度了惊动要新司中建事场从事将上)	マヨサの晩料准合体「記載の適正化
う回計価した美効稼重は <u>設置計刊中請音</u> (の計価($0.0 < 10^{-10.5}$)と比較して 2_{-1} 们以上減少しているが、その原田は、設置許可申請書の評価で排気筒放出でなったたのが、全同地上放出として評価するこ	う回評価した美	別禄里は <u>袖局界一床十月光电</u> $(6.8 \times 10^{-2} \text{mSr})$ と比較して 1	<u>別尿丁炉設置計り中請着称竹着頬干的</u> 梅川上減少しているが、その原用け	百子惊恐雳车可由
が、その原因は、 <u>改良計刊中請音</u> の評価で併入同放山でのうたものが、う回地工放山として計画するこ	<u>裕下争取</u> ての計画 ままの証価で批写	$(0.0 \land 10$ IIISV) こ比較して <u>1</u>		
こによる美効緑重の工弁委囚がめるものの, 市却が進んにここによる市がへ及びよう系の減少効素がで れいトにナキいことである	前音の計画に外へ	同双山しめったものが, 一回. 却が進しだことにとる発力。	他上放山として計価することによるヲ 及びとう妻の減小効果がみれいしにす	そ初秋里の上升安内
		ゆが進んにことによる市 // へ)	又いよう糸の減少効本がて40以上にグ	
3.3. 判断基準への適合性の検討	3.3. 判断基準への適	面合性の検討		
3.1,3.2に示した通り,周辺公衆に対し,著しい放射線被ばくのリスクを与えることはない。	3.1, 3.2 に示した道	通り、周辺公衆に対し、著しい	放射線被ばくのリスクを与えること	はない。
4. 第3号機核分裂生成物の放出量及び線量の評価	4. 第3号機核分裂生成	 対の放出量及び線量の評価		
(中略)	(中略)			
4.2. 線量 <u>当量</u> の評価	4.2. 線量の評価			
(1) 評価の前提	(1) 評価の前提			
大気中へ放出される核分裂生成物は、地上放出されるものとし、これによる実効線量の計算は、次の	大気中へ放出され	れる核分裂生成物は,地上放け	出されるものとし,これによる実効線	泉量の計算は、次の
仮定に基づいて行う。	仮定に基づいて行	う。		
a. 敷地境界外の地表空気中濃度は, <u>設置許可申請書添付書類六の「5.5 安全解析に使用する気象条件</u> 」	a. 敷地境界外の:	地表空気中濃度は, <u>「Ⅱ2.1 原</u>	子炉圧力容器・格納容器注水設備添作	<u>付資料5別紙1」に</u> │気象条件の変更
<u>に記述される</u> 相対濃度に核分裂生成物の全放出量を乗じて求める。	<u>記載の</u> 相対濃度_	$(\chi / Q: 8.1 \times 10^{-5} \text{s/m}^3)$ にた	家分裂生成物の全放出量を乗じて求め	っる。 に伴う記載の変
<u>なお,相対濃度(χ/Q)は設置許可申請書記載の主蒸気管破断(地上放出)の値 2.6×10⁻⁵s/m³を</u>				
				更

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.11 使用済燃料プールからの燃料取り出し設備)

	変更前		変更後	変更理由
b. 敷地境界外の	希ガスによるγ線空気吸収線量は,設置許可申請書添付書類六の「5.5 安全解析に使	b. 敷地境界外の	希ガスによるγ線空気吸収線量は, <u>「Ⅱ2.1 原子炉圧力容器・格納容器注水設備添付資</u>	気象条件の変更
用する気象条件」	<u>に記述される</u> 相対線量に希ガスの全放出量を乗じて求める。	料5別紙1」に言	<u> 記載の</u> 相対線量 <u>(D/Q: 7.3×10⁻¹⁹Gy/Bq)</u> に希ガスの全放出量を乗じて求める。	に伴う記載の変
<u>なお</u> ,相対線量	<mark>≧(D/Q)は設置許可申請書記載の主蒸気管破断(地上放出)の値 3.0×10⁻¹⁹Gy/Bq</mark>			更
を適用する。				
(2) 評価方法		(2) 評価方法		
敷地境界外におい	ナる実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばく (γ線及びβ	敷地境界外にお	ナる実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばく (γ線及びβ	記載の適正化
線)による実効線」	量の和として計算する。	線)による実効線	量の和として計算する。	
よう素の内部被に	ばくによる実効線量H」(Sv)は, (4.2-1)式で計算する。	よう素の吸入摂	<mark>取による内部被ばく</mark> 実効線量H _I (Sv)は, (4.2-1)式で計算する。	
$H_I = R \cdot H_I$	$\infty \cdot \chi / Q \cdot Q_1 \cdots \cdots$	$H_I = R \cdot H$	$\sim \cdot \chi / \mathbf{Q} \cdot \mathbf{Q}_1 \cdots \cdots$	
ここで,		ここで,		
R	:呼吸率 (m ³ /s)	R	:呼吸率 (m ³ /s)	
	「発電用軽水型原子炉施設の安全評価に関する審査指針」の活動中の呼吸率(小		「発電用軽水型原子炉施設の安全評価に関する審査指針」の活動中の呼吸率(小	
	児:0.31m ³ /h, 成人:1.2m ³ /h)を秒当たりに換算して用いる。		児:0.31m³/h, 成人:1.2m³/h)を秒当たりに換算して用いる。	
H_{∞}	:よう素(I-131)を 1Bq 吸入した場合の <u>小児の</u> 実効線量	H_{∞}	: よう素(Ⅰ-131)を 1Bq 吸入した場合の実効線量	
	(I-131, 小児:1.6×10 ⁻⁷ Sv/Bq, 成人:2.0×10 ⁻⁸ Sv/Bq)		(I-131,小児:1.6×10 ⁻⁷ Sv/Bq,成人:2.0×10 ⁻⁸ Sv/Bq)	
χ / Q	:相対濃度 (s/m ³)	χ / Q	:相対濃度 (s/m ³)	
\mathbf{Q}_{I}	:事故期間中のよう素の大気放出量 (Bq) (I-131 等価量)	\mathbf{Q}_{I}	: 事故期間中のよう素の大気放出量(Bq)(I-131 等価量)	
希ガス <u>のγ線外</u> 音	『被ばくによる 実効線量H _ッ (Sv)は, (4.2-2)式で計算する。	希ガス <u>からの γ á</u>	<u>泉による外部被ばく</u> 実効線量H _ッ (Sv)は, (4.2-2)式で計算する。	
$H_{\gamma} = K \cdot D$	$/ Q \cdot Q_{\gamma} \cdots (4.2-2)$	$H_{\gamma} = K \cdot D$	$\mathbf{Q} \cdot \mathbf{Q} \cdot \mathbf{Q}_{\gamma} \cdots \cdots$	
ここで,		ここで,		
Κ	:空気吸収線量から実効線量への換算係数(K=1Sv/Gy)	K	:空気吸収線量から実効線量への換算係数(K=1Sv/Gy)	
D⁄Q	:相対線量 (Gy/Bq)	D⁄Q	:相対線量 (Gy/Bq)	
${ m Q}_{\gamma}$:事故期間中の希ガスの大気放出量 (Bq)	\mathbf{Q}_{γ}	:事故期間中の希ガスの大気放出量 (Bq)	
	(γ線実効エネルギ 0.5MeV 換算値)		(γ線実効エネルギ 0.5MeV 換算値)	
希ガス <u>のβ線外</u> 音	『被ばくによる 実効線量H _β (Sv)は, (4.2-3)式で計算する。	希ガス <u>からのβ</u>	<u>線による外部被ばく</u> 実効線量H _β (Sv)は, (4.2-3)式で計算する。	
H _{β} =6.2×1	$0^{-14} \cdot \chi \swarrow Q \cdot Q_{\beta} \cdot E_{\beta} \cdot W_{TS} \cdots (4.2-3)$	H _{β} =6.2×1	$10^{-14} \cdot \chi / Q \cdot Q_{\beta} \cdot E_{\beta} \cdot W_{TS} \cdots (4.2-3)$	
ここで,		ここで,		
χ / Q	:相対濃度 (s/m ³)	$\chi \nearrow Q$:相対濃度 (s/m ³)	
$\mathbf{Q}_{\ eta}$:事故期間中の希ガスの大気放出量 (Bq)	$\mathbf{Q}_{\ eta}$:事故期間中の希ガスの大気放出量 (Bq)	
Eβ	:β線のエネルギ (MeV) (0.251MeV Kr-85 実効エネルギ)	Eβ	:β線のエネルギ(MeV)(0.251MeV Kr-85 実効エネルギ)	
W_{TS}	:皮膚の組織荷重係数は ICRP Publication.60 の値を用いる。	W_{TS}	:皮膚の組織荷重係数はICRP Publication.60 の値を用いる。	
	(0.01)		(0.01)	
(3) 評価結果		(3) 評価結果		
上記の評価前提別	及び方法に基づき敷地境界外の実効線量を評価した結果は表 4.2 の通りである。	上記の評価前提	及び方法に基づき敷地境界外の実効線量を評価した結果は表 4.2の通りである。	
	表 4.2 燃料集合体の落下時の実効線量		表 4.2 燃料集合体の落下時の実効線量	
	実効線量(小児) 実効線量(成人)		実効線量(小児) 実効線量(成人)	気象条件の変更
	約 <u>6.2×10⁻⁴</u> mSv 約 <u>6.2×10⁻⁴</u> mSv		約 <u>1.8×10⁻³</u> mSv 約 <u>1.8×10⁻³</u> mSv	に伴う実効線量
	,			評価値の変更

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.11 使用済燃料プールからの燃料取り出し設備)

変更前	変更後	変更理由
上記の値から判断して、本事象による周辺の公衆に与える放射線被ばくのリスクは十分に小さいもの	上記の値から判断して、本事象による周辺の公衆に与える放射線被ばくのリスクは十分に小さいもの	記載の適正化
と考えられる。	と考えられる。	
今回評価した実効線量は <mark>設置許可申請書</mark> での評価(6.8×10 ⁻² mSv)と比較して <u>2</u> 桁以上減少している	今回評価した実効線量は福島第一原子力発電所原子炉設置許可申請書添付書類十に記載の燃料集合体	
が,その原因は, <u>設置許可申請書</u> の評価で排気筒放出であったものが,今回地上放出として評価するこ	<u>落下事故</u> での評価(6.8×10 ⁻² mSv)と比較して <u>1</u> 桁以上減少しているが,その原因は, <u>原子炉設置許可申</u>	
とによる実効線量の上昇要因があるものの、冷却が進んだことによる希ガス及びよう素の減少効果がそ	<u>請書</u> の評価で排気筒放出であったものが、今回地上放出として評価することによる実効線量の上昇要因	
れ以上に大きいことである。	があるものの,冷却が進んだことによる希ガス及びよう素の減少効果がそれ以上に大きいことである。	
4.3. 判断基準への適合性の検討	4.3. 判断基準への適合性の検討	
4.1,4.2に示した通り、周辺公衆に対し、著しい放射線被ばくのリスクを与えることはない。	4.1、4.2に示した通り、周辺公衆に対し、著しい放射線被ばくのリスクを与えることはない。	
5. 第2号機核分裂生成物の放出量及び線量の評価	5. 第2号機核分裂生成物の放出量及び線量の評価	
(中略)	(中略)	
5.2 線量当量の評価	5.2 線量の評価	記載の適正化
 (1) 評価の前提 	(1) 評価の前提	
大気中へ放出される核分裂生成物は、地上放出されるものとし、これによる実効線量の計算は、次の	大気中へ放出される核分裂生成物は、地上放出されるものとし、これによる実効線量の計算は、次の	
仮定に基づいて行う。	仮定に基づいて行う。	
a. 敷地境界外の地表空気中濃度は,設置許可申請書添付書類六の「5.5 安全解析に使用する気象条件」	a. 敷地境界外の地表空気中濃度は、「Ⅱ2.1 原子炉圧力容器・格納容器注水設備添付資料 5 別紙 1」に	気象条件の変更
に記述される相対濃度に核分裂生成物の全放出量を乗じて求める。なお、相対濃度(χ/Q)は保守的	記載の相対濃度 (χ / Q: 6.9×10^{-5} s/m ³) に核分裂生成物の全放出量を乗じて求める。	に伴う記載の変
な評価となる設置許可申請書記載の2号機の主蒸気管破断(地上放出)の値2.0×10 ⁻⁵ s/m ³ を適用する。		更
b. 敷地境界外の希ガスによるγ線空気吸収線量は,設置許可申請書添付書類六の「5.5 安全解析に使	b. 敷地境界外の希ガスからのγ線による空気吸収線量は、「Ⅱ2.1原子炉圧力容器・格納容器注水設備	
	る。	
(2) 評価方法	(2) 評価方法	
設置許可申請書添付書類十の「3.4.3 燃料集合体の落下」ならびに「4.1.1 原子炉冷却材喪失」と同	福島第一原子力発電所原子炉設置許可申請書添付書類十の「3.4.3 燃料集合体の落下」並びに「4.1.1	記載の適正化
様の方法で評価する。	原子炉冷却材喪失」と同様の方法で評価する。	
敷地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばくによる実効線	敷地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばくによる実効線	
量の和として計算する。	量の和として計算する。	
よう素の内部被ばくによる実効線量H _I (Sv)は、(5.2-1)式で計算する。	よう素の吸入摂取による内部被ばく実効線量H ₁ (Sv)は、(5.2-1)式で計算する。	
$H_{I} = R \cdot H_{\infty} \cdot \chi / Q \cdot Q_{I} \cdot \dots $	$H_{I} = R \cdot H_{\infty} \cdot \chi / Q \cdot Q_{I} \cdots \cdots$	
ここで、	ここで,	
R : 呼吸率 (m ³ /s)	R :呼吸率 (m ³ /s)	
「発電用軽水型原子炉施設の安全評価に関する審査指針」の活動中の呼吸率を秒	「発電用軽水型原子炉施設の安全評価に関する審査指針」の活動中の呼吸率を秒	
当たりに換算して用いる。	当たりに換算して用いる。	
(小児:0.31m³/h, 成人:1.2m³/h)	(小児:0.31m ³ /h, 成人:1.2m ³ /h)	
H∞ :よう素 (I-131)を 1Bq 吸入した場合の実効線量	H _∞ :よう素(I-131)を1Bq吸入した場合の実効線量	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.11 使用済燃料プールからの燃料取り出し設備)

	変更前		変更後	変更理由
	(小児:1.6×10 ⁻⁷ Sv/Bq, 成人:2.0×10 ⁻⁸ Sv/Bq)		(小児:1.6×10 ⁻⁷ Sv/Bq, 成人:2.0×10 ⁻⁸ Sv/Bq)	記載の適正化
χ / Q	:相対濃度 (s/m ³)	χ / Q	:相対濃度 (s/m ³)	
Q_{I}	:よう素の大気放出量(Bq)(I-131 等価量)	\mathbf{Q}_{I}	:よう素の大気放出量(Bq)(I-131 等価量)	
希ガス <u>のγ線外</u>	第被ばくによる 実効線量H _ッ (Sv)は, (5.2-2)式で計算する。	希ガス <mark>からのγ 約</mark>	<u>泉による外部被ばく</u> 実効線量H _ッ (Sv)は, (5.2-2)式で計算する。	
$H_{\gamma} = K \cdot D$	$\mathbf{Q} \cdot \mathbf{Q} \cdot \mathbf{Q}_{\gamma} \cdots \cdots$	$H_{\gamma} = K \cdot D$	$\mathbf{Q} \cdot \mathbf{Q} \cdot \mathbf{Q}_{\gamma} \cdots \cdots$	
ここで,		ここで,		
К	: 空気吸収線量から実効線量への換算係数(1Sv/Gy)	K	: 空気吸収線量から実効線量への換算係数(1Sv/Gy)	
D⁄Q	:相対線量 (Gy/Bq)	D⁄Q	:相対線量 (Gy/Bq)	
${f Q}_{\gamma}$: 希ガスの大気放出量(Bq)(γ線実効エネルギー0.5MeV 換算値)	${ m Q}_{\gamma}$: 希ガスの大気放出量(Bq)(γ線実効エネルギー0.5MeV 換算値)	
また,希ガス <u>の</u>	<u>β線外部被ばくによる</u> 実効線量H _β (Sv)は, (5.2-3)式で計算する。	また,希ガス <u>か</u>	<u>らのβ線による外部被ばく</u> 実効線量H _β (Sv)は, (5.2-3)式で計算する。	
H _{β} =6.2×	$10^{-14} \cdot \chi / \mathbf{Q} \cdot \mathbf{Q}_{\beta} \cdot \mathbf{E}_{\beta} \cdot \mathbf{W}_{\mathrm{TS}} \cdots \cdots \cdots \cdots \cdots (5.2-3)$	H _{β} =6.2×2	$10^{-14} \cdot \chi / \mathbf{Q} \cdot \mathbf{Q}_{\beta} \cdot \mathbf{E}_{\beta} \cdot \mathbf{W}_{TS} \cdots \cdots \cdots \cdots (5.2-3)$	
ここで,		ここで,		
χ / Q	: 相対濃度 (s/m ³)	χ / Q	: 相対濃度 (s/m ³)	
$\mathbf{Q}_{\ eta}$:希ガスの大気放出量 (Bq)	$\mathbf{Q}_{\ eta}$:希ガスの大気放出量 (Bq)	
Ε _β	: β線実効エネルギー「被ばく計算に用いる放射線エネルギー等について」を用い	Eβ	: β線実効エネルギー「被ばく計算に用いる放射線エネルギー等について」を用い	
	る。(0.251MeV Kr-85 実効エネルギー)		る。(0.251MeV Kr-85 実効エネルギー)	
W_{TS}	:皮膚の組織荷重係数は ICRP Publ.60 の値を用いる。(0.01)	W_{TS}	:皮膚の組織荷重係数はICRP Publ.60の値を用いる。(0.01)	
(3) 評価結果		(3) 評価結果		
上記の評価前提	及び方法に基づき敷地境界外の実効線量を評価した結果は表 5.2 の通りである。	上記の評価前提	及び方法に基づき敷地境界外の実効線量を評価した結果は表 5.2の通りである。	気象条件の変更
	表 5.2 燃料集合体の落下時の実効線量		表 5.2 燃料集合体の落下時の実効線量	に伴う実効線量
	実効線量(小児) 実効線量(成人)		実効線量(小児) 実効線量(成人)	評価値の変更
	約 <u>4.8×10⁻⁴</u> mSv 約 <u>4.8×10⁻⁴</u> mSv		約 <u>1.6×10⁻³</u> mSv 約 <u>1.6×10⁻³</u> mSv	
ト記の値から判	新して「木事象に上ろ周辺の公衆に与える放射線被げくのリスクけ十分に小さいもの」	ト記の値から判問	断して「木事象に上ろ周辺の公衆に与える放射線被げくのリスクけ十分に小さいもの」	
と考えられる。		と考えられる。		
へ回評任! た宇		へ回証価した中	が須見け近自知一百乙力な電託百乙に犯異な可由まま活けま短しに記載の燃料准合体	記載の適正化
う 四計価した美学	の隊軍は <u>武庫計り中請者</u> での計価(0.4×10 mSV) と比較して 2 们以上減少している 設置款可由誌書の証価で批写筒払出でなったたのが、合同地上払出しして証価するこ	う 回評価 した夫分	の称重は <u>佃品界一原ナガ光电ガ原ナ炉設置計り中請者称竹者規工に記載の燃料来す体</u>	
いっての原因は、		<u>格下争取</u> ての計画	$(0.4 \land 10 \text{ IIISV})$ と比較して <u>1</u> 们以上減少しているか,ての床回は, <u>床子が改直計刊中</u> 節故出であったたのが、合同地上故出として評価することによる実効線長の上見更困	
れ以上に大きいこ	の工井安西があるものの、市却が進んにことによる市がへ及びよう系の減少効素がで	があろものの一谷	同版山てのうたものが、「回地工版山として計画することによる天効隊軍の工弁委囚 知が進んだことによる希ガス及びよう素の減少効果がそれ以上に大きいことである。	
5.3. 判断基準への注	箇合性の検討	5.3. 判断基準への道	適合性の検討 (1997)	
5.1, 5.2 に示した道	10,周辺公衆に対し、著しい放射線被ばくのリスクを与えることはない。	5.1, 5.2 に示した通	り、周辺公衆に対し、著しい放射線被ばくのリスクを与えることはない。	
(以下、省略)		(以下、省略)		
				1

	変更前		変更後	変更理由
		添付資料-7	-2 添付資料-7-2	
(中略)	福島第一原子力発電所第2号機原子炉建厚	屋南側外壁の開口設置について 添付資料-7-2 別添:	福島第一原子力発電所第2号機原子炉建屋南側外壁の開口設置について (中略) -1 添付資料-7-2 別添-1	
(中略)	開口設置作業に伴い放出される放射性物	の質による敷地境界線量評価	開口設置作業に伴い放出される放射性物質による敷地境界線量評価 (中略)	気象条件の変更
 評価条件 a.計算 放 、気 	: に係る前提条件 出源:2 号機原子炉建屋(地上放出) 象条件: <u>1979</u> 年度		 2. 評価条件 a. 計算に係る前提条件 · 放出源:2号機原子炉建屋(地上放出) · 気象条件:<u>2020</u>年度 	
(中略)			(中略)	
c. 放射 開 ーリ 間の 均化 ※ (中略)	生物質の放出率 日 設置作業に伴う各放射性物質の放出率は表2 ング,ウォールソー,圧砕機)毎に算出した1 9実作業時間1,150時間を乗じて総放出量を算出 こした。放出率の計算式は1-1,1-2の通り。 5 放出率は,保守的な評価となるように有効数字	の通り ^{**} 。放出率については,解体工法(コ) 時間あたりの放出率より最も高い値に対し, し,1年間の時間(8,760時間/年)で除して 2桁 <u>目を</u> 切り上げた。	 c. 放射性物質の放出率 開口設置作業に伴う各放射性物質の放出率は表2の通り*。放出率については,解体工法(コアボーリング,ウォールソー,圧砕機)毎に算出した1時間あたりの放出率より最も高い値に対し,年間の実作業時間1,150時間を乗じて総放出量を算出し,1年間の時間(8,760時間/年)で除して平均化した。放出率の計算式は1-1,1-2の通り。 ※放出率は,保守的な評価となるように有効数字2桁に切り上げた。 	記載の適正化
 評価結果 敷地境 「表 2 年となっ 放出によ 	日 「 「 開口設置作業に伴う放出率」で示した評価対象 している。実施計画Ⅲ 第3編2.2 線量評価に記 こる評価結果と比較して <u>十分</u> 低いことを確認した 表3 敷地境界における実	象核種による実効線量の合計は約 <u>1.5×10⁻³</u> mS 載されている 1∼4 号機原子炉建屋からの追加 。 茨劾線量の評価結果	 4. 評価結果 敷地境界における実効線量の評価結果は表3の通り。 「表2 開口設置作業に伴う放出率」で示した評価対象核種による実効線量の合計は約 <u>1.1×10⁻³</u>mSv/ 年となっている。実施計画Ⅲ 第3編2.2 線量評価に記載されている1~4号機原子炉建屋からの追加的 放出による評価結果と比較して低いことを確認した。 表3 敷地境界における実効線量の評価結果 	気象条件の変更 及び評価方法等 の変更に伴う実 効線量評価値の
	被ばく経路	実効線量(mSv/年)	被ばく経路 実効線量 (mSv/年)	変更
	放射性雲からのγ線に起因する実効線量	約 <u>8.7×10⁻⁸</u>	放射性雲からのγ線に起因する実効線量 約 <u>2.6×10⁻⁷</u>	
	地面に沈着した放射性物質からのγ線 に起因する実効線量	約 <u>1.5×10-3</u>	地面に沈着した放射性物質からのγ線 に起因する実効線量 約 <u>9.1×10⁻⁴</u>	
	吸入摂取による実効線量	約 <u>1.2×10⁻⁵</u>	吸入摂取による実効線量 約 <u>2.3×10⁻⁴</u>	
	合計の実効線量	約 1 5×10 ⁻³	合計の実効線量 約1.1×10 ⁻³	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.12使用済燃料共用プール設備)

2.12 使用染透射見用ブール交換 (中席) 2.12 使用消透射見用ブール交換 (中席) 1.11 月川ブール使型透波移達系について (中席) 通用ブール使型透波移達系について (中席) 1.11 月川ブール使型透波移達系について (中席) 10. 客知味用: 其常気 (中取) 1.11 第次約二小使用洗液(日本)、(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	変更前	変更後
(中語) (中国) (中語) (月間) (月間) (月間) (日本) (月間) (日本) (月間) (日本) (月間) (日本) (月間) (日本) (日本) (日本) (日本) </th <th>2.12 使用済燃料共用プール設備</th> <th>2.12 使用済燃料共用プール設備</th>	2.12 使用済燃料共用プール設備	2.12 使用済燃料共用プール設備
Approximation Approximation Approximati	(中略)	(中略)
மற்று மற்று பற்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று பின்று		
Brither 1 Extra 2 - Description Diff - Description (Test) 1. magnet de statu (Test)		
	添付資料-11	共用プール建屋廃液移送系について
(中線) (中線) (日本) (中線) (日本) (日本) (日本)<	共用プール建屋廃液移送系について	
 (中報) <		(中略)
 10. 準転場格・基準領 10. 準転場本・基準場場は、「第二十二年間 11. 構造理論 12. 推測 13. 推進機算 14. 推進 14.	(中略)	
 10. 転販焼き 基底傾 20. 転販焼き 基底傾 20. 転販焼き 人気備以除 支持す 生産状体 (JSE 5 N1-2005/2007) - 単石力発電が耐空支持状体でかでたは、以下の焼き 基準時に準執する。 - 単石力発電が耐空支持状体でかでたは、以下の焼き 4重線 - 第二月が発電が耐空支持状体でかでたは、以下の免壊 4 単調(JSE 5 N1-2005/2007) - 市石力発電が耐空支持状体(JSE 5 N1-2005/2007) - 市石力発電が耐空支持状体(JSE 5 N1-2005/2007) - 市石力発電が耐空支持状体(JSE 5 N1-2005/2007) - 市石力発電が耐空支持状体(JSE 5 N1-2005/2007) - 日本1二製化(JSE JSE) - 日本1二製化(JSE JSE) - 日本1二製化(JSE JSE) - 日本1二製化(JSE JSE) - 日本1二製作(JSE JSE)		10. 準拠規格·基準類
 「整理用学力設備規格」設計・整設規と(1500 5 NG-2006/2007) 「参型用学力設備規格 設計・整設規と(1500 5 NG-2006/2007) 「部方金型所開業設計技術提供[1202-4601(2008)) 「日本上型規格 (155 規格) 「日本上型規格 (155 規格) 「日本上型規格 (155 規格) 「日本上型規格 (155 規格) 「日本」型規格 (155 規格) 「日本」型規格 (155 規格) 「日本」型組 (150 4 4 5 0 4 5 0 4 4 5 0 4 4 5 0 4 4 5 0	10. 準拠規格·基準類	廃液移送系の配管で使用する主要材料については、以下の規格・基準数
 ・発生用原子力設備軟化 設計・確認規修 (JSME S XCI-2005/2007) ・原子力発電所確認許技術規模 (JSME S XCI-2005/2007) ・原子力発電所確認許技術規模 (JSM (JSME S XCI-2005/2007) ・原子力発電所確認許技術規模 (JSM (JSM (JSME S XCI-2005)) ・日本太道協会規修 (JSM (JSM (JSM (JSM (JSM (JSM (JSM (JSM	廃液移送系の配管で使用する主要材料については、以下の規格・基準類に準拠する。	・発電用原子力設備規格 設計・建設規格 (JSME S NC1-2005/2007)
 ・原子方電気所に環境学社編集現絵 (JTAC 4601(2008)) ・日本工業現格 (JTS 規格) ・日本工業現格 (JTS 規格) ・日本工業現格 (JTS 規格) ・日本工業現本 (JTS 規格) ・日本工業規本 (JTS 規本) ・日本工業 ・日本工業 ・日本工業 ・日本工業<	・発電用原子力設備規格 設計・建設規格(JSME S NC1-2005/2007)	・原子力発電所耐震設計技術規程(JEAC-4601(2008))
 ・日本工業規略(1)5 規略) ・日本工業規略(1)5 規略) ・日本工業協会規略(1)5 規格) ・日本工選会規略(1)5 規格) ・日本工選会規制(1)5 規格) ・日本工業 ・日本工業	・原子力発電所耐震設計技術規程(JEAC-4601(2008))	・日本 <mark>産業</mark> 規格(JIS 規格)
 ・回転標準化機構填格(ISO 規格) ・日本水道協会規格(ITWA 規格) ・日本水道協会規名(ITWA 規格) ・日本水道協会規格(ITWA 規格) ・日本水道協会規格(ITWA 規格) ・日本水道協会組織(ITWA 規格) ・日本水道協会組織(ITWA 組織) ・日本水道協会組織(ITWA 組織) ・日本公式協会規御(ITWA 組織) ・日本公式協会規御(ITWA 組織) ・日本公式協会(ITWA 規格) ・日本公式協会(ITWA 規格) ・日本公式協会(ITWA 規格) ・日本公式協会(ITWA 組織) ・日本公式協会(ITWA 組織) ・日本公式協会(ITWA 組織) ・日本公式協会(ITWA 組織) ・日本公式協会(ITWA 組織) ・日本(ITWA ITWA ITWA ITWA ITWA ITWA ITWA ITWA	・日本 <u>工業</u> 規格(JIS 規格)	・国際標準化機構規格(ISO 規格)
 ・匠木次道磁会規格(1)WA 起路) ・原子力発電所耐震設計技術指針(1EAG4601) 1.1 構造強調評価の基本分針 1.1 構造強調評価の基本分針 1.2 目原子力規制委員会規則第6号)」において、廃棄物処理設備に相当 (2 目所子力規制委員会規則第6号)」において、廃棄物処理設備に相当するクラス3 機能でする規制(15 期格)等したいて、 定体がながらく日本工業規格(115 規格) 年の国内外の民間規格に適合した工業用品の採用したしたい。 レドン・(15 期底) 外の日本工業規格(115 規格) 年の国内外の民間規格に適合した工業用品の採用したしたい。 レドン・(15 期底) 外の日本工業規格(115 規格) 年の国内外の民間規格に適合した工業用品の採用したした。 - 原本超感で知識にないる見構成での設計・製作・検査を行う。 - また、JSME 規格で知識でないより急速なが引き、一般を含した。 - また、JSME 規格で知識でないより一般電差規格(115 規格) 中国本工業規格(115 規格), 製品の試験データ等を用いて設計を行う。 - (以下、省略) 	・国際標準化機構規格(ISO規格)	・日本水道協会規格(JWWA 規格)
 ・原子为発電所耐酸設計技術指針(JEAG4601) 1.1 構造換度評価 1.1 構造換定評価の基本方針 1.1 構造換定評価の基本方針 施液移送系を構成する機器は、「寒用発電用原子炉及びその附属施設の技術基準に関する規則(早な2 5 e 6 月 28 日原子力規制委員会規則席 6 号)」において、廃集物処理設備に相当するクラス3 機器に準するのの 位置(けられる。 医液移送系と可成して15, ISME 5 NC-1 発電用原子炉及破視線 設計・建設規格(JSME 規解)(JTME 規解) 皮筋 2 ドリント、工業規格(JTS 規解)等の国内外の民間規解に置合した工業用品の採用、またによわ。 皮筋 2 市場で規度でお乱材料の日本工業規格(JTS 規格)等の国内外の民間規格に置合した工業用品の採用、またによわ。 たた、JSME 規格で規定される材料の日本工業規格(JTS 規格)年度指定は、技術的姿当性の範囲においれ 材料調整性の観点から考慮しない場合もある。 さらに、JSME 規格で規定される材料の日本企業規格(JTS 規格)年度指定は、技術的学習性の範囲においれ 材料調整性の観点から考慮しない場合もある。 さらに、JSME 規格に記載のない非金属材料(個肝ホース、ボリェチンと管等)については、J環路(中国本 (以下、客略) (以下、客略) 	・日本水道協会規格(JWWA 規格)	・原子力発電所耐震設計技術指針(JEAG4601)
1. 構造強度評価 1. 構造強度評価の基本方針 1. 1構造強度評価の基本方針 1. 1構造強度評価の基本方針 度液移送系を構成する機器は「実用発電用原子炉及びその附属施設の技術基性に関する具的「収益な」 月 28 日原子力規制委員会規則第 6 号)」において、廃棄物処理設備に相当するクラス3 機器に準するの 月 28 日原子力規制委員会規則第 6 号)」において、廃棄物処理設備に相当するクラス3 機器に準するの 度液移送系については、「JSME S Nc1 発電用原子力設備規格 設計・基本設規格(JSm 規格)」(以下、JSME S Nc1 発電用原子力設備規格 設計・量 現本3 日原子力規制を引入して、「JSME S Nc1 発電用原子力設備規格 設計・量 度液移送系については、「JSME S Nc1 発電用原子力設備規格に適合した工業用品の採用。またはこれ 現本3 日原子力規制を建たする規格での設計・製作・検査を行う。 実た、JSME 規格で規定される材料の日本ご差規格(JIS 規格 P 機構定 また、JSME 規格で設定される材料の日本ご差規格(JIS 規格 P 機構定任 マボの水場合もある。 こなに、JSME 規格で設定される材料の日本ご差規格(MIEホース、ポリエチレン管学)については、現場の作業構 検討会社記載成のない非全属材料(副圧ホース、ポリエチレン管学)については、現場の作本 25に、JSME 規格に記載のない非全属材料(副圧ホース、ポリエチレン管学)については、現場の本本 25に、JSME 規格に記載のない非全属材料(副圧ホース、ポリエキレン管学)については、現場の作本 会規格(JWMA 規格)、製品の試験データ等を用いて設計を行う。 こなに、JSME 規格に記載のない非全属材料(副圧ホース、ボリエキレン管学)については、現場の本 24時 (以下、省略) (以下、省略) (以下、省略) (以下、省略)	・原子力発電所耐震設計技術指針(JEAG4601)	
 11. 構造強度評価 11. 構造強度評価の基本力針 施設強度評価の基本力針 施設務送系を構成する機器は、「実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年 位置付けられる。 原液移送系と可いては、「JSME S NC-1 発電用原子力設備提格 設計・建設規格(JSME 規格)」(以下、「JSME 度液移送系については、「JSME S NC-1 発電用原子力設備提格 設計・建設規格(JSME 規格)」(以下、「JSME 加合力支援機格(JIS 規格)等の国内外の民間規格に適合した工業用品の採用、またはこれも と同等の技術的妥当性を有する規格での設計・製作・検査を行う。 また、JSME 規格で規定される材料の日本<u>正差</u>規格(JIS 規格)年度指定は、技術的妥当性の範囲において、 ならに、JSME 規格で記載さない非金属材料(耐圧ホース、ポリエチレン管等)については、現場の作業構 境等から採用を継続する必要があるが、これらの機器等については、日本工業規格(JIS 規格)や日本水道路 会規格(JWWA 規格), 製品の試験データ等を用いて設計を行う。 (以下、省略) 		11. 構造強度評価
 11.1 精造強度詳価の基本分針 廃液移送系を構成する機器は、「実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年6 月 28 日原子力規制委員会規則第 6 号)」において、廃棄物処理設備に相当するクラス 3 機器に準ずるものと 位置付けられる。 廃液移送系については、「JSME 5 NC-1 発電用原子力設備規格 設計・建設規格(JSME 規格)」(以下、「JSME 廃液移送系については、「JSME 5 NC-1 発電用原子力設備規格 設計・建設規格(JSME 規格)」(以下、「JSME 規格」という」、、日本工業規格(JIS 規格)等の国内外の民間規格に適合 した工業用品の採用、またはこれも と同等の技術的妥当性を有する規格での設計・製作・検査を行う。 また、JSME 規格で規定される材料の日本工業規格(JIS 規格)年度指定は、技術的妥当性の範囲において 材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格で規定される材料の日本工業規格(JIS 規格)年度指定は、技術的妥当性の範囲において 材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格で記載のない非金属材料(耐圧ホース、ボリエチレン管等)については、現場の作業環 境等から採用を継続する必要があるが、これらの機器等については、日本工業規格(JIS 規格)や日本水道協 会規格(JIWA 規格)、製品の試験データ等を用いて設計を行う。 (以下、省略) 	11. 構造強度評価	11.1 構造強度評価の基本方針
廃液移送系を構成する機器は、「実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年6 月 28 日原子力規制委員会規則第 6 号)」において、廃棄物処理設備に相当するクラス 3 機器に準ずるものと 位置付けられる。 廃液移送系については、「JSME S NC-1 発電用原子力設備規格 設計・建設規格(JSME 規格)」(以下、「JSME 規格」という。)、日本工業規格(JIS 規格)等の国内外の民間規格に適合した工業用品の採用、またはこれら と同等の技術的変当性を有する規格での設計・製作・検査を行う。 また、JSME 規格で規定される材料の日本工業規格(JIS 規格)年度指定は、技術的妥当性の範囲において 材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格に記載のない非金属材料(耐圧ホース、ボリエチレン管等)については、現場の作業碟 填等から採用を継続する必要があるが、これらの機器等については、日本工業規格(JIS 規格)や日本水道協 会規格(JWWA 規格)、製品の試験データ等を用いて設計を行う。 (以下、省略)	11.1 構造強度評価の基本方針	廃液移送系を構成する機器は、「実用発電用原子炉及びその附属施設の
月 28 日原子力規制委員会規則第 6 号)」において、廃棄物処理設備に相当するクラス 3 機器に準ずるものと 位置付けられる。 廃液移送系については、「JSME S NC-1 発電用原子力設備規格 設計・建設規格(JSME 規格)」(以下、「JSME 期格」という。)、日本工業規格(JIS 規格)等の国内外の民間規格に適合した工業用品の採用、またはこれら と同等の技術的妥当性を有する規格での設計・製作・検査を行う。 また、JSME 規格で規定される材料の日本工業規格(JIS 規格)年度指定は、技術的妥当性の範囲において 材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格に記載のない非金属材料(耐圧ホース、ボリエチレン管等)については、現場の作業環 境等から採用を継続する必要があるが、これらの機器等については、日本工業規格(JIS 規格)や日本水道協 会規格(JWWA 規格)、製品の試験データ等を用いて設計を行う。 (以下、省略)	廃液移送系を構成する機器は、「実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年6	月28日原子力規制委員会規則第6号)」において,廃棄物処理設備に相当
位置付けられる。 廃液移送系については、「JSME S NC-1 発電用原子力設備規格 設計・建設規格(JSME 規格)」(以下、「JSME 規格」という。)、日本 <u>正業</u> 規格(JIS 規格)等の国内外の民間規格に適合した工業用品の採用、またはこれら と同等の技術的妥当性を有する規格での設計・製作・検査を行う。 また、JSME 規格で規定される材料の日本 <u>正業</u> 規格(JIS 規格)年度指定は、技術的妥当性の範囲において 材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格に記載のない非金属材料(耐圧ホース、ボリエチレン管等)については、現場の作業環 境等から採用を継続する必要があるが、これらの機器等については、日本 <u>工業</u> 規格(JIS 規格)や日本水道協 会規格(JWWA 規格)、製品の試験データ等を用いて設計を行う。 (以下、省略)	月28日原子力規制委員会規則第6号)」において、廃棄物処理設備に相当するクラス3機器に準ずるものと	位置付けられる。
廃液移送系については、「JSME S NC-1 発電用原子力設備規格 設計・建設規格(JSME 規格)」(以下、「JSME 規格」という。)、日本 <u>産業</u> 規格(JIS 規格)等の国内外の民間規格に適合した工業用品の採用、またはこれら と同等の技術的妥当性を有する規格での設計・製作・検査を行う。 また、JSME 規格で規定される材料の日本 <u>工業</u> 規格(JIS 規格)年度指定は、技術的妥当性の範囲において 材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格に記載のない非金属材料(耐圧ホース、ポリエチレン管等)については、現場の作業環 境等から採用を継続する必要があるが、これらの機器等については、日本 <u>工業</u> 規格(JIS 規格)や日本水道協 会規格(JWWA 規格)、製品の試験データ等を用いて設計を行う。 (以下、省略)	位置付けられる。	廃液移送系については、「JSME S NC-1 発電用原子力設備規格 設計・建
規格」という。),日本工業規格(JIS 規格)等の国内外の民間規格に適合した工業用品の採用,またはこれら と同等の技術的妥当性を有する規格での設計・製作・検査を行う。 また、JSME 規格で規定される材料の日本工業規格(JIS 規格)年度指定は、技術的妥当性の範囲において 材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格に記載のない非金属材料(耐圧ホース、ポリエチレン管等)については、現場の作業環 境等から採用を継続する必要があるが、これらの機器等については、日本工業規格(JIS 規格)や日本水道協 会規格(JWWA 規格),製品の試験データ等を用いて設計を行う。 (以下、省略)	廃液移送系については、「JSME S NC-1 発電用原子力設備規格 設計・建設規格 (JSME 規格)」(以下、「JSME	規格」という。),日本 <u>産業</u> 規格(JIS 規格)等の国内外の民間規格に適合
と同等の技術的妥当性を有する規格での設計・製作・検査を行う。 また、JSME 規格で規定される材料の日本 <u>正業</u> 規格(JIS 規格)年度指定は、技術的妥当性の範囲において 材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格に記載のない非金属材料(耐圧ホース,ポリエチレン管等)については、現場の作業環 境等から採用を継続する必要があるが、これらの機器等については、日本 <u>工業</u> 規格(JIS 規格)や日本水道協 会規格(JWWA 規格),製品の試験データ等を用いて設計を行う。 (以下、省略)	規格」という。),日本 <u>工業</u> 規格(JIS 規格)等の国内外の民間規格に適合した工業用品の採用,またはこれら	と同等の技術的妥当性を有する規格での設計・製作・検査を行う。
また、JSME 規格で規定される材料の日本 <u>工業</u> 規格(JIS 規格)年度指定は、技術的妥当性の範囲において 材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格に記載のない非金属材料(耐圧ホース、ポリエチレン管等)については、現場の作業環 境等から採用を継続する必要があるが、これらの機器等については、日本 <u>工業</u> 規格(JIS 規格)や日本水道協 会規格(JWWA 規格),製品の試験データ等を用いて設計を行う。 (以下、省略)	と同等の技術的妥当性を有する規格での設計・製作・検査を行う。	また, JSME 規格で規定される材料の日本 <u>産業</u> 規格 (JIS 規格) 年度指
材料調達性の観点から考慮しない場合もある。 さらに、JSME 規格に記載のない非金属材料(耐圧ホース,ポリエチレン管等)については、現場の作業環 境等から採用を継続する必要があるが、これらの機器等については、日本工業規格(JIS 規格)や日本水道協 会規格(JWWA 規格)、製品の試験データ等を用いて設計を行う。 (以下、省略) (以下、省略)	また, JSME 規格で規定される材料の日本工業規格 (JIS 規格) 年度指定は,技術的妥当性の範囲において	材料調達性の観点から考慮しない場合もある。
さらに、JSME 規格に記載のない非金属材料(耐圧ホース,ポリエチレン管等)については、現場の作業環 境等から採用を継続する必要があるが、これらの機器等については、日本工業規格(JIS 規格)や日本水道協 会規格(JWWA 規格)、製品の試験データ等を用いて設計を行う。 (以下、省略)	材料調達性の観点から考慮しない場合もある。	さらに, JSME 規格に記載のない非金属材料 (耐圧ホース, ポリエチレ
境等から採用を継続する必要があるが,これらの機器等については,日本 <u>工業</u> 規格(JIS 規格)や日本水道協 会規格 (JWWA 規格),製品の試験データ等を用いて設計を行う。 (以下、省略)	さらに, JSME 規格に記載のない非金属材料(耐圧ホース,ポリエチレン管等)については,現場の作業環	境等から採用を継続する必要があるが、これらの機器等については、日本
会規格(JWWA 規格),製品の試験データ等を用いて設計を行う。 (以下、省略)	境等から採用を継続する必要があるが、これらの機器等については、日本工業規格(JIS 規格)や日本水道協	会規格 (JWWA 規格), 製品の試験データ等を用いて設計を行う。
(以下、省略)	会規格 (JWWA 規格), 製品の試験データ等を用いて設計を行う。	
(以下、省略)		(以下、省略)
	(以下、省略)	

	変	更	理	由
	記載	もの 適	正化	
添付資料-11				
ション海珈士ス				
キャー・中世に 9 る。				
技術基準に関する規則(平成 25 年 6 当するクラス 3 機器に準ずるものと				
設規格(JSME 規格)」(以下,「JSME				
した工業用品の採用,またはこれら				
定は、技術的妥当性の範囲において				
ン管等)については、現場の作業環				
<mark>産業</mark> 規格(JIS 規格)や日本水道協				

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.16.2 増設多核種除去設備)

変更前	変 更 後
2.16.2 増設多核種除去設備	2.16.2 増設多核種除去設備
(中略)	(中略)
添付資料-3	
増設多核種除去設備の耐震性に関する計算書	増設多核種除去設備の耐震性に関する計算
別紙-2	
耐震クラスの設定について	耐震クラスの設定について
増設多核種除去設備を構成する機器のうち放射性物質を内包するものは、2021年9月8日の原子力規制委 員会で示された耐震設計の考え方を踏まえ、その安全機能の重要度、地震によって機能の喪失を起こした場 合の安全上の影響(公衆への被ばく影響)や廃炉活動への影響等を考慮した上で、核燃料物質を非密封で扱 う燃料加工施設や使用施設等における耐震クラス分類を参考にして適切な耐震設計上の区分を行うととも に、適切と考えられる設計用地震力に耐えられる設計とする。 本資料では、上記の方針に基づく耐震クラスの設定について記載する。 ただし、本資料に記載が無い、2021年9月8日以前に認可された機器については、「発電用原子炉施設に関 する耐震設計審査指針」を参考にして耐震クラスを分類している。	増設多核種除去設備を構成する機器のうち放射性物質を内包するものは 員会で示された耐震設計の考え方を踏まえ、その安全機能の重要度、地震 合の安全上の影響(公衆への被ばく影響)や廃炉活動への影響等を考慮し う燃料加工施設や使用施設等における耐震クラス分類を参考にして適切な に、適切と考えられる設計用地震力に耐えられる設計とする。 本資料では、上記の方針に基づく耐震クラスの設定について記載する。 ただし、本資料に記載が無い、2021年9月8日以前に認可された機器に 関する耐震設計審査指針」を参考にして耐震クラスを分類している。
 1. B+クラスに設定する設備 カ象設備 反応/凝集構, 沈殿構, 上澄み水タンク, スラリー循環ボンプ, 上澄み水ポンプ, 反応/凝集, 沈 殿槽スキッド, 上澄み水タンクスキッド, 凝集沈殿ボンプスキッドおよび これらに接続する主配管。 定の理由 破損シナリオ 地震により安全機能を失った際の公衆への被ばく影響を評価するため, 増設多核種除去設備の各機 器が破損して内包する液体放射性物質が漏えいすることを想定する。なお, 破損を想定する各機器に b. 影響評価 敷地境界線量評価の対象としている機器に設置している進へい等(各タンクの厚さ含む)が消失することを想定し、これにより放射線量が増大する影響を簡易的に評価した結果, 最寄りの敷地境界 (評価点 No.70)の線量は年間 1.36mSv 程度になると評価した。 なお, 敷地境界線量評価の対象としている機器は、処理水受入タンク, 共沈供給タンクスキッド, クロスフローフィルタスキッド, 吸着塔, HIC (スラリー用及び吸着材用), 反応/凝集構, 沈殿 構, 上澄み水タンクであり、これらの鉄速へいが 5cm 消失することで線量が 10 倍になると設定して 評価した。 また,各機器の破損により漏出した放射性物質を最寄りの敷地境界にいる公衆が吸引することによ り、0.08mSv 程度の線量影響が有ると評価した。(ま1参照) なお、1 年の間に線源の除去もしくは遮へいによる線量低減は十分可能であること,安全機能を失 うな地震が発生したとしても、機器が全て破損することは無いと想定されることから、評価シナ リオは保守性を有している。 (計画Sv 程度であり 50 µ Sv~5mSv の範囲であること, 報表 報告、受賞ない 20 (1 - 1.4 m Sv 程度であり 50 µ Sv~5mSv の範囲であること, 報表 報告、「一日の報告、「登録」 	 1. B+クラスに設定する設備 (1)対象設備 反応/凝集槽,沈殿槽,上澄み水タンク,スラリー循環ボンプ, 殿槽スキッド,上澄み水タンクスキッド,凝集沈殿ボンプスキッド (2)設定の理由 a.破損シナリオ 地震により安全機能を失った際の公衆への被ばく影響を評価す。 機器が破損して内包する液体放射性物質が漏えいすることを想定 器には、(1)対象設備に加えて、2021年9月8日以前に認可され b.影響評価 敷地境界線量評価の対象としている機器に設置している遮蔽等 ることを想定し、これにより放射線量が増大する影響を簡易的に計 (評価点 No.70)の線量は年間1.36mSv 程度になると評価した。 なお、敷地境界線量評価の対象としている機器は、処理水受入ま ド、クロスフローフィルタスキッド、吸着塔、HIC(スラリー) 沈殿槽,上澄み水タンクであり、これらの鉄遮蔽が5cm消失する、 て評価した。 また、各機器の破損により漏出した放射性物質を最寄りの敷地見より、0.22mSv 程度の線量影響が有ると評価した(表1参照)。 なお、1年の間に線源の除去もしくは遮蔽による線量低減は十分ような地震が発生したとしても、機器が全て破損することは無い リオは保守性を有している。 c.耐震クラス 破損シナリオによる公衆への被ばく影響は1.58mSv 程度であり 増設多核種除去設備は供用期間が長期間であることから、耐震ク

	変	更	理	由
添付資料— 3 5計算書 別紙— 2				
のは,2021年9月8日の原子力規制委 地震によって機能の喪失を起こした場 慮した上で,核燃料物質を非密封で扱 切な耐震設計上の区分を行うととも				
る。 送器については, 「発電用原子炉施設に				
√プ,上澄み水ポンプ,反応/凝集・沈 ・ッド <mark>及び</mark> これらに接続する主配管。	記載	成の適	正化	
価するため,増設多核種除去設備の各 想定する。なお,破損を想定する各機 可された機器を含む。				
<u>厳</u> 等(各タンクの厚さ含む)が消失す 的に評価した結果,最寄りの敷地境界 こ。 受入タンク,共沈供給タンクスキッ リー用及び吸着材用),反応/凝集槽, することで線量が 10 倍になると設定し				
敷地境界にいる公衆が吸引することに よ十分可能であること,安全機能を失う 無いと想定されることから,評価シナ	気	や 条 評 の ダ 価 値	‡の変 「 して で で 変	更メ伴更
あり 50μSv~5mSv の範囲であること, 震クラスはB+クラスと評価する。				

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.16.2 増設多核種除去設備)

		2	と 更 前	
表1 漏出し	た放り	村性物質を	を公衆が吸引	した場合の線量簡易評価
項目	記号	単位	値	備考
放射性物質量	MAR	Bq	4.10E+14	実施計画記載の敷地境界線 量評価条件より設定。核種 は Sr-90 <u>。</u>
MAR のうち事故の影響を受ける割 合	DR	_	1	全機器が損傷するとして保 守側に設定
雰囲気中に放出され浮遊する割合	ARF	_	5.00E-05	出典 ^{※1} より
肺に吸入され得る微粒子の割合	RF	_	1	知見となるデータが無いた め保守側に設定
環境中へ漏れ出る割合	LPF	_	1	機器・建物の損傷の程度を 考慮せず保守側に設定
五因子法 ^{※2} による放射性物質放出 量	ST	Bq	2.05E+10	MAR $ imes$ DR $ imes$ ARF $ imes$ RF $ imes$ LPF
一般公衆の呼吸率	Ma	m³/s	2.57E-04	出典 ^{※3} より 2.22E+07cm ³ /日 を換算
実効線量 <u>換算</u> 係数	Н	mSv/Bq	<u>7. 7E–05</u>	出典 ^{※4} より Sr-90 の値
発電用原子炉施設の安全解析に関 する気象指針による相対濃度	χ /Q	s/m ³	<u>1.95E-04</u>	大気安定度:D,風速 <u>3.1</u> m/s,敷地境界まで 440m
公衆が漏出した放射性物質を吸引 することによる内部被ばく線量	Di	mSv	<u>7.91E-02</u>	ST × (χ /Q) × Ma × H

₩ 1 : U.S. Department of Energy, AIRBORNE RELEASE FRACTIONS/RATES AND RESPIRABLE FRACTIONS FOR NONREACTOR NUCLEAR FACILITIES, Volume I - Analysis of Experimental Data, DOE-HDBK-3010-94 December 1994

※2:五因子法とは、核燃料サイクル施設の事故解析ハンドブック(NUREG/CR-6410)に記載された簡易的に放射 性物質の放出量を評価する手法である。

※3:発電用軽水型原子炉施設周辺の線量目標に対する評価指針

※4:核原料物質又は核燃料物質の精錬の事業に関する規則等の規定に基づく線量限度等を定める告示

(以下、省略)

変更後						変更理由
表1 漏出し	た放射	村性物質を 	と公衆が吸引	した場合の線量簡易評価		
項目	記号	単位	值	備考		
				実施計画記載の敷地境界線		
放射性物質量	MAR	Bq	4.10E+14	量評価条件より設定。核種		
				は Sr-90		記載の適正化
MAR のうち事故の影響を受ける割	DR	_	1	全機器が損傷するとして保		
合	DI		1	守側に設定		
雰囲気中に放出され浮遊する割合	ARF	-	5.00E-05	出典 ^{**1} より		
肺に吸入され得る微粒子の割合	DE		1	知見となるデータが無いた		
別に吸入され待る版粒子の割日	КΓ		1	め保守側に設定		
	LDE		1	機器・建物の損傷の程度を		
東現中へ禰和田る割合 	LPF	_	1	考慮せず保守側に設定		
五因子法 ^{※2} による放射性物質放出	ст	Pa	2 055+10			
量	51	рd	2.03E+10	$MAK \wedge DK \wedge AKF \wedge KF \wedge LFF$		
血い血の咳吸す	M-	3 ,	9 E7E 04	出典 ^{※ 3} より 2.22E+07cm ³ /日		
一版公录60呼吸率	ма	m/s	2.57E-04	を換算		
実効線量係数	Н	mSv/Bq	<u>1.6E-04</u>	出典 ^{※4} より Sr-90 の値		出典変更に伴う
惑電田原乙烷拡乳の広会観托に開				大気安定度:D ^{**5} ,風速		評価パラメータ
一 発电用原于炉池設の女生時付に関 よったの性的によっておいた。	χ/Q	s/m^3	<u>2.63E-04</u>	<u>2.3</u> m/s ^{※5} ,敷地境界まで		の変更
する気象指針による相対濃度				440m		気象条件の変更
公衆が漏出した放射性物質を吸引	р.	0	0.005.01			に伴う相対濃度
することによる内部被ばく線量	D1	mSv	<u>2.22E-01</u>	ST × (χ /Q) × Ma × H		及び被ばく線量
₩1 : U.S. Department of Energy,	AIRBO	RNE RELEA	SE FRACTION	S/RATES AND RESPIRABLE FRACT	IONS FOR	の変更
NONREACTOR NUCLEAR FACILITIES, Vo	lume	I - Analy	sis of Expe	rimental Data, DOE-HDBK-3010	94 December	
1994						
※2:五因子法とは、核燃料サイク	ル施設	の事故解核	斤ハンドブッ	ク(NUREG/CR-6410)に記載され	れた簡易的に放射	
性物質の放出量を評価する手法である	3.					
※3:発電用軽水型原子炉施設周辺の	の線量	目標に対す	する評価指針			
₩4 : ICRP Publication 72:Age-dep	oenden	t Doses t	o Members o	f the Public from Intake of	-	出典の変更
Radionuclides;Part 5 Complitation	n of In	ngestion	and Inhalat	ion Dose Coefficients,1996		
※5:2020年4月~2021年3月の	気象テ	ータから	設定			気象データの明
						確化
(以下、省略)						

変更前	変更後	変更理由
2.17 放射性固体廃棄物等の管理施設及び関連施設(雑固体廃棄物焼却設備)	2.17 放射性固体廃棄物等の管理施設及び関連施設(雑固体廃棄物焼却設備)	
(中略)	(中略)	
添付資料-5 <u>排気中の放射性物質濃度に係る説明書</u> (中略)	添付資料-5 <u>排気中の放射性物質濃度に係る説明書</u> (中略)	
添付資料-5 別添 <u>雑固体廃棄物焼却設備自動停止時の放出評価</u>	添付資料-5 別添 <u>雑固体廃棄物焼却設備自動停止時の放出評価</u>	
 自動停止時の放出評価方法の考え方 雑固体廃棄物焼却設備は、モニタリング設備にて排気中の放射性物質の濃度を監視しており、定められた値 を上回った場合は自動停止する設計としているが、焼却設備が停止する際には、炉内に残存している未燃物 (通常運転1時間分)の焼却が完了するまで、排ガスは発生し続ける。 本評価では自動停止に至る事象として、2系統同時に排ガスフィルタ5台中の1台が何らかの不具合によ り破損した場合で、雑固体廃棄物焼却設備が自動停止するものの、未燃物の焼却が完了するまでの期間に、破 損した排ガスフィルタから漏出し続けたケースで評価する。なお、運用開始後に当該事象が発生した場合は、 異常のある排ガスフィルタの前後ダンパを閉じる措置を講じて、フィルタを介して放出する状態に復帰させ る。 	 自動停止時の放出評価方法の考え方 雑固体廃棄物焼却設備は、モニタリング設備にて排気中の放射性物質の濃度を監視しており、定められた値 を上回った場合は自動停止する設計としているが、焼却設備が停止する際には、炉内に残存している未燃物 (通常運転1時間分)の焼却が完了するまで、排ガスは発生し続ける。 本評価では自動停止に至る事象として、2系統同時に排ガスフィルタ5台中の1台が何らかの不具合によ り破損した場合で、雑固体廃棄物焼却設備が自動停止するものの、未燃物の焼却が完了するまでの期間に、破 損した排ガスフィルタから漏出し続けたケースで評価する。なお、運用開始後に当該事象が発生した場合は、 異常のある排ガスフィルタの前後ダンパを閉じる措置を講じて、フィルタを介して放出する状態に復帰させ る。 	
2. 廃棄物の放射能濃度 雑固体廃棄物の放射能濃度は,添付資料-5 表-1を参照。	2. 廃棄物の放射能濃度 雑固体廃棄物の放射能濃度は,添付資料-5 表-1を参照。	
 排気中の放射性物質濃度 焼却炉の処理能力,除染係数の考え方は添付資料-5と同様とするが,排ガスフィルタについては5台中の 1台が何らかの不具合により破損しており,除染性能が全く発揮できないとする。また,自動停止後の炉内に 残存している未燃物は1時間で焼却完了するものとし,排ガス流量は不具合前後で変わらないと仮定する。 なお,周辺監視区域外の空気中の放射性物質濃度の評価においては,告示に定める濃度限度と比較するため, 排ガスフィルタから漏出した状態で連続放出した場合を想定する。 計算地点は、1.2号機共用排気筒を中心として16方位に分割した陸側9方位の敷地境界外について行う。 上記条件で計算した結果、周辺監視区域外 における空気中の放射性物質濃度は,告示に定める濃度限度を下 回り,各核種の告示濃度限度に対する割合の和が1未満となっている。 	 非気中の放射性物質濃度 焼却炉の処理能力,除染係数の考え方は添付資料-5と同様とするが,排ガスフィルタについては5台中の 1台が何らかの不具合により破損しており,除染性能が全く発揮できないとする。また,自動停止後の炉内に 残存している未燃物は1時間で焼却完了するものとし,排ガス流量は不具合前後で変わらないと仮定する。 なお、敷地境界の空気中の放射性物質濃度の評価においては,告示に定める濃度限度と比較するため,排ガ スフィルタから漏出した状態で連続放出した場合を想定する。 <u>気象条件及び計算地点は、「Ⅲ特定原子力施設の保安 第3編2.2線量評価」に示したものと同じとした。</u> 上記条件で計算した結果、<u>敷地境界</u>における空気中の放射性物質濃度は,告示に定める濃度限度を下回り, 各核種の告示濃度限度に対する割合の和が1未満となっている。 	記載の適正化 気象条件の変更 及び計算地点の 明確化 記載の適正化

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章2.17 放射性固体廃棄物等の管理施設及び関連施設(雑固体廃棄物焼却設備))

変	更	後	
叉	X		

4

 (Bq/cm^3)

176249

2.7E-06

1.3E-08

7.5E-06

1.1E-07

6.7E-04

9.5E-11

2.5E-05

1.4E-08

2.4E-05

1.3E-29

2.3E-04

1.7E-23

6.4E-04

1.1E-21

1.8E-08

1.6E-03

 $\overline{5}$

 (Bq/cm^3)

_

<u>1.4E-10</u>

<u>6. 7E-13</u>

<u>3.9E-10</u>

<u>5.7E-12</u>

<u>3.5E-08</u>

<u>5.0E-15</u>

<u>1.3E-09</u> 7.5E-13

<u>1.2E-09</u>

<u>6.7E-34</u>

1.2E-08

<u>8.9E-28</u>

3.3E-08

<u>5.7E-26</u>

<u>9. 2E-13</u>

8.4E-08

A系列 廃棄物 1 → 焼却炉 → パグフィルタ → 椰ガスフィルタ 3 椰ガスブロア

 $\langle 3 \rangle$

 (Bq/cm^3)

20810

1.2E-05

5.5E-08

3.2E-05

4.6E-07

2.9E-03

4.0E-10

1.1E-04

6.1E-08

1.0E-04

5.5E-29

9.8E-04

7.2E-23

2.7E-03

4.6E-21

7.5E-08

6.8E-03

 $\langle 1 \rangle$

(Bq/kg)

_

4.0E+04

1.9E+02

1.1E+05

1.6E+03

9.9E+06

1.4E+00

3.7E+05

2.1E+02

3.5E+05

3.8E-21

3.4E+06

2.5E-13

9.4E+06

1.6E-11

2.6E+02

2.4E+07

流体 番号

流量

 (m^3/h)

Mn-54

Co-58

Co-60

Sr-89

Sr-90

Ru-103

Ru-106

Sb-124

Sb-125

I-131

Cs-134

Cs-136

Cs-137

Ba-140

 α 合計

				 B系列 建	屋空調	款地
					*111 ガスフィルタは	569中1合破損してい
流体			4	5	告示濃度 限度	告示濃度障
番号	(Bq/kg)	(Bq/cm ³)	(Bq/cm^3)	(Bq/cm^3)	(Bq/cm^3)	割合
流量 (m ³ /h)	_	20810	176249	_		_
Mn-54	4.0E+04	1.2E-05	2.7E-06	<u>1.3E-10</u>	8.0E-05	<u>1.6E-06</u>
Co-58	1.9E+02	5.5E-08	1.3E-08	<u>6. 1E-13</u>	6.0E-05	<u>1.0E-08</u> <
Co-60	1.1E+05	3.2E-05	7.5E-06	<u>3.5E-10</u>	4.0E-06	<u>8.8E-05</u>
Sr-89	1.6E+03	4.6E-07	1.1E-07	<u>5. 1E-12</u>	2.0E-05	<u>2.5E-07</u> <
Sr-90	9.9E+06	2.9E-03	6.7E-04	<u>3.2E-08</u>	8.0E-07	<u>3.9E-02</u>
Ru-103	1.4E+00	4.0E-10	9.5E-11	<u>4.5E-15</u>	4.0E-05	<u>1.1E-10</u> <
Ru-106	3.7E+05	1.1E-04	2.5E-05	<u>1.2E-09</u>	2.0E-06	<u>5.9E-04</u>
Sb-124	2.1E+02	6.1E-08	1.4E-08	<u>6. 7E-13</u>	2.0E-05	<u>3.3E-08</u> <
Sb-125	3.5E+05	1.0E-04	2.4E-05	<u>1.1E-09</u>	3.0E-05	<u>3.7E-05</u> <
I-131	3.8E-21	5.5E-29	1.3E-29	<u>6. 1E-34</u>	5.0E-06	<u>1.2E-28</u> <
Cs-134	3.4E+06	9.8E-04	2.3E-04	<u>1.1E-08</u>	2.0E-05	<u>5.4E-04</u>
Cs-136	2.5E-13	7.2E-23	1.7E-23	<u>8.0E-28</u>	1.0E-04	<u>8.0E-24</u>
Cs-137	9.4E+06	2.7E-03	6.4E-04	<u>3.0E-08</u>	3.0E-05	<u>1.0E-03</u>
Ba-140	1.6E-11	4.6E-21	1.1E-21	<u>5. 1E-26</u>	1.0E-04	<u>5.1E-22</u> <
α	2.6E+02	7.5E-08	1.8E-08	<u>8. 3E-13</u>	3.0E-09	<u>2.8E−04</u> ≤
合計	2.4E+07	6.8E-03	1.6E-03	7.5E-08	—	4.2E-02<

評価点 2 については, 添付資料

図-1 自動停止時における排気中の放射性物

評価点
2 については、添付資料-5 図1と同様なので省略する。

図-1 自動停止時における排気中の放射性物質濃度

				変	更	理	由
17 1	★掛気筒	-{4} → >{	5>				
 B 系列	32-2-2-33	敷地均	意界				
0 /10 /1	*1975カスフィル	ックは 5台中1台破壊してい	v a .				
	生示濃度	生示濃度限					
\rangle	限度	ロ 小 振 反 欣 唐 に 対 す ろ					
m ³)	(Ba/cm^3)	割合					
,							
	_	—					
-10	8.0E-05	<u>1.8E-06<1</u>		気象	 泉条作	中の変	変更
-13	6.0E-05	<u>1.1E-08<1</u>		に伴	≦う方	女射性	主物
-10	4.0E-06	<u>9.8E-05<1</u>		質濃	虔等	の変	更
-12	2.0E-05	<u>2.8E-07<1</u>					
-08	8.0E-07	<u>4.4E-02<1</u>					
-15	4.0E-05	<u>1.2E-10<1</u>					
-09	2.0E-06	<u>6.6E-04<1</u>					
-13	2.0E-05	<u>3.7E-08<1</u>					
-09	3.0E-05	<u>4.1E-05<1</u>					
-34	5.0E-06	<u>1.3E-28<1</u>					
-08	2.0E-05	<u>6.0E-04<1</u>					
-28	1.0E-04	<u>8.9E-24<1</u>					
-08	3.0E-05	<u>1.1E-03<1</u>					
-26	1.0E-04	<u>5.7E-22<1</u>					
-13	3.0E-09	<u>3.1E-04<1</u>					
-08	—	<u>4.7E-02<1</u>					
†資料−	5 図1と同様	なので省略する。					
射性物	物質濃度						

変更前	変更後
2.27 5・6号機 燃料プール冷却浄化系	2.27 5・6号機 燃料プール冷却浄化系
(中略)	(中略)
添付資料-4	
5.6	5.6 号機 補継冷却流水でに反て 十亜な機関 構造論
3・0万城 桶城市却海小ボに体る, 土安な城船, 悟垣强度及び順展性について	3・0万陵 袖陵田辺海小市に体る, 土安な成品, 博坦地
(中略)	(中略)
2. 構造強度及び耐震性(5 · 6 号機共通)	 構造強度及び耐震性(5・6号機共通)
(1)構造強度の評価	(1)構造強度の評価
(中略)	(中略)
配官は、 米杭の温度、 圧力を 与慮し「日本 <u>上来</u> 規格」を 準拠した 11 様と りる。 焼 今秋 に ついてけ、 電気 2 後、 変なの計 (またたい、 左音な) 足らい みび (また) (時に 用 営 がない こした (たお)	配官は、米税の温度、圧力を考慮し「日本 <u>産業</u> 税格」を準拠した仕様で 使会性については、電災後、変体の封定にたたい、支きな混らいみび
健主性については、	健主性については、展火後、示抗の試運転を11い、有息な痛んい及び調
しいる。 いたのことから配筒け、必要な構造論度を有するたのと評価している	しいる。 いたのことから配答け、必要な構造論度を有するたのと評価している。
以上のことが9511日は、必要な構造法及を行するものと計画している。	以上のことがら配目は、必要な構造強度を有するものと計画している。
(以下,省略)	(以下,省略)

	変	更	理	由
	記載	載の適	正化	
添付資料-4				
度及び耐震性について				
する。				
転状態に異常かないことを確認し				

		福島第-	一原子力発	電所 特定原于	子力施設に係る第	E施計画変更比較 表	長(第Ⅱ章2.3	1 5・6号	機構内用輸	<u> 送容器)</u>
		変更前							変更後	
2.31 5・6号機 (中略)	構内用輸送容器					2.31 5・6号機(中略)	構内用輸送容器	2		
					添付資料-1					
	6 号機漏えい燃料取り	出しに用いる構成	可用輸送容器	器について			6 号機漏え	い燃料取り	出しに用いる構	内用輸送容
(中略)						(中略)				
3.6 構内用輸送容 (中略)	緊器の落下評価					3.6 構内用輸送容 (中略)	器の落下評価			
 3.6.2 線量当量の 敷地境界外におい として計算する。た の主蒸気管破断(± (中略) 	戸評価 ける実効線量は,次に述べる なお,実効線量の評価式中の 地上放出) <u>の</u> 値を適用する(内部被ばくによる 相対濃度χ/Q及 (表3.6-3)。	っ実効線量及 とび相対線量	なび外部被ばくに。 遣D/Qは, <u>設置</u> 言	よる実効線量の和 <u>許可申請書</u> に記載	 3.6.2 線量当量の 敷地境界外におい として計算する。7 器・格納容器注水調 る(表3.6-3)。 (中略) 	評価 する実効線量は, なお,実効線量の <mark>没備添付資料 5 別</mark>	次に述べるP D評価式中の <mark>J紙 1」</mark> に記載	^内 部被ばくによ 相対濃度χ/Q 載の主蒸気管破	る実効線量 }及び相対約 断(地上放
	表3 6-3 6号機の相応	対濃度(γ / Ω)	及7%相対結	∃最(D/O)			表 3 6 - 3	6 号機の相対	は濃度(~/〇、) 及7%相対
	相対濃度	$4 1 \times 10^{-5}$	s/m ³				和対濃	度	$\frac{4.3 \times 10^{-1}}{4.3 \times 10^{-1}}$	$\frac{1}{5}$ s/m ³
	相対線量	4.0×10^{-19}	Gy/Bq				相対線	企 量	4.9×10^{-19}	Gy/Bq
(中略)				_		(中略)				
	表3.6-4 構	内用輸送容器の落	下時の実効	線量	_		表3.	6-4 構成	内用輸送容器の落	落下時の実
		小児		成人	_			,	小児	
よう素の y 線によ	:る実効線量 <u>7.8</u> >	$\times 10^{-4}$ mSv	<u>1.5</u>	$\times 10^{-3}$ mSv	_	よう素のγ線によ	る実効線量	<u>8.2</u> ×	(10 ⁻⁴ mSv	<u>1.</u>
希ガスのγ線によ	:る実効線量 <u>4.4</u> >	$\times 10^{-4}$ mSv	<u>4. 4</u>	$\times 10^{-4}$ mSv	_	希ガスのγ線によ	る実効線量	<u>5.4</u> ×	(10 ⁻⁴ mSv	<u>5.</u>
希ガスのβ線によ	:る実効線量 <u>1.6</u> >	$\times 10^{-3}$ mSv	<u>1.6</u>	$\times 10^{-3}$ mSv	_	希ガスのβ線によ	る実効線量	<u>1.7</u> ×	(10^{-3} mSv)	<u><u> </u></u>
美効緑重(合計)	<u>2.9</u> >	$\times 10^{-3}$ mSv	<u>3. 5</u>	$\times 10^{-3}$ mSv		美効線量(合計)		<u>3. 1</u> ×	10 ⁻³ mSv	<u>3.</u>
(以下、省略)						(以下、省略)				

	変更理由
添付資料−1 器について	
及び外部被ばくによる実効線量の和 泉量D/Qは, <u>「Ⅱ2.1 原子炉圧力容</u> 出) <u>と同じ条件で求めた</u> 値を適用す	気象条件の変更 に伴う記載の変 更
線量(D/Q) 	気象条件の変更 に伴うχ/Q, D/Qの変更
効線量 成人 $6 \times 10^{-3} \text{ mSv}$ $4 \times 10^{-4} \text{ mSv}$ $7 \times 10^{-3} \text{ mSv}$ $8 \times 10^{-3} \text{ mSv}$	気象条件の変更 に伴う実効線量 評価値の変更

2.33 5 5 - 6 5 % 数分钟常常依要素物必须系 2.33 5 - 6 6 % 数分钟常常在要素物必须系 2.33 1 5 - 6 6 % 数分钟常常在要素的必须系 2.33 1 5 - 6 6 % 数分钟常常在要素的必须系 2.33 1 5 - 6 6 % 数分钟常常在要素的必须不 2.33 1 5 - 6 6 % 数分钟常常在要素的必须不 2.33 1 5 - 6 6 % 数分钟常常在要素的必须不 2.33 1 5 - 6 6 % 数分钟常常在要素的必须不 2.33 1 5 - 6 6 % 数分钟常常在要素的必须不 2.33 1 5 - 6 6 % 数分钟常常常在要素的公式 2.35 1 5 - 6 6 % 数分钟常常常有效不 2.33 1 5 - 6 6 % 数分钟常常常有效的公式 2.35 1 5 - 6 6 % 数分钟常常在要素的公式 2.33 1 5 - 6 6 % 数分子 2.35 - 6 6 % 数分子 2.33 1 5 - 6 6 % 数分子 2.35 - 6 6 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 6 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 6 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 6 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 6 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 6 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 2.35 - 6 5 % 数分子 </th <th>変 更 前</th> <th>変更後</th>	変 更 前	変更後
(비球) (비城) 2.33.1.3 主教交機器 (日城) (日秋) (日城) (3.5 - 6 局機) (3.5 - 6 局機) (日秋) (日城) (日本) (日本)	2.33 5・6号機 放射性液体廃棄物処理系 2.33.1 5・6号機 既設設備	 2.33 5・6号機 放射性液体廃棄物処理系 2.33.1 5・6号機 既設設備
1.3.1.1.1 生要交機器 2.3.1.1.1 生要交機器 (中枢) (中枢) (10.5 - 6.9%共用 (中枢) (中枢) (中枢) (中枢) (中枢) (10.5 - 6.9%共用 (中枢) (10.5 - 6.9%共用 (日本) 5.2.0 / / / / / / / / / / / / / / / / / / /	(中略)	(中略)
(中略) (中略) (10) (10) (中略) (10) (10) </td <td>2.33.1.3 主要な機器</td> <td>2.33.1.3 主要な機器</td>	2.33.1.3 主要な機器	2.33.1.3 主要な機器
(3)5 - 6 号残果用 (3) 5 - 6 号残果用 (中略) (中格) 小市名 小方とカジャントンチャンチャンチャンチャンチャンチャンチャンチャンチャンチャンチャンチャンチャン	(中略)	(中略)
(中略) (中略) 1.5.0770-06-06-07-06-06-07-06-06-06-06-06-06-06-06-06-06-06-06-06-	(3)5・6号機共用	(3)5・6号機共用
b. b. d/ブレッションブール水サージタンク (記載の創除) ウブレッションブール水サージタンクについては、以下の工事計画変更認可申請者及び工事計画認可申請者 により適認している。 (記載の創除) 5 3機: 注酸時第.0回工事計画変更認可申請者(少夏行客,15000 号 昭和 50 年 3 月 10 目認の) (以下、省略) 6 3機: 注酸時第.7 回工事計画変更認可申請者(20 夏行客,9000 多 昭和 51 年 10 月 8 日認の) (以下、省略) (以下、省略) (以下、省略)	(中略)	(中略)
	 b. サブレッションブール水サージタンク サブレッションブール水サージタンクへいいては、以下の工事計画変更認可申請書及び工事計画認可申請書 により確認している。 5 号機:建設時第9回工事計画変更認可申請書(49 資庁第15900 号 昭和 50 年 3 月 10 日認可). 6 号機:建設時第7回工事計画変更認可申請書(51 資庁第9100 号 昭和 51 年 10 月 8 日認可). 6 号機:建設時第7回工事計画変更認可申請書(51 資庁第9100 号 昭和 51 年 10 月 8 日認可). (以下,省略) 	(以下,省略)

 変	更	理	由
サプ プタ 等	レッルオク 散	ッシ ×サ· 系統 Elect	ョー 記 半う
記載	削除		

変更前	変更後	変更理由
添付資料-2	添付資料-2	
6 号機 放射性液体廃棄物処理系の未復旧期間における廃液の処理について	6 号機 放射性液体廃棄物処理系の未復旧期間における廃液の処理について	
(中略)	(中略)	
(中略) また、復水貯蔵タンクの容量(5号機:2,500m [*] ,6号機:3,194m [*])に対して、震災以降、5・6号機共に概 ねタンクの半分程度の保管量で推移しており、廃液の回収には十分な余裕がある。 本お、廃液の貯留を目的に設置されている、サブレッションブール水サージタンクは、津波による損傷が著 しく使用できない状態にあるが、上記のとおり復水貯蔵タンクに回収できることから廃液の処理は問題ないと 考える。 (以下、省略)	 (中略) また、復水貯蔵タンクの容量(5号機:2,500m[*],6号機:3,194m[*])に対して、震災以降、5・6号機共に概 ねタンクの半分程度の保管量で推移しており、廃液の回収には十分な余裕がある。 (記載の削除) (以下、省略) 	サプレッション プール水手続け 等の撤去に伴う 記載削除

		変	更	理	由
	添付資料-4				
及備 及 水 略 ∧ 設備 下廃棄物処理系		サプタ 等 記	。 レンク 剤))))	ッシ 水 サ · 、 、 、 、 、 、 、 、 、 、 、 、 、	ョンジ 管 半う
 一:使用中の意 一:未後旧の意 (固体):放射性固体 	系統概要図				
·受タンカ ・キワードレン移送ポンプ シキワードレン移送ポンプ	図-1 5号機 放射性液体廃棄物処理系				
ジャワー ド フ ソ 米 (5・6 母縁共用) ^{シャワー ド} レ [∨]					

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(Ⅱ 2.33 5・6号機 放射性液体廃棄物処理系)

	変更理由
 ★★★★ ★★★ ★★★ ★★★ ★★ ★★ ★★ ★★★ ★★★ ★★★ ★★★ ★★ ★★★ ★★★ ★ ★	サプレッション プール水サージ タンク系統配管 等の撤去に伴う 記載削除
略単度後 施設がポンプ	

変更前	変更後
2.42 大型機器除染設備	2.42 大型機器除染設備
2.42.1 基本設計	2.42.1 基本設計
(中略)	(中略)
2.42.1.3 設計方針	2.42.1.3 設計方針
(中略)	(中略)
(2) 構造確度	(2) 構造強度
「ISMF S NC-1 発電田原子力設備相格 設計・建設相格」(以下 「設計・建設相格」という)に従うことを其	□ 「TSMF S NC-1 発雷田原子力設備相格 設計・建設相格」(以下 「設計・建
本力」とし、必要に応じて日本 <u>工業</u> 税俗く表面税俗に促りた政司とする。	本力到とし、必要に応じて日本 <u>産業</u> 税相て表面税相に促りた取引とする。
	(中略)
	2.42.1.7
大型機器际架設備を構成する機器のうら上部加圧タンク及び下部加圧タンクは、「美用発電用原子炉及びそ の料晶性調 の特徴状態に関わる規則(正式のこちの日度スト規制手具の規則体の目)。	大型機器味染設備を構成する機器のうら上部加圧タンク及び下部加圧タ
の附属施設の技術基準に関する規則(平成25年6月28日原十刀規制委員会規則第6号)」において、クラ	の附属施設の技術基準に関する規則(平成25年6月28日原子力規制会
ス3に位置付けられることから,設計・建設規格に準拠する。それ以外の機器については,日本 <u>上業</u> 規格,鍕	ス3に位置付けられることから,設計・建設規格に準拠する。それ以外の
構造設計基準に準拠する。	構造設計基準に準拠する。
(以下,省略)	(以下,省略)

	変	更	理	田
	記載	战の遃	i正化	
書設規格」という。)に従うことを基				
マンクけ 「実用発雷田原子恒及びそ				
をうね, (久) 紀福///パーズ 及びて 奏員会規則第6号)」において、クラ				
機器については、日本産業規格、鋼				

変 更 前	変更後
添付資料-4 <u>除染処理に係る廃棄物の性状及び発生量に関する説明書</u>	除染処理に係る廃棄物の性状及び発生量に関す
1. 性状について	1. 性状について
(中略)	(中略)
 3.2 規格・基準等 不活性材投入装置は、日本<u>産業</u>規格に準拠する。 	 3.2 規格・基準等 不活性材投入装置は、日本<u>産業</u>規格に準拠する。
(以下,省略)	(以下,省略)
添付資料-9 手動除染処理作業の方法について	手動除染処理作業の方法について
(中略)	(中略)
2. 作業員の被ばく低減	2. 作業員の被ばく低減
(中略)	(中略)
 (6) 規格・基準 手動除染装置は日本工業規格に準拠した設計を行う。また、汚染拡大防止ハウスは建築基準法に準拠した設計を行う。 	 (6) 規格・基準 手動除染装置は日本産業規格に準拠した設計を行う。また、汚染拡大防止 計を行う。
(以下,省略)	(以下,省略)
添付資料-13 主要配管の設計方針について	主要配管の設計方針について
1. 設計方針	1. 設計方針
(中略)	(中略)
 (2) 規格・基準等 主要配管は、日本<u>工業</u>規格に準拠する。 	 (2) 規格・基準等 主要配管は、日本<u>産業</u>規格に準拠する。
(以下,省略)	(以下,省略)

	変	更	理	由
添付資料-4	記載	の適	正化	
関する説明書				
添付資料-9				
<u>C</u>				
て防止ハウスは建築基準法に準拠した設				
添付資料-13				
変更前	変 更 後	変更理由		
---	---	---------		
2.44 放射性固体廃棄物等の管理施設及び関連施設(増設雑固体廃棄物焼却設備)	2.44 放射性固体廃棄物等の管理施設及び関連施設(増設雑固体廃棄物焼却設備)			
(中略)	(中略)			
添付資料-5	添付資料-5			
排気中の放射性物質濃度に係る説明書	排気中の放射性物質濃度に係る説明書			
(中略)	(中略)			
添付資料-5 別添	添付資料-5 別添			
増設雑固体廃棄物焼却設備自動停止時の放出評価	増設雑固体廃棄物焼却設備自動停止時の放出評価			
1. 自動停止時の放出評価方法の考え方	1. 自動停止時の放出評価方法の考え方			
増設雑固体廃棄物焼却設備は,モニタリング設備にて排気中の放射性物質の濃度を監視しており,定められ	増設雑固体廃棄物焼却設備は,モニタリング設備にて排気中の放射性物質の濃度を監視しており,定められ			
た値を上回った場合は自動停止する設計としているが, 焼却設備が停止する際には, 炉内に残存している未燃	た値を上回った場合は自動停止する設計としているが, 焼却設備が停止する際には, 炉内に残存している未燃			
物(通常運転1時間分)の焼却が完了するまで,排ガスは発生し続ける。	物(通常運転1時間分)の焼却が完了するまで,排ガスは発生し続ける。			
本評価では自動停止に至る事象として、一次排ガスフィルタと二次排ガスフィルタのいずれか4台中の1	本評価では自動停止に至る事象として、一次排ガスフィルタと二次排ガスフィルタのいずれか4台中の1			
台が何らかの不具合により破損した場合で,増設雑固体廃棄物焼却設備が自動停止するものの,未燃物の焼却	台が何らかの不具合により破損した場合で,増設雑固体廃棄物焼却設備が自動停止するものの,未燃物の焼却			
が完了するまでの期間に、破損した一次排ガスフィルタまたは二次排ガスフィルタから漏出し続けたケース	が完了するまでの期間に、破損した一次排ガスフィルタまたは二次排ガスフィルタから漏出し続けたケース			
で評価する。なお、運用開始後に当該事象が発生した場合は、異常のある排ガスフィルタの前後ダンパを閉じ	で評価する。なお、運用開始後に当該事象が発生した場合は、異常のある排ガスフィルタの前後ダンパを閉じ			
る措置を講じて、異常のないフィルタを介して放出する状態に復帰させる。	る措置を講じて、異常のないフィルタを介して放出する状態に復帰させる。			
2. 廃棄物の放射能濃度	2. 廃棄物の放射能濃度			
雑固体廃棄物の放射能濃度は、添付資料-5 表-1を参照。	雑固体廃棄物の放射能濃度は、添付資料-5 表-1を参照。			
2 排気中のお針州物産連度	2 排気中のお針州物産連度			
3. 伊风中の版剤性物員候及 椿却爆哭の処理能力 除洗底粉の考え方は活け溶料-5 と同様とするが 一次排ガスフィルタトニ次排ガス	5. 伊风中の原剤性物員候及 棒却爆哭の処理能力。除洗底粉の考え方は活け溶料-5.と同様とするが、一次排ガスフィルタと二次排ガス			
元本版語の定理能力, 赤来休飯のちた力は添竹貨料 ひと同様とするか, ()デスハノイルノと二()デスハ フィルタのいずれかん台中の1台が何らかの不目合に上り破損しており 除沈性能が全く登輝できたいとす	元本版語の定理能力, 赤来休飯のちん力は添付資料 ここ時保とするが, 氏時メスノイルノビニ氏時メス			
ス また 自動停止後の恒内に残存している未燃物け1時間で陸却完了するものとし、排ガス流量け不見合前	ス また 白動停止後の恒内に残存している未燃物け1時間で焼却完了するものとし、排ガス流量け不見合前			
後で変わらたいと仮定する	後で変わらたいと仮定する			
なくスネッシュ・こんとアン。 なお、周辺監視区域外の空気中の放射性物質濃度の評価においては、告示に定める濃度限度と比較するため、	なくスペンション こんと アン。 なお、 <u>軟地境界の</u> 空気中の放射性物質濃度の評価においては、告示に定める濃度限度と比較するため、排ガ	記載の適正化		
#ガスフィルタから漏出した状態で連続放出した場合を想定する。	スフィルタから漏出した状態で連続放出した場合を想定する。			
計算地点は、1・2号機共用排気筒を中心として16方位に分割した陸側9方位の敷地境界外について行う。	気象条件及び計算地点は、「Ⅲ特定原子力施設の保安 第3編2.2線量評価」に示したものと同じとした。	気象条件の変更		
上記条件で計算した結果、周辺監視区域外における空気中の放射性物質濃度は、告示に定める濃度限度を下	上記条件で計算した結果、敷地境界における空気中の放射性物質濃度は、告示に定める濃度限度を下回り、	及び計算地点の		
回り、各核種の告示濃度限度に対する割合の和が1未満となっている。	各核種の告示濃度限度に対する割合の和が1未満となっている。	明確化		
		記載の適正化		

			変 更	前								変更	後	
深葉物 (1)→機	期機器── バグフ・	 マルターの様 フィリ 一の様 フィリ マリ マリ マリ マリ 	★ガス ,カ ライルタ ★ガス ,タ 、二次辞か フィルタ フィルタ フィルタ	(ス ・ (ス ・ (ス ・ (ス ・ (ス ・ (ス ・ (本)・ (神力) (ス ・ (本)・ (神力) (ス ・ (本)・ (神力) (ス ・ (本)・ (神力) (ス ・)(本)・ (本)) (ス ・)(本) () (ス ・)(本)) () () () () () () () () () () () () (「スブロワ」→● 種屋空調 中の1 <i>台が</i> 何らかの干	≇気間 ● 5 →	> 1 <i>5</i> 7-	落美	物 1 考虑却	標業 → バグフィ	・ルター・ ・ ルター・ ・ ー 次課 ・ ー 次課 ・ ー 次部 ガスフィー	:ガス .タ :ガス .タ :ガス .タ :フィルタ フィルタ フィルタ フィルタ フィルタ フィルタ	12 (2) (2) イルタのいずれかも自	 ≱ 中
流体	$\langle 1 \rangle$	4	5	6	告示濃度	告示濃度			流体	\Diamond		5	6	Τ
番号	\sim		\sim	~	限度	限度に			番号	\sim		\sim	\sim	
	(Bq/kg)	(Bq/cm ³)	(Bq/cm ³)	(Bq/cm ³)	(Bq/cm ³)	対する割合				(Bq/kg)	(Bq/cm^3)	(Bq/cm ³)	(Bq/cm ³)	_
流量 (m³/h)	_	113841	371169	—	—	_			流量 (m³/h)		113841	371169	_	
Mn-54	3.4E+03	2.4E-08	7.3E-09	<u>7.6E-13</u>	8.0E-05	<u>9.5E-09<1</u>			Mn-54	3.4E+03	2.4E-08	7.3E-09	<u>1.2E-12</u>	
Co-58	1.6E+01	1.1E-10	3.4E-11	<u>3.6E-15</u>	6.0E-05	<u>5.9E-11<1</u>			Co-58	1.6E+01	1.1E-10	3.4E-11	<u>5.8E-15</u>	
Co-60	9.6E+03	6.7E-08	2.0E-08	<u>2.1E-12</u>	4.0E-06	<u>5.3E-07<1</u>			Со-60	9.6E+03	6.7E-08	2.0E-08	<u>3. 5E-12</u>	
Sr-89	1.3E+02	9.0E-10	2.8E-10	<u>2.9E-14</u>	2.0E-05	<u>1.4E-09<1</u>			Sr-89	1.3E+02	9.0E-10	2.8E-10	<u>4. 7E-14</u>	
Sr-90	8.4E+05	5.8E-06	1.8E-06	<u>1.9E-10</u>	8.0E-07	<u>2.3E-04<1</u>			Sr-90	8.4E+05	5.8E-06	1.8E-06	<u>3. 0E-10</u>	
Ru-103	1.2E-01	8.3E-13	2.6E-13	<u>2. 7E-17</u>	4.0E-05	<u>6.7E-13<1</u>			Ru-103	1.2E-01	8.3E-13	2.6E-13	<u>4. 3E-17</u>	
Ru-106	3.2E+04	2.2E-07	6.8E-08	<u>7.1E-12</u>	2.0E-06	<u>3.6E-06<1</u>			Ru-106	3.2E+04	2.2E-07	6.8E-08	<u>1.2E-11</u>	
Sb-124	1.7E+01	1.2E-10	3.6E-11	<u>3.8E-15</u>	2.0E-05	<u>1.9E-10<1</u>			Sb-124	1.7E+01	1.2E-10	3.6E-11	<u>6. 2E-15</u>	
Sb-125	3.0E+04	2.1E-07	6.4E-08	<u>6.7E-12</u>	3.0E-05	<u>2.2E-07<1</u>			Sb-125	3.0E+04	2.1E-07	6.4E-08	<u>1.1E-11</u>	
I-131	3.2E-22	1.1E-29	3.4E-30	<u>3.6E-34</u>	5.0E-06	<u>7.1E-29<1</u>			I-131	3.2E-22	1.1E-29	3.4E-30	<u>5.8E-34</u>	
Cs-134	2.9E+05	2.0E-06	6.2E-07	<u>6.5E-11</u>	2.0E-05	<u>3.2E-06<1</u>			Cs-134	2.9E+05	2.0E-06	6.2E-07	<u>1.0E-10</u>	
Cs-136	2.1E-14	1.5E-25	4.5E-26	<u>4. 7E-30</u>	1.0E-04	<u>4.7E-26<1</u>			Cs-136	2.1E-14	1.5E-25	4.5E-26	<u>7.6E-30</u>	
Cs-137	7.9E+05	5.5E-06	1.7E-06	<u>1.8E-10</u>	3.0E-05	<u>5.9E-06<1</u>			Cs-137	7.9E+05	5.5E-06	1.7E-06	<u>2.9E-10</u>	
Ba-140	1.4E-12	9.7E-24	3.0E-24	<u>3. 1E-28</u>	1.0E-04	<u>3.1E-24<1</u>			Ba-140	1.4E-12	9.7E-24	3.0E-24	<u>5. 1E-28</u>	1
α	2.2E+01	1.5E-10	4.7E-11	<u>4. 9E-15</u>	3.0E-09	<u>1.6E-06<1</u>			α	2.2E+01	1.5E-10	4.7E-11	<u>8. 0E-15</u>	
合計	2.0E+06	1.4E-05	4.3E-06	4.4E-10		2. 5E-04 < 1			合計	2. 0E+06	1.4E-05	4.3E-06	7.2E-10	T

評価点 2, 3 については, 添付資料-5 図1と同様なので省略する。

図-1 自動停止時における排気中の放射性物質濃度

図-1 自動停止時における排気中の放射性物質濃

3 については, 添付資料-5

評価点 2,

				変	更	理	由
1:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	₽ਗ਼ਗ਼ੑੑੑੑੑੑੑੑੑੑੑ	>				
		◇ ◇ ◇ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎					
	建屋空調						
¢	の18が何らかの干。	具合により破壊している。					
T	告示濃度	告示濃度					
	限度	限度に					
	(Bq/cm^3)	対する割合					
	· •						
	_	—					
İ	8.0E-05	<u>1.5E-08<1</u>		気象	き条件	‡の婆	変更
t	6.0E-05	<u>9.7E-11<1</u>		に肖	≤う方	友射性	生物
I	4.0E-06	<u>8.7E-07<1</u>		質濃	度等	の変	更
	2.0E-05	<u>2.4E-09<1</u>					
	8.0E-07	<u>3.8E-04<1</u>					
	4.0E-05	<u>1.1E-12<1</u>					
	2.0E-06	<u>5.8E-06<1</u>					
	2.0E-05	<u>3.1E-10<1</u>					
	3.0E-05	<u>3.6E-07<1</u>					
	5.0E-06	<u>1.2E-28<1</u>					
	2.0E-05	<u>5.2E-06<1</u>					
	1.0E-04	<u>7.6E-26<1</u>					
	3.0E-05	<u>9.5E-06<1</u>					
	1.0E-04	<u>5. 1E-24<1</u>					
	3.0E-09	<u>2.7E-06<1</u>					
		<u>4.0E-04<1</u>					
-[5 図1と同様	なので省略する。					
沂	~) 一 中						
Ę	侲皮						

変更前	変更後
 (放射性気体廃棄物の管理) 第89条 分析評価GMは,表89-1に定める項目について,同表に定める頻度で測定し,測定した結果を放出・環境モニタリングGMに通知する。また,放出・環境モニタリングGMは,次の事項を管理するとともに,その結果を放出実施GMに通知する。 (1)排気筒等からの放射性気体廃棄物の放出による周辺監視区域外の空気中の放射性物質濃度の3ヶ月平均値が,法令に定める周辺監視区域外における空気中の濃度限度を超えないこと。 (2)排気筒等からの放射性物質(希ガス,よう素131)の放出量が,表89-2に定める放出管理目標値を超えないように努めること。 2.放出実施GMは,放射性気体廃棄物を放出する場合は,排気筒等より放出し,排気筒モニタを監視する。 	 (放射性気体廃棄物の管理) 第89条 分析評価GMは,表89-1に定める項目について,同表に定める頻度で測定 出・環境モニタリングGMに通知する。また,放出・環境モニタリングGMは,ともに,その結果を放出実施GMに通知する。 (1)排気筒等からの放射性気体廃棄物の放出による周辺監視区域外の空気中の月平均値が,法令に定める周辺監視区域外における空気中の濃度限度を超 (2)排気筒等からの放射性物質(希ガス,よう素131)の放出量が,表89 目標値を超えないように努めること。 2.放出実施GMは,放射性気体廃棄物を放出する場合は,排気筒等より放出しする。
表89-1	表89-1

分 類	排気筒等	測定項目	計測器種類	測定頻度	放出実施 GM	
放射性 気体廃棄物	• 5 6 号 恒	希ガス濃度	排気筒モニタ	常時 (建屋換気空調系 運転時)		
	共用排気筒	よう素 131 濃度 粒子状物質濃度 (主要ガンマ線 放出核種)	試料放射能 測定装置	1週間に1回 (建屋換気空調系 運転時)	当直長	
	・焼却炉建屋 排気筒 ・増設焼却炉 建屋排気筒	・ 焼却炉建屋 粒子状物質濃度 試料放射能 ・ (主要ガンマ線 試料放射能 が出核種,全べ 測定装置 ・ (み放射能)		1週間に1回 (建屋換気空調系 運転時)	運用支援	
		ストロンチウム 90濃度	試料放射能 測定装置	3ヶ月に1回(建屋換気空調系 運転時)	GM	
	・減容処理設 備排気口	粒子状物質濃度 (主要ガンマ線 放出核種,全ベ ータ放射能)	試料放射能 測定装置	1週間に1回 (建屋換気空調系 運転時)	運用支援	
		ストロンチウム 90濃度	試料放射能 測定装置	3ヶ月に1回(建屋換気空調系 運転時)	GM	
	・固体廃棄物 貯蔵庫第9棟 排気口 ・固体廃棄物	粒子状物質濃度 (主要ガンマ線 放出核種,全ベ ータ放射能)	 試料放射能 測定装置 1週間に1回 (建屋換気空調系) 運転時) 		廃棄物対策	
	貯蔵庫第10 棟 排 気 □ (10-A/B, 10-C)	ストロンチウム 90濃度	試料放射能 測定装置	3ヶ月に1回 (建屋換気空調系 運転時)	フログラム 部長	

変更後								更	理	由
 (放射性気体廃棄物の管理) 第89条 分析評価GMは,表89-1に定める項目について,同表に定める頻度で測定し,測定した結果を放出・環境モニタリングGMに通知する。また,放出・環境モニタリングGMは,次の事項を管理するとともに,その結果を放出実施GMに通知する。 (1)排気筒等からの放射性気体廃棄物の放出による周辺監視区域外の空気中の放射性物質濃度の3ヶ月平均値が,法令に定める周辺監視区域外における空気中の濃度限度を超えないこと。 (2)排気筒等からの放射性物質(希ガス,よう素131)の放出量が,表89-2に定める放出管理目標値を超えないように努めること。 2.放出実施GMは,放射性気体廃棄物を放出する場合は,排気筒等より放出し,排気筒モニタを監視する。 										
分 類	排気筒等	測定項目	計測器種類	測定頻度	放出実施 GM					
	•5,6号炉·	希ガス濃度 ト 5 素 191 濃 産	排気筒モニタ	常時 (建屋換気空調系 運転時)	业毒目					
	共用排気筒	より素 131 濃度 粒子状物質濃度 (主要ガンマ線 放出核種)	試料放射能 測定装置	1週間に1回 (建屋換気空調系 運転時)	当進校					
	 ・焼却炉建屋 排気筒 ・増設焼却に 	粒子状物質濃度 (主要ガンマ線 放出核種,全ベ ータ放射能)	試料放射能 測定装置	1週間に1回 (建屋換気空調系 運転時)	運用支援 GM					
	建屋排気筒	ストロンチウム 90濃度	試料放射能 測定装置	3ヶ月に1回 (建屋換気空調系 運転時)	GW					
放射性 気体廃棄物 ・ ?	・減容処理設	粒子状物質濃度 (主要ガンマ線 放出核種,全ベ ータ放射能)	試料放射能 測定装置	1週間に1回 (建屋換気空調系 運転時)	運用支援 GM					
	7月17F×C口	ストロンチウム 90濃度	試料放射能 測定装置	3ヶ月に1回 GM \放射能 (建屋換気空調系) 運転時) 運転時)						
	 ・固体廃棄物 貯蔵庫第9棟 排気口 ・固体廃棄物 	粒子状物質濃度 (主要ガンマ線 放出核種,全ベ ータ放射能)	試料放射能 測定装置	1週間に1回 (建屋換気空調系 運転時)	廃棄物対策 プログラム					
	貯蔵庫第10 棟 排 気 口 (10-A/B, 10-C)	ストロンチウム 90濃度	試料放射能 測定装置	3ヶ月に1回 (建屋換気空調系 運転時)	部長					

変更前 変更後 表 8 9 - 2 表 8 9 - 2 項 目 項 目 放出管理目標値 放出管理目標値 放射性気体廃棄物 放射性気体廃棄物 <u>2. 8×10¹⁵</u> Bq∕年 <u>2. 4×10¹⁴</u> Bq∕年 希ガス 希ガス よう素 131 <u>1. 4×10¹¹</u> Bq/年 よう素 131 <u>8.4×10⁷</u> Bq/年 (中略) (中略)

		変	更	理	由
標準	気	象等	の変	更に	伴う放射 ^{管理日標}
值変到	更	元 木	120 0 2	ЛХЦ	

変更前	変更後
2.1.3 放射性気体廃棄物等の管理	2.1.3 放射性気体廃棄物等の管理
(中略)	(中略)
2.1.3.3 対象となる放射性廃棄物と管理方法	2.1.3.3 対象となる放射性廃棄物と管理方法
(中略)	(中略)
(2) 放出管理の方法	(2) 放出管理の方法
(中略)	(中略)
① 1~3 号機原子炉建屋格納容器	a. 1~3 号機原子炉建屋格納容器
(中略)	(中略)
② 1~4 号機原子炉建屋	<u>b.</u> 1~4 号機原子炉建屋
(中略)	(中略)
<u>③</u> 1~4 号機タービン建屋	<u>c.</u> 1~4 号機タービン建屋
(中略)。	(中略)
④ 1~4号機廃棄物処理建屋	d. 1~4 号機廃棄物処理建屋
(中略)	(中略)
<u>⑤</u> 集中廃棄物処理施設(プロセス主建屋,サイトバンカ建屋,高温焼却炉建屋,焼却・工作建屋)	<u>e.</u> 集中廃棄物処理施設(プロセス主建屋,サイトバンカ建屋,高温焼
(中略)	(中略)
<u>⑥</u> 5, 6 号機各建屋	<u>f.</u> 5, 6 号機各建屋
(中略)	(中略)
⑦ 使用済燃料共用プール	g. 使用済燃料共用プール
(中略)	(中略)
<u>⑧</u> 廃スラッジー時保管施設	<u>h.</u> 廃スラッジー時保管施設
(中略)	(中略)
<u>⑨</u> 焼却炉建屋	<u>i.</u> 焼却炉建屋
(中略)	(中略)
	<u>j.</u> 固体廃棄物貯蔵庫
(中略)	(中略)
① 瓦礫等の一時保管エリア	<u>k.</u> 瓦礫等の一時保管エリア
(中略)	(中略)
(12) 使用済セシウム吸着塔一時保管施設	<u>1.</u> 使用済セシウム吸着塔一時保管施設
(13) 貯留設備(タンク類,地下貯水槽)	<u>m.</u> 貯留設備(タンク類,地下貯水槽)
	<u>n.</u> 多核種除去設備等
	<u>p.</u> 御処埋装直 (中間)
	<u>q.</u> 天型廃業物保管庫 (中間)
(甲略)	(甲略)

生)				
	変	更	理	由
	記載	の適	正化	
却乍建屋を焼却・丁作建屋)				

	変更前		変 更 後
18 減容処理設備		<u>r.</u> 減容処理設備	
(中略)		(中略)	
(3) 推定放出量		(3) 推定放出量	

(3) 推定放出量

1~4 号機原子炉建屋(原子炉格納容器を含む)以外からの追加的放出は、極めて少ないと考えられるため、 1~4 号機原子炉建屋上部におけるサンプリング結果から検出されている Cs-134 及び Cs-137 を評価対象とし, 建屋開口部等における放射性物質濃度及び空気流量等の測定結果から、現在の1~4号機原子炉建屋からの放 出量を評価した。推定放出量(平成26年2月時点)は、表2.1.3-1に示す通りである。

なお、これまでの放出量の推移を図2.1.3-1に示す。

表2.1.3-1 気体廃棄物の推定放出量

	Cs-134 (Bq/sec)	Cs-137 (Bq/sec)
1号機 原子炉建屋	4.7×10^{2}	4. 7×10^2
2 号機 原子炉建屋	9.4×10^{1}	9. 4×10^{1}
3 号機 原子炉建屋	7.1×10^{2}	7. 1×10^2
4号機 原子炉建屋	1.2×10^2	1.2×10^{2}

(注) 平成 26 年 2 月時点の評価値

1号機 原子炉建屋	4.7×10^{1}
2 号機 原子炉建屋	9.4×10^{0}
3号機 原子炉建屋	$\overline{7.1 \times 10^1}$
4号機 原子炉建屋	$\underline{1.2 \times 10^1}$

	変更後			変更理由
<u>r.</u> 減容処理設備				記載の適正化
(中略)				
(3) 推定放出量				
1~4 号機原子炉建屋(原子炉	5格納容器を含む) 以外からの	追加的放出は、極めて少ないと	:考えられるため,	
1~4 号機原子炉建屋上部におけ	けるサンプリング結果から検出	されている Cs-134 及び Cs-137	′を評価対象とし,	
建屋開口部等における放射性物	の質濃度及び空気流量等の測定	を結果 <u>並びに停止後の経過年数</u> を	を考慮して評価し	気体廃棄物の放
た1~4号機原子炉建屋からの	<u>推定放出量を</u> 表2.1.3-1	しに示す。		出に関する現状
なお、これまでの放出量の推	移を図2.1.3-1に示す	0		反映に伴う記載
				の見直し
表2	2.1.3-1 <u>1~4 号機の</u> 気	気体廃棄物の推定放出量		
	Cs-134 (Bq/sec)	Cs-137 (Bq/sec)		
1 号機 原子炉建屋	4. 7×10^{1}	4. 7×10^2	_	気体廃棄物の放
	9. $4 \times 10^{\circ}$	9. 4×10^{1}	_	出に関する現状
3 号機 原子炉建屋	7.1×10^{1}	7.1×10^2	_	及 映に伴う 推定 故出量の 変更
	1.2×10^{1}	1.2×10^{2}	_	从田里抄及入
(注) C= 197 注 9014 年 9 日哇				
(任) <u>US=137 は 2014 平 2 月</u> 時	<u>泉の評価値と用してした。</u>			
12				
- 10 10				
(世 ¹⁰				
₹ 8				
$\overline{\gamma}$				
v 6				
) ()				
± 1				
		0.055		気体廃棄物の放
	0.1	0.055		出に関する現状
				反映のため期間
	19 19 19 19 19 19 19 19 19 19 19 19 19 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	è	及び集計対象の
1 ¹⁵⁰	×°° stroit str	o, oko, uko,		変更
101. JOL	Joy Joy	Por Por		
図 2 1 3	-1 1~4 号機原子炉建屋;	からの一時間当たりの放出量推	移	
⊠2.1.3	-1 1~ <u>4</u> 号機原子炉建屋;	からの一時間当たりの放出量推	移	
⊠2.1.3	-1 1~ <u>4</u> 号機原子炉建屋;	からの一時間当たりの放出量推	移	

変 更 前	変 更 後	変更理由
(現行記載なし)	一方, 5,6号機については, 2014年に廃止が決定しており, 今後, 放射性の希ガス・よう素の放出はなく	5・6 号機の推定
	放出実績についても 2012 年度以降は未検出である。なお、現在、使用済燃料プールに燃料が保管されてい	<u>6</u> 放出量の追加
	ため,放出管理目標値は,測定指針※の放射性希ガス,よう素131に係る測定下限濃度相当の放出が1年間	<u>*</u>
	<u>続したと仮定して求めた放出量とする。</u>	
	5,6号機各建屋では1~4号機で採取された試料の分析等が実施されていることから,1~4号機と同様にC	=
	134 及び Cs-137 を評価対象とし、5、6 号機共用排気筒の排気風量、検出限界値及び停止後の経過年数を考	
	して評価した推定放出量を表2.1.3-2 に示す。なお、停止後 5,6 号機共用排気筒の粒子状物質のサ	<u> </u>
	プリング結果は、図2.1.3-2に示すとおり、検出下限値未満で推移している。	
	上述の放出量については、5,6号機の施設の汚染状況の調査結果、解体工法及び手順についての検討結果	2
	<u>踏まえ,廃炉作業の進捗に伴う見直しを行う。</u>	
	※:「発電用軽水型原子炉施設における放出放射性物質の測定に関する指針」(平成13年3月29日原子力安全委員会) ま 0、1、0、0、5、6日地の気体(家家地の地方体)) 見*	
	<u>表2.1.3-2 5,6 </u> 5 機の 気体 廃 乗物の 推 足 放 田 重	
	$\frac{Cs-134 (Bq/sec)}{Cs-137 (Bq/sec)}$	
	5,6 号機共用排気筒 1.5×10 ⁰ 1.5×10 ¹	
	<u>*:推定放出量=推定放出濃度×排気筒風量</u>	
	推定放出濃度は、測定指針に記載された粒子状物質の測定下限濃度(4×10 ⁻⁹ Bq/cm ³)に安全係数(10)を乗じCs-13	
	濃度とした。Cs-134濃度は、事故後の減衰を考慮して Cs-137濃度の 1/10 を設定した。排気筒風量は、定格風量(安全)	
	Determinant of control curves 2 в к / 2 e r / 2 OCs-137 фШТ Г @ (1.0E-03 (a) (b) (c) (c) <td< th=""><th></th></td<>	
	1.0E-09 00 <td></td>	

変更前	変更後	変更理由
2.2 線量評価	2.2 線量評価	
(中略)	(中略)	
2.2.1 大気中に拡散する放射性物質に起因する実効線量	2.2.1 大気中に拡散する放射性物質に起因する実効線量	
(中略)	(中略)	
2.2.1.2 計算のための前提条件	2.2.1.2 計算のための前提条件	
(1) <u>気象条件</u>	(1) <u>気象条件の代表性の検討</u>	
大気拡散の解析に用いる気象条件は、福島第一原子力発電所原子炉設置変更許可申請書(6号原子炉施設	_ 敷地において観測した 2020 年 4 月から 2021 年 3 月までの 1 年間の気象資料により線量評価を行うに当	気象条件の変更
の変更)(平成 22 年 11 月 12 日付け,平成 19・04・19 原第 18 号にて設置変更許可)の添付書類六の記載と	り, 観測を行った1年間の気象状態が, 長期間の気象状態と比較して特に異常でないかどうかの検討を行	に伴う記載の変
同様とする。	<u>った。</u>	更
気象条件の採用に当たっては、風向出現頻度及び風速出現頻度について平成12年4月から平成22年3月	風向出現頻度及び風速出現頻度について,敷地内の標高 46m(地上高 10m)における 10 年間(欠測率の高い	
までの 10 年間の資料により検定を行い、代表性に問題ないことを確認した。検定法は、不良標本の棄却検	2010年4月~2011年3月の1年間を除く2009年4月~2020年3月)の資料により検定を行った。検定法	
定に関するF分布検定の手順に従った。	<u>は、不良標本の棄却検定に関するF分布検定の手順に従った。</u>	
<u>棄却検定の結果を表2.2.1-1及び表2.2.1-2に示す。有意水準5%で棄却された項目は28項</u>	_ その結果は、表2.2.1-1及び表2.2.1-2に示すとおりであり、有意水準5%で棄却されたも	
<u>目中2個であった。これは採用した気象条件が長期間の気象状況と比較して異常でないことを示しており、</u>	<u>のは27項目中1項目であった。</u>	
解析に用いる気象条件が妥当であることを示している。	これは線量評価に使用した観測期間の気象状態が長期間の気象状態と比較して特に異常でないことを示	
	しており、この期間の気象資料を用いて大気拡散の解析を行うことは妥当であることを示している。	
(現行記載なし)	(2)大気拡散の解析に使用する気象条件	
	敷地周辺に及ぼす影響を評価するに当っては、敷地内における 2020 年 4 月から 2021 年 3 月までの 1 年	気象条件の変更
	間の風向,風速及び大気安定度の観測資料から以下のパラメータを求め,これを用いる。	に伴う記載の追
	なお,風向,風速については,敷地内の地上付近の風を代表する標高 46m(地上高 10m)及び排気筒高さ付	加
	近の風を代表する標高 131m(地上高 95m)の風向,風速とする。	

	変更前	変更後
(現行記載なし)	変 更 前	変更後 a. 風向別大気安定度別風速逆数の総和及び平均 風向別大気安定度別風速逆数の総和及び平均は, (2-2-1) 式, (2- $S_{d,s} = \sum_{i=1}^{N} \frac{d_s \delta_i}{U_i}$

	変更理由
	気象条件の変更
·2-2) 式によりそれぞれ計算する。	に伴う記載の追
	加
(2-2-1) 式	
\dots $(2-2-2)$ =	
(2-2-2) 1	
.0	
・ (2-2-3) 式	
(2-2-4) 式	
回数は,静穏時の大気安定度別出現	
3.	
が, 欠測期間についても成り立つも	
. 2. 1-3及び表2. 2. 1-6	
を表2.2.1-4及び表2.2.	
2.2.1-5及び表2.2.1-	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

変更前	変更後	変更理由
(2) 放出源と有効高さ 放出源は各建屋からの排気であるが,「2.1.3 放射性気体廃棄物等の管理」で述べたとおり,1~4 号機の 原子炉建屋(原子炉格納容器を含む)以外からの放出は無視しうるため,放出位置は1~4 号機の原子炉建 屋とする。 有効高さについて,現在の推定放出位置は原子炉建屋オペレーティングフロア付近であるが,保守的に地 上放散とする。 地上放散の保守性については,以下のとおりである。 「気象指針」において,位置(x,y,z)における放射性物質濃度 $\chi(x,y,z)$ を求める基本拡散式を(2-2-1)式に示す。 $\chi(x,y,z) = \frac{Q}{2\pi\sigma_y\sigma_z U} \cdot \exp\left(-\lambda \frac{x}{U}\right) \cdot \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \cdot \left[\exp\left\{-\frac{(z-H)^2}{2\sigma_z^2}\right\} + \exp\left\{-\frac{(z+H)^2}{2\sigma_z^2}\right\}\right]$ (2-2-1)式	(3) 放出源は各建屋からの排気であるが、「2.1.3 放射性気体廃棄物等の管理」で述べたとおり、1~4 号機の 原子炉建屋(原子炉格納容器を含む)以外からの放出は無視しうるため、放出位置は 1~4 号機の原子炉建 屋とする。 有効高さについて、現在の推定放出位置は原子炉建屋オペレーティングフロア付近であるが、保守的に地 上放散とする。 地上放散の保守性については、以下のとおりである。 「気象指針」において、位置(x, y, z)における放射性物質濃度 $\chi(x, y, z)$ を求める基本拡散式を (2-2-5) 式 に示す。 $\chi(x, y, z) = \frac{Q}{2\pi\sigma_y\sigma_z U} \cdot \exp\left(-\lambda \frac{x}{U}\right) \cdot \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \cdot \left[\exp\left\{-\frac{(z-H)^2}{2\sigma_z^2}\right\} + \exp\left\{-\frac{(z+H)^2}{2\sigma_z^2}\right\}\right]$	記載の適正化
ここで、 $\chi(x, y, z)$:点 (x, y, z) における放射性物質の濃度 (Bq/m^3) ℓ :放出率 (Bq/s) U :放出源高さを代表する風速 $(m/s)\lambda :物理的崩壊定数(1/s)H$:放出源の有効高さ $(m)\sigma_y :濃度分布のy方向の拡がりのパラメータ(m)\sigma_z :濃度分布のz方向の拡がりのパラメータ(m)このとき、有効高さと同じ高度(z=H)の軸上で放射性物質濃度が最も濃くなる。被ばく評価地点は地L(z=0)$ であるため、地上放散が最も厳しい評価を与えることになる。	(2-2-5) 式 ここで、 $\chi(x,y,z): 点(x,y,z)における放射性物質の濃度 (Bq/m3) 放出源直下の地表を原点に、風下方向を x 軸、その直角方向を y 軸、鉛直 方向を z 軸とする Q : 放出率 (Bq/s)U$: 放出源高さを代表する風速 (m/s) λ : 物理的崩壊定数 (1/s) H : 放出源の有効高さ(m) G_y : 濃度分布の y 方向の拡がりのパラメータ (m) σ_z : 濃度分布の z 方向の拡がりのパラメータ (m) このとき、有効高さと同じ高度 (z=H) の軸上で放射性物質濃度が最も濃くなる。被ばく評価地点は地 L(z=0) であるため、地上放散が最も厳しい評価を与えることになる。	
 (3) 放出を考慮する核種 放射性物質の放出量は、原子炉建屋上部におけるサンプリング結果から想定しており、現時点では実際に 検出されている Cs-134 及び Cs-137 を評価対象とする。 Cs-134 及び Cs-137 以外の核種には、検出限界未満であることが確認されている核種だけではなく、測定 自体ができていないものもあるが、評価結果に大きな影響は与えないものと考えている。これら評価対象と しなかった核種の影響度合いについては、「2.2.1.8 Cs 以外の核種の影響について」で詳しく述べる。 (4)線量及び濃度計算地点 線量の計算は、図2.2.1-1に示すとおり、1、2号機共用排気筒を中心として 16 方位に分割した陸 側9 方位の敷地境界外について行う。ただし、これらの地点より大きな線量を受ける恐れのある地点が別に 陸側にある場合は、その地点も考慮する。 1、2号機共用排気筒から各評価点までの距離は、表2.2.1-3に示す。 	 (4) 放出を考慮する核種 放射性物質の放出量は、原子炉建屋上部におけるサンプリング結果から想定しており、現時点では実際に 検出されている Cs-134 及び Cs-137 を評価対象とする。 Cs-134 及び Cs-137 以外の核種には、検出限界未満であることが確認されている核種だけではなく、測定 自体ができていないものもあるが、評価結果に大きな影響は与えないものと考えている。これら評価対象と しなかった核種の影響度合いについては、「2.2.1.8 Cs 以外の核種の影響について」で詳しく述べる。 (5)線量及び濃度計算地点 線量の計算は、図2.2.1-1に示すとおり、1、2号機共用排気筒を中心として 16 方位に分割した陸 側9 方位の敷地境界外について行う。ただし、これらの地点より大きな線量を受ける恐れのある地点が別に 陸側にある場合は、その地点も考慮する。 1、2号機共用排気筒から各計算地点までの距離は、表2.2.1-9に示す。 	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

変 更 前	変更後	変更理由
2.2.1.3 単位放出率あたりの年間平均濃度の計算	2.2.1.3 単位放出率あたりの年間平均濃度の計算	
計算は連続放出とし、放出位置毎に行う。単位放出率あたりの地上における放射性物質濃度は、放射性物質	計算は連続放出とし、放出位置毎に行う。単位放出率あたりの地上における放射性物質濃度は、放射性物質	
の減衰を無視すると(2-2- <u>2</u>)式となる。	の減衰を無視すると(2-2- <mark>6</mark>)式となる。	
$\chi(x, y, 0) = \frac{1}{\pi \sigma_y \sigma_z U} \cdot \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \cdot \exp\left(-\frac{H^2}{2\sigma_z^2}\right) \cdot \dots \cdot $	$\chi(x, y, 0) = \frac{1}{\pi \sigma_y \sigma_z U} \cdot \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \cdot \exp\left(-\frac{H^2}{2\sigma_z^2}\right) \dots (2-2-\underline{6}) \exists z$	
計算地点における年間平均相対濃度 Z は、隣接方位からの寄与も考慮して以下のように計算する。	計算地点における年間平均相対濃度 Z は、隣接方位からの寄与も考慮して以下のように計算する。	
$\overline{\chi} = \sum_{j} \overline{\chi}_{jL} + \sum_{j} \overline{\chi}_{jL-1} + \sum_{j} \overline{\chi}_{jL+1} \cdots	$\overline{\chi} = \sum_{j} \overline{\chi}_{jL} + \sum_{j} \overline{\chi}_{jL-1} + \sum_{j} \overline{\chi}_{jL+1} \dots \qquad (2-2-\underline{7}) \overrightarrow{\mathfrak{X}}$	
ここで, j : 大気安定度 (A~F)	ここで,	
L :計算地点を含む方位	j : 大気安定度 (A~F)	
計算結果を表2.2.1- <u>4</u> に示す。これに「2.1.3 放射性気体廃棄物等の管理」表2.1.3-1に示し	L :計算地点を含む方位	
た推定放出量を乗じた結果を表2.2.1-5に示す。1~4号機合計の濃度が最大となるのは、1、2号機共	計算結果を表2.2.1- <u>10</u> に示す。これに「2.1.3 放射性気体廃棄物等の管理」表2.1.3-1に	
用排気筒の南方位約 1,340mの敷地境界で, <u>それぞれ約 1.5×10⁻⁹Bq/cm³</u> である。	示した推定放出量を乗じた結果を表2.2.1- <u>11及び表2.2.1-12</u> に示す。1~4 号機合計の濃度が	
	最大となるのは、1、2 号機共用排気筒の南方位約 1、340mの敷地境界で、Cs-134 が約 5.0×10 ⁻¹⁰ Bq/cm ³ , Cs-137	評価条件の変更
	<u>が約5.0×10⁻⁹Bq/cm³</u> である。	に伴う最大濃度
2.2.1.4. 単位サ山島なたりの字が須見の社営	2.2.1.4 単位放出 <mark>率</mark> あたりの実効線量の計算	の変更
2.2.1.4 単位放山 <u>単</u> めたりの実効線重の計算 建屋から放出された放射性雲による計算地点における空気カーマ率は、(2-2- <u>4</u>)式により計算する。	 建屋から放出された放射性雲による計算地点における空気カーマ率は、(2-2-8)式により計算する。	記載の適正化
$D = K_1 \cdot E \cdot \mu_{e_1} \cdot \int_0^\infty \int_{-\infty}^\infty \int_0^\infty \frac{e^{-\mu r}}{4\pi r^2} \cdot B(\mu r) \cdot \chi(x', y', z') dx' dy' dz' \cdots (2-2-\underline{4}) \exists t$	$D = K_1 \cdot E \cdot \mu_{en} \cdot \int_0^\infty \int_{-\infty}^\infty \int_0^\infty \frac{e^{-\mu r}}{4\pi r^2} \cdot B(\mu r) \cdot \chi(x', y', z') dx' dy' dz' \dots (2-2-8) \exists t$	
ここで、	ここで、	
D :計算地点(x, y,0)における空気カーマ率(μ Gy/h)	D :計算地点(x, y,0)における空気カーマ率(µGy/h)	
K_1 : 空気カーマ率への換算係数 $\left(\frac{dis \cdot m^3 \cdot \mu Gy}{MeV \cdot Ba \cdot h}\right)$	K_1 : 空気カーマ率への換算係数 $\left(\frac{dis \cdot m^3 \cdot \mu Gy}{MeV \cdot Bq \cdot h}\right)$	
E : γ 線の実効エネルギ (MeV/dis)	E : γ 線の実効エネルギ (MeV/dis)	
μ_{em} : 空気に対する γ 線の線エネルギ吸収係数 (m ⁻¹)	μ_{m} : 空気に対する γ 線の線エネルギ吸収係数 (m^{-1})	
μ : 空気に対する γ 線の線減衰係数 (m ⁻¹)	μ : 空気に対する γ 線の線減衰係数 (m ⁻¹)	
r : 放射性雲中の点(x', y', z')から計算地点(x, y,0)までの距離(m)	r : 放射性雲中の点(x', y', z')から計算地点(x, y,0)までの距離(m)	
Β(μr) : 空気に対する γ 線の再生係数で,次式から求める。	B(μr) : 空気に対する γ 線の再生係数で,次式から求める。	
$B(\mu r) = 1 + \alpha(\mu r) + \beta(\mu r)^2 + \gamma(\mu r)^3$	$B(\mu r) = 1 + \alpha(\mu r) + \beta(\mu r)^2 + \gamma(\mu r)^3$	
ただし, μ_{a} , μ , α , β , γ については, 0.5MeVの γ 線に対する値を用い,	ただし、 μ_m 、 μ 、 α 、 β 、 γ については、0.5MeVの γ 線に対する値を用い、	
以下のとおりとする。	以下のとおりとする。	
$\mu_{en} = 3.84 \times 10^{-3} \text{ (m}^{-1})$ $\mu = 1.05 \times 10^{-2} \text{ (m}^{-1})$	$\mu_{m} = 3.84 \times 10^{-3} \text{ (m}^{-1})$ $\mu = 1.05 \times 10^{-2} \text{ (m}^{-1})$	
$\alpha = 1.000$ $\beta = 0.4492$ $\gamma = 0.0038$	$\alpha = 1.000$ $\beta = 0.4492$ $\gamma = 0.0038$	
χ(x', y',z') : 放射性雲中の点(x', y',z')における濃度(Bq/m³)	χ(x', y', z') : 放射性雲中の点 (x', y', z') における濃度 (Bq/m³)	
計算地点における単位放出量当たりの年間の実効線量は、計算地点を含む方位及びその隣接方位に向かう放	計算地点における単位放出量当たりの年間の実効線量は、計算地点を含む方位及びその隣接方位に向かう放	
射性雲の γ 線からの空気カーマを合計して,次の(2-2- <u>5</u>)式により計算する。	射性雲の γ 線からの空気カーマを合計して, 次の(2-2- <u>9</u>)式により計算する。	
$H_{\gamma} = K_2 \cdot f_h \cdot f_o \left(\overline{D}_L + \overline{D}_{L-1} + \overline{D}_{L-1} \right) \dots $	$H_{\gamma} = K_2 \cdot f_h \cdot f_o \left(\overline{D}_L + \overline{D}_{L-1} + \overline{D}_{L+1} \right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

変更前	変更後
ここで,	ここで,
$H_{_{ m y}}$:計算地点における実効線量(μ Sv/年)	H _γ :計算地点における実効線量 (μSv/年)
K_2 : 空気カーマから実効線量への換算係数(μ Sv/ μ Gy)	K ₂ : 空気カーマから実効線量への換算係数 (μSv/μGy)
f_{h} :家屋の遮蔽係数	f, :家屋の遮蔽係数
f_a :居住係数	f。:居住係数
$ar{D}_L, ar{D}_{L+1}, ar{D}_{L+1}$:計算地点を含む方位(L)及びその隣接方位に向かう放射性雲 による年間平均の γ 線による空気カーマ(μ Gy/年)。これら	$\overline{D}_{L}, \overline{D}_{L-1}, \overline{D}_{L+1}$:計算地点を含む方位(L)及びその隣接力 雲による年間平均の γ 線による空気カー
は, (2-2- <u>4</u>) 式から得られる空気カーマ率 D を放出モード, 大気安定度別風向分布及び風速分布を考慮して年間について積 質して求める	れらは, (2-2- <u>8</u>) 式から得られる空気カー ード, 大気安定度別風向分布及び風速分布 ついて積算して求める
」 計算結果を表2.2.1- <u>6</u> 及び表2.2.1- <u>7</u> に示す。	計算結果を表2.2.1- <u>13</u> 及び表2.2.1- <u>14</u> に示す。
2.2.1.5 年間実効線量の計算	2.2.1.5 年間実効線量の計算
(1)放射性雲からのγ線に起因する実効線量	(1)放射性雲からのγ線に起因する実効線量
放射性雲からの γ 線に起因する実効線量は,「2.1.3 放射性気体廃棄物等の管理」表2.1.3-1の推	放射性雲からの γ 線に起因する実効線量は,「2.1.3 放射性気体廃
定放出量に「2.2.1.4 単位放出 <u>量</u> あたりの実効線量の計算」で求めた単位放出 <u>量</u> あたりの実効線量を乗じ求	定放出量に「2.2.1.4 単位放出率あたりの実効線量の計算」で求めた
める。計算結果を表2.2.1- <mark>8</mark> 及び表2.2.1- <u>9</u> に示す。	める。計算結果を表2.2.1- <u>15</u> 及び表2.2.1- <u>16</u> に示す。
計算の結果,放射性雲からの γ 線に起因する実効線量は南方向沿岸部で最大となり,年間約 2.0×10 ⁻⁶ mSv	計算の結果,放射性雲からの γ線に起因する実効線量は南方向沿岸
である。	である。
(2)地面に沈着した放射性物質からのγ線に起因する実効線量	(2)地面に沈着した放射性物質からのγ線に起因する実効線量
a. 計算の方法	a. 計算の方法
評価は「一般公衆の線量評価」に基づき,以下の式で求める。	(a) 実効線量
$H_{A} = K \frac{\mu_{en}}{(1-g)} E \int_{-\infty}^{0} \int_{0}^{\infty} \int_{0}^{2\pi} \frac{B e^{-(\mu_{1},\eta_{1}+\mu_{2},\eta_{2})}}{4\pi r^{2}} C_{0} \cdot f(z) \cdot \rho \cdot d\theta d\rho dz \frac{(2-2-6)}{2} $	<u>地面に沈着した放射性物質からのγ線に起因する実効線量は、(2-2 $H_A = K(S_a + S_r) \cdot 8760 \cdot 10$ ······</u>
ただし,	ただし、
H_{A} :年間実効線量(mSv/年)	H_{A} :年間実効線量(mSv/年)
$K : \frac{3.91 \times 10^3 \left(\frac{dis \cdot cm^3 \cdot mGy}{MeV \cdot Bq \cdot y}\right) \times 0.8 \left(\frac{mSv}{mGy}\right)}{MeV \cdot Bq \cdot y}$	K : <u>外部被ばく実効線量換算係数$\left(rac{mSv/h}{kBq/m^2} ight)$</u>
(0.8 (mSv/mGy) は, 空気カーマから実効線量への換算係数。)	<u><i>S_d</i> : 無降水期間における放射性物質の地表濃度 (Bq/cm²)</u>
μ_{m} : 空気の γ 線の線エネルギ吸収係数 (1/cm)	<u><i>S_r</i>:降水期間における放射性物質の地表濃度(Bq/cm²)</u>
$\frac{(1-g)}{F}$:制動放射による損失の補正	<u>8760</u> : <u>年間時間数への換算係数(h/年)</u> 加加加減く実効絶見換算係数は まの 0 1 1.7 に示すした
L : γ 禄美効エネルキ (MeV/dls) C ・地志声は近の土塔にたけてお財性物质濃度 (P_{α}/m^{3})	<u>外部被はく美効緑重換算係数は、衣2.2.1-17に示すとわ</u>
\sim_0 : 地衣面附近の工場にわける放射性物員最及 (Dq/cm) R · 空気 十 撞の 9 層 \sqrt{a} ビルドア $\sqrt{2}$ 係数 ($-$)	
$\frac{\mu_{12}}{\mu_{12}}$	
$ \frac{\mu_2}{\mu_2} = \frac{22 (\sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}$	
<u>r, _ r, _ r, _ p, _ b, _ z : 図2.2.1 - 2に示す</u> <u>r : 土壌中の任意点(ρ,θ,z)から被ばく点までの距離 (cm)</u>	
$r^{2} = (h - z)^{2} + \rho^{2} = (r_{1} + r_{2})^{2}$	

	変	更	理	由
位に向かう放射性 (μ Gy/年)。こ マ率 D を放出モ を考慮して年間に	記載	えの適	〕 正化	
^{医物等の管理」表2.1.3-1の推 位放出<u>率</u>あたりの実効線量を乗じ求 形で最大となり, 年間約2.0×10⁻⁶mSv}				
<u>10)式で求める。</u> (<u>2-2-10)式</u>	保 デ を に の 守 ル 反 伯 変	ドノ て 半 ごりの 映 う 更	☆ 評 値 算 係 算 る こ 平 価 力	西系 こと 法
<u>)である。</u>				

変更前	変更後
f(z):放射性物質の土壌中鉛直分布	(削除)
<u>h</u> : 被ばく点地上高 (100cm)	
<u>被ばく点が1m程度であれば,これに寄与する放射性物質の範囲は,被ばく点から10m以内である。この</u>	
<u>ため通常は</u> <u>C。=一定と考える。したがって、上記式は、</u>	
$H_{A} = \frac{K}{2} \frac{\mu_{en}}{(1-g)} E \cdot C_{0} \int_{-\infty}^{0} \int_{0}^{\infty} \frac{B \cdot e^{-(\mu_{1} \cdot r_{1} + \mu_{2} \cdot r_{2})}}{r^{2}} f(z) \cdot \rho \cdot d\rho dz $ (2-2-7) \vec{z}	
<u>となる。</u>	
<u>b. 空気及び土壌のビルドアップ係数(B)</u>	
空気, 土壌 2 層の y 線ビルドアップ係数については, 広く使用されているビルドアップ係数を使用す る。	
<u>1) $E > 1.801 MeV$</u>	
$B(E, \mu r) = 1 + \left\{ 0.8 - 0.214 \ln\left(\frac{E}{1.801}\right) \right\} (\mu r)^{s(E)}$	
$\underline{2)} E \leq 1.801 MeV$	
$B(E, \mu r) = 1 + 0.8(\mu r)^{g(E)}$	
<u>ここで,</u>	
$g(E) = 1.44 + 0.02395E + 0.625\ln\left(0.19 + \frac{1.0005}{E}\right)$	
$\mu r = \mu_1 r_1 + \mu_2 r_2$	
<u>c. 放射性物質の土壤中鉛直分布 $(C = C_o f(z))$について</u>	
放射性物質の土壌中鉛直分布は、「一般公衆の線量評価」より、指数分布で近似できる。	
$C = C_0 \exp(\alpha z) \underbrace{(2-2-8) \ \vec{z}}$	
<u>ただし, 深さzの符号は下方を負とし, 浸透係数α (1/cm) は, 0.33を使用する。</u>	
<u>地表面附近の土壌における放射性物質濃度は、大気と地面の接触による沈着(乾性沈着)と、降水による</u>	
放射性物質の降下(湿性沈着)を考慮して、(2-2-9)式により計算する。	
$\underline{C_0 = C_d + C_r} $	
<u>ここで、</u>	
<u>C。</u> : 地表面付近の放射性物質濃度(Bq/cm ³)	
<u>C_a: 無降水期間における地表面付近の濃度(Bq/cm³)</u>	
<u>C,</u> : 降水期間における地表面付近の濃度 (Bq/cm ³)	

変更理由 評価方法の変更 に伴い削除 50 €				
群価方法の変更 に伴い削除	変	更	理	由
群価方法の変更 に伴い削除		-		
評価方法の変更 に伴い削除	<u>⇒</u> +; /~	┍╸⊥╴╰	⊢ ~ ¬	
に伴い前除	評仙	口万治	モの多	ど史
	に伴	シンド	削除	
50 4				
50 4				
50 4				
50 4				
50 4				
50 4				
50 4				
50 4				
50 4				
50 4				
50 <				
50 <				
50 <				
50 4				
50 4				
50 4				
50 4				
50 4				
50 4				
50 6				
50 6				
50 4				
50 4				
50 4				
50 4				
50 €				
50 €				
50 €				
50 €				
50 6				
50 6				
50 (
50 (
50 (
50 (
50 @				
50 (
50 (
50 @				
50 (
50 @				
50 @				
50 @				
50 @				
50 6				
50 @				
			5	0 6

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

変更前	変 更 後	変更理由
(現行記載なし)	(b) 地表沈着量	
	無降水期間中及び降水期間中の地表面への放射性物質の沈着量は、下記のとおり求める。	評価方法の変更 に伴う追加
<u>(a)</u> 無降水期間における沈着量	<u>i.</u> 無降水期間における沈着量	
無降水期間中は乾性沈着のみとなるため,(2-2- <u>10</u>)式 <u>~(2-2-12)式</u> で表せる。	無降水期間中は乾性沈着のみとなるため、(2-2- <u>11</u>)式で表せる。	記載の適正化
$S_{\perp} = \int_{0}^{0} C_{\perp} \exp(\alpha z) dz = \frac{C_{d}}{2} \cdots (2-2-10) $	(削除)	
$\frac{\alpha}{\alpha} = \frac{\alpha}{1-\alpha} + \frac{\alpha}{\alpha}$		評価方法の変更
$S_{d} = \overline{x}_{i} \cdot V_{s} \frac{f_{1}}{\lambda_{r}} \{1 - \exp(-\lambda_{r} T_{0})\} \cdot (1 - K_{r}) \cdot \cdots \cdot (2 - 2 - 11) $	$S_{d} = \bar{x}_{i} \cdot V_{g} \frac{f_{1}}{\lambda_{r}} \{ 1 - \exp(-\lambda_{r}T_{0}) \} \cdot (1 - K_{r}) \qquad (2 - 2 - 11) \exists \exists$	に伴う削除
$C_{1} = \alpha \cdot \bar{x} \cdot V \frac{f_{1}}{(1 - \exp(-\lambda T))} \cdot (1 - K) \cdots (2 - 2 - 12) \vec{x}$	(削除)	
$\lambda_r = \lambda_r + \lambda_r$		評価方法の変更
ただし、	ただし、	に伴う削除
$ar{x}_i$: 地上における年間平均濃度 $(\mathrm{Bq/cm}^3)$	x̄, :地上における年間平均濃度 (Bq/cm ³)	
V_s :沈着速度 (cm/s)	V_{s} :沈着速度 (cm/s)	
λ_r :物理的崩壊定数($1/s$)	λ_{r} :物理的崩壊定数 $(1/s)$	
T。: 放射性物質の放出期間	<i>T</i> 。 : 放射性物質の放出期間 <u>(s)</u>	
f.: : 沈着した放射性物質のうち残存する割合(-)	f. : 沈着した放射性物質のうち残存する割合(-)	記載の適正化
S_a : 放射性物質の地表濃度 (Bq/cm ²)	(削除)	
K_{i} :降水期間割合($-$)	K_{i} :降水期間割合($-$)	評価方法の変更
$\mathbf{x} = \mathbf{v}$	$\mathbf{x} = \mathbf{v}$	に伴う削除
ここで、 V_g は 0.3 cm/s、 T_g は 1 年、 f_i はフォールアワトの調査結果より平均値の 0.5 とした。なお、降水	ここで、 V_g は 0.3 cm/s、 T_0 は1年、 f_1 はフォールアワトの調査結果より平均値の 0.5 <u>K_iは気象アータよ</u>	后舟及仙雨亦正
期間割合($_{K_r}$)を 0 とすれば,「一般公衆の線量評価」と同じ評価式となる。	<u>り 0.071</u> とした。なお,降水期間割合(_{K,})を 0 とすれば,「一般公衆の線量評価」と同じ評価式となる。	ス家 余件の 変更
		に伴う降水期间
<u>(b)</u> 降水期間における沈着量	<u><u>ii</u></u> 降水期間における沈着量	前百00夜史
降水期間中は,乾性沈着及び湿性沈着が重なるため,(2-2- <u>13</u>)式 <u>~(2-2-15)式</u> で表せる。	降水期間中は、乾性沈着及び湿性沈着が重なるため、(2-2- <u>12</u>)式で表せる。	記載の適正化
$S_r = \int_{-\infty}^{0} C_r \exp(\alpha z) dz = \frac{C_r}{2} \dots		□□甲以♥ノ□□□□□□□□
α	E	評価方法の変更
$S_r = \overline{x}_i \cdot \left(V_s + \Lambda \cdot L \right) \frac{f_{ir}}{\lambda} \left\{ 1 - \exp(-\lambda_r T_0) \right\} K_r \frac{1}{2} \left\{ 1 - \exp(-\lambda_r T_0) \right\} K_r$	$S_{r} = \left\{ \frac{Q}{\chi_{i}} V_{a} + A \frac{Q}{\pi} \frac{1}{r_{i}} \sum_{r=1}^{r} \frac{1}{r_{i}} \right\} \frac{f_{1r}}{(1 - \exp(-\lambda_{r}T_{0}))K_{r}} \frac{\dots (2 - 2 - 12)}{\Gamma} \frac{1}{r_{i}}$	に伴う評価式の
	$\int \left(\frac{\lambda r}{s}\right)^{2\pi x/16} N_t \sum_{s=4}^{2\pi v} U_s \lambda_r \left(\frac{\lambda r}{s}\right)^{2\pi v} \lambda_r$	変更
$C_r = \alpha \cdot \overline{x}_i \cdot \left(V_g + \Lambda \cdot L\right) \frac{J_{1r}}{\lambda_r} \left\{1 - \exp\left(-\lambda_r T_0\right)\right\} K_r \cdots		
ただし、	ただし,	
$ar{x}_i$:地上における年間平均濃度 (Bq/cm ³)	x _, : 地上における年間平均濃度 (Bq/cm ³)	
V。:沈着速度 (cm/s)	V. : 沈着速度 (cm/s)	
。 Λ :降水による洗浄係数(1/s)で,以下の式により求める。	。 ∧ :降水による洗浄係数(1/s)で、以下の式により求める。	
$\Lambda = 1.2 \times 10^{-4} \cdot I^{0.5}$	$\Lambda = 1.2 \times 10^{-4} \cdot I^{0.5}$	気象条件の変更
ここで, 降水強度I (mm/h) は, 気象データより, <u>2.16</u> mm/h とする。	ここで,降水強度1 (mm/h) は,気象データより, <u>2.18</u> mm/h とする。	に伴う降水強度
<u> L</u> :空気中放射性物質濃度の鉛直方向積分値で,	<u>Q</u> : <u></u> 放射性物質の放出率(Bq/s)	変史
$L = \int_0^\infty \exp\left(-\frac{z_1^2}{2\cdot\sigma^2}\right) dz_1$	<u>x</u> : <u>放出点から計算地点までの距離(cm)</u>	計価力 広 の 変更
<u>、 2 2 3 /</u> とし、風向別大気安定度別出現回数で平均化する。	$\frac{1}{U_{s}}$: 大気安定度別の風速逆数の総和 (s/cm)	
	<u>- </u>	·

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

変更前	変更後	変更理由
	<u>N</u> t : 1年間の総観測回数(8760)	タの変更
<i>λ</i> , :物理的崩壊定数 (1/s)	<i>λ</i> , :物理的崩壊定数 (1/s)	評価方法の変更
T。: 放射性物質の放出期間	<i>T</i> 。 : 放射性物質の放出期間 <u>(s)</u>	に伴うパラメー
f ₁ , : 沈着した放射性物質のうち残存する割合(-)	f_{ir} :沈着した放射性物質のうち残存する割合(-)	タの変更
降水時は地表面に全て残存すると仮定し、1.0とする。	降水時は地表面に全て残存すると仮定し、1.0とする。	記載の適正化
<u>S,</u> :放射性物質の地表濃度(Bq/cm ²) 		
K_r :降水期间割合 (一)	$K_{,}$:降水期間割合($-$)	評価方法の変更
		に伴うパラメー
		タの削除
_x は「2.2.1.3 単位放出率あたりの年間平均濃度の計算」で求めた最大濃度の <u>約1.5×10⁻Bq/cm⁻</u> を用い	\bar{x}_i は 2.2.1.3 単位放出率あたりの年間平均濃度の計算」で求めた最大濃度の $Cs = 134 約 5.0 \times 10^{-10} Bq/cm3$	記載の適正化
る。計算の結果,地表に沈着した放射性物質からの γ 線による実効線量は,Cs-134 及びCs-137 の合計で	<u>Cs-137 約 5.0×10⁻⁹Bq/cm³</u> を用いる。計算の結果, 地表に沈着した放射性物質からの γ 線による実効線量	評価方法等の変
年間約 <u>3.0×10⁻²</u> mSv である。	は, Cs-134 及び Cs-137 の合計で年間約 <u>7.2×10⁻³</u> mSv である。	更に伴う最大濃
		度等の変更
(2) 吸入 頃町に トス 実动 迫 鼻	(2) 吸入 垣町に上て 宝林 迫鼻	
(3) 奴八採取による夫別隊里	(3) 吸入採取による美効隊里	
双八派取による天効隊重は、「町凹相町」に至って、氏の百昇八を用いる。 $H = 365\Sigma K \cdot \Lambda$	吸入1×取による天効極重は、「計画拍車」に至って、氏の計算れて用いる。	
$H_{I} = 303 \underbrace{K}_{i} \cdot A_{i} \cdot A_{i} \cdot A_{i}$	$H_{I} = 365 \sum_{i} K_{ii} \cdot A_{ii} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	記載の適正化
$A_{ii} = M_{a} \cdot \bar{x}_{i} \qquad (2-2-\underline{17}) \text{rL}$	$\mathbf{A} = \mathbf{M} \cdot \mathbf{\bar{r}} \qquad (2-2-14) \vec{\mathbf{x}}$	
	$A_{ii} = M_{a} \cdot \lambda_{i}$	
	$U \subseteq U$, $H = - W \lambda$ 摂取による年間の実効線量 ($\mu Sv/$ 年)	
$ $	365 · 年間日数への換算係数 (d/年)	
K · 校種;の吸入項取による実効線是核粉 (μ_{Sy}/P_{a})	K_{μ} · 核種 i の吸入摂取による実効線量係数 (μ Sy/Ba)	
A_{μ} · 核種主の双八次取による天効称重味致 (μ SV/ Dq) A_{μ} · 核種主の吸入による天効称重味致 (μ SV/ Dq)	A_{i} :核種iの吸入による摂取率 (Ba/d)	
M_{π} · M_{π} · M_{π} · M_{π} · M_{π} · M_{π} · M_{π}	M_a :呼吸率 (cm ³ /d)	
x ・ ・ ・ ・ ・ </td <td>x, :核種iの年平均地上空気中濃度(Bq/cm³)</td> <td></td>	x, :核種iの年平均地上空気中濃度(Bq/cm ³)	
$_{\mathbf{r}}$ は「2.2.1.3単位放出率あたりの年間平均濃度の計算」で求めた最大濃度の約1.5×10 ⁻⁹ Bg/cm ³ を用いる。	_{x,} は「2.2.1.3 単位放出率あたりの年間平均濃度の計算」で求めた最大濃度の <u>Cs-134 約 5.0×10⁻¹⁰Bq/cm³,</u>	
その他に評価に必要なパラメータは 表2 2 1-10及び表2 2 1-11に示す。計算の結果 吸入	<u>Cs-137 約 5.0×10⁻⁹Bq/cm³</u> を用いる。その他に評価に必要なパラメータは,表2.2.1- <u>18</u> 及び表2.2.	評価条件の変更
地位による実効線量は C_{s-134} 及び C_{s-137} の合計で年間約 1.9×10^{-4} mSv である。	1- <u>19</u> に示す。計算の結果,吸入摂取による実効線量は,Cs-134及びCs-137の合計で年間約 <u>1.7×10⁻³</u> mSv	に伴う最大濃度
たお 吸入摂取の被げく経路にけ地表に沈差した放射性物質の再浮游に起因するものも存在するが 「一般	である。	等の変更
公衆の線量評価」の再浮游係数 (10^{-8} cm ⁻¹) を用いると再浮游濃度は約6.0~7.0× 10^{-10} Bg/cm ³ 程度であり 袖げ	なお、吸入摂取の被ばく経路には地表に沈着した放射性物質の再浮遊に起因するものも存在するが、「一般	
	公衆の線量評価」の再浮遊係数(10 ⁻⁸ cm ⁻¹)を用いると再浮遊濃度は <u>Cs-134 が約 2.7×10⁻¹¹Bq/cm³, Cs-137 が</u>	評価条件の変更
	<u>約3.2×10⁻¹⁰Bq/cm³</u> 程度であり, 被ばく評価全体への寄与は小さい。	に伴う再浮遊濃
		度の変更
2.2.1.6 5号機及び6号機の寄与	2.2.1.6 5号機及び6号機の寄与	
5 号機は平成 23 年 1 月 3 日,6 号機は平成 22 年 8 月 14 日に定期検査のため運転を停止しており、「評価指	(1)大気拡散の解析に使用する気象条件	評価方法等の変
	2.2.1.2(2)と同じ。	更に伴う記載内
原子炉設置変更許可申請書(6号原子炉施設の変更)(平成22年11月12日付け,平成19・04・19原第18号	(2)放出源と有効高さ	容の変更
にて設置変更許可)添付書類九と同様の評価とする。	放出源は各建屋からの排気であり、放出位置は 5,6 号機共用排気筒とする。廃炉作業の進捗に伴い敷地	
これによろと、希ガスの γ 線による実効線量は12号機共用排気筒の北方位で最大とたり 年間約 4.4×10^{-1}	内の施設等の設置状況が変わりうることを考慮し、実効線量の計算に用いる放出源の有効高さは、最も厳	
3 mSv. 放射性よう素に起因する実効線量は 1.2 号機共用排気筒の北北西方位で最大とたり 年間約 1.7×10 ⁻	しい評価を与える Om とする。	

変 更 前	変更後	変更理由
<u>4mSv である。</u>	(3) 放出を考慮する核種	評価方法等の変
	5 号機及び 6 号機は 2014 年 1 月 31 日に廃止後, 1~4 号機の廃炉関連作業エリアに供されており, Cs-	更に伴う記載内
	<u>134 及び Cs-137 を評価対象とする。</u>	容の変更
	(4)線量及び濃度計算地点	
	2.2.1.2(5)と同じ。	
	(5)年間実効線量の計算	
	「2.1.3 放射性気体廃棄物等の管理」表2.1.3-2に示した推定放出量並びに2.2.1.3~2.2.1.5に	
	記載した実効線量等の計算方法を用いる。	
	(6)計算結果	
	放射性雲からの γ線による実効線量,地表に沈着した放射性物質による実効線量及び吸入摂取による実	
	効線量は、1、2号機共用排気筒の北方位で最大となり、それぞれ年間約1.1×10 ⁻⁸ mSv、年間約4.2×10 ⁻	
	⁵ mSv, 年間約 9.8×10 ⁻⁶ mSv である。	
	上記の線量評価に用いた推定放出量は「発電用軽水型原子炉施設における放出放射性物質の測定に関す	
	る指針」(平成13年3月29日原子力安全委員会)に記載された粒子状物質の測定下限濃度(4×10 ⁻⁹ Bq/cm ³)	
	に安全係数(10)を乗じ Cs-137 濃度としているが,実際の放出実績は検出下限値以下であり,5号機及び	
	<u>6</u> 号機からの追加的放出による敷地境界線量への寄与は極めて小さいと評価している。	
2.2.1.7 計算結果	2.2.1.7 計算結果	
大気中に拡散する放射性物質に起因する実効線量は,最大で年間約 <u>3.0×10⁻²mSv</u> である。	大気中に拡散する放射性物質に起因する実効線量は,最大で年間約 <u>8.8×10⁻³mSv</u> である。	評価方法等の変 更に伴う実効線
 2.2.1.8 Cs 以外の核種の影響について	2.2.1.8 Cs 以外の核種の影響について	量の変更
 (1)γ 線放出核種	 (1)γ線放出核種 	
γ 線を放出する核種のうち, 粒子状の放射性物質はダストサンプリングにより定期的に測定しており, Cs	γ 線を放出する核種のうち,粒子状の放射性物質はダストサンプリングにより定期的に測定しており,	
以外の核種は測定限界未満となっていることから,現在の状態が維持されれば敷地周辺への影響は Cs に比	Cs 以外の核種は測定限界未満となっていることから,現在の状態が維持されれば敷地周辺への影響はCs に	
べて軽微である。	比べて軽微である。	
	一方,希ガスのようなガス状の放射性物質については,これまでの評価から,大気中に拡散する放射性物	
 「 質に起因する実効線量は、地表に沈着した放射性物質からの γ 線の外部被ばくが支配的であり、沈着しな	質に起因する実効線量は、地表に沈着した放射性物質からの γ 線の外部被ばくが支配的であり、沈着しな	
いガス状の放射性物質の寄与は小さいと考えられる。	いガス状の放射性物質の寄与は小さいと考えられる。	
 (2)β 線及び α 線放出核種	(2) β 線及び α 線放出核種	
β 線及び α 線の放出核種で, γ 線を放出しない又は微弱でゲルマニウム半導体検出器による核種分析が	β 線及び α 線の放出核種で, γ 線を放出しない又は微弱でゲルマニウム半導体検出器による核種分析	
できない核種は, 現時点で直接分析ができていない。これらの核種は, 地表に沈着した放射性物質からの y	ができない核種は、現時点で直接分析ができていない。これらの核種は、地表に沈着した放射性物質からの	
 線は無視しうるが,特に α 線を放出する核種は内部被ばくにおける実効線量換算係数が α 線を放出しない	γ 線は無視しうるが,特に α 線を放出する核種は内部被ばくにおける実効線量換算係数が α 線を放出し	
核種に比べて 100~1,000 倍程度となる。	ない核種に比べて 100~1,000 倍程度となる。	
Cs との比較可能な測定データとして表2.2.1-14にグラウンド約西南西における土壌分析結果を示	Cs との比較可能な測定データとして表2.2.1-22にグラウンド約西南西における土壌分析結果を	記載の適正化
す。表 2. 2. 1-14では、 β線を放出する主要な核種である Sr と、 α線を放出する主要な核種である	示す。表2.2.1-22 では、 β 線を放出する主要な核種である Sr と、 α 線を放出する主要な核種で	
Pu が分析されており、その量は Cs に比べ、Sr で 1/1,000 程度、Pu で 1/1,000,000 程度である。この分析結	ある Pu が分析されており、その量は Cs に比べ、Sr で $1/1,000$ 程度、Pu で $1/1,000,000$ 程度である。この	
果から、線質による違いを無視しうるほどに放出量は小さく、Cs-134 及びCs-137 に比べ、線量への寄与け	分析結果から、線質による違いを無視しうるほどに放出量は小さく、Cs-134 及び Cs-137 に比べ 線量への	
小さいと考えられる。	寄与は小さいと考えられる。	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

変更前	変 更 後	変更理由
2.2.1.9 食物摂取による実効線量の計算	2.2.1.9 食物摂取による実効線量の計算	
2.2.1.9.1 葉菜摂取による実効線量	2.2.1.9.1 葉菜摂取による実効線量	
葉菜摂取による実効線量は、評価対象核種が Cs-134 及び Cs-137 の長寿命核種であることから、沈着分から	葉菜摂取による実効線量は、評価対象核種がCs-134及びCs-137の長寿命核種であることから、沈着分から	
の間接移行経路を考慮した「一般公衆の線量評価」に基づき、次の計算式を用いる。	の間接移行経路を考慮した「一般公衆の線量評価」に基づき、次の計算式を用いる。	
$H_{V} = 365 \cdot \sum_{i} K_{T_{i}} \cdot A_{V_{i}} \cdot \dots \cdot$	$H_{v} = 365 \cdot \sum_{i} K_{\tau_{i}} \cdot A_{v_{i}} \qquad \cdots \qquad (2-2-\underline{15}) \exists$	記載の適正化
$A_{vi} = \overline{x}_{i} \cdot \left\{ \frac{V_{g} \cdot \left(1 - e^{-\lambda_{vfi} \cdot t_{1}}\right)}{\lambda_{effi} \cdot \rho} + \frac{V_{g}' \cdot B_{vi} \left(1 - e^{-\lambda_{vi} \cdot t_{0}}\right)}{\lambda_{ri} \cdot P_{v}} \right\} \cdot f_{i} \cdot f_{d} \cdot M_{v} \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot (2 - 2 - \underline{19}) \overrightarrow{\mathbf{x}}$	$A_{ii} = \overline{x}_{i} \cdot \left\{ \frac{V_{s} \cdot \left(1 - e^{-\lambda_{eff} \cdot t_{1}}\right)}{\lambda_{eff} \cdot \rho} + \frac{V_{s}' \cdot B_{ii} \left(1 - e^{-\lambda_{ii} \cdot t_{0}}\right)}{\lambda_{ii} \cdot P_{v}} \right\} \cdot f_{i} \cdot f_{d} \cdot M_{v} \dots $	
ここで,	ここで、	
<i>H_ν</i> :葉菜摂取による年間の実効線量(μSv/年)	H _v :葉菜摂取による年間の実効線量(µSv/年)	
365 : 年間日数への換算係数(d/年)	365 : 年間日数への換算係数(d/年)	
K _n :核種 i の経口摂取による実効線量 <mark>換算</mark> 係数 (μSv/Bq)	K_n :核種iの経口摂取による実効線量係数 (μ Sv/Bq)	
A _v : : 核種 i の葉菜による摂取率 (Bq/d)	A _{vi} : 核種 i の葉菜による摂取率 (Bq/d)	
V_{g} :葉菜への沈着速度(cm/s)	V_s :葉菜への沈着速度(cm/s)	
$\lambda_{_{ m ch}}$:核種 i の葉菜上実効崩壊定数(1/s)	$\lambda_{_{\!$	
$\lambda_{_{effi}}=\lambda_{_{ri}}+\lambda_{_W}$	$\lambda_{_{e\!f\!f\!i}}=\lambda_{_{ri}}+\lambda_{_W}$	
λ _a : 核種 i の物理的崩壊定数 (1/s)	λ_r : 核種 i の物理的崩壊定数 (1/s)	
<i>A</i> _w : ウェザリング効果による減少係数(1/s)	λ_w :ウェザリング効果による減少係数 $(1/s)$	
ρ : 葉菜の栽培密度(g/cm ²)	<i>ρ</i> :葉菜の栽培密度 (g/cm ²)	
t ₁ : 葉菜の栽培期間(s)	t _i : 葉菜の栽培期間 (s)	
V': : 葉菜を含む土壌への核種の沈着速度 (cm/s)	V'_{s} :葉菜を含む土壌への核種の沈着速度(cm/s)	
P_{max} 経口移行に寄与する十壌の有効密度 (g/cm^2)	P _v : 経 <u>根</u> 移行に寄与する土壌の有効密度 (g/cm ²)	
B_{α} : 十壌 1g 中に含まれる核種 i が葉菜に移行する割合	B _v : : 土壌 1g 中に含まれる核種 i が葉菜に移行する割合 (-)	
t ₀ : k種の蓄積期間(s)	t。: 核種の蓄積期間 (s)	
f, : 葉菜の栽培期間年間比	f, : 葉菜の栽培期間年間比 (一)	
f.a : 調理前洗浄による核種の残留比	f。:調理前洗浄による核種の残留比(-)	
M_v :葉菜摂取量 (g/d)	M_v :葉菜摂取量 (g/d)	
評価に必要なパラメータは,表2.2.1- <u>11</u> ~表2.2.1- <u>13</u> に示す。	評価に必要なパラメータは,表2.2.1- <u>19</u> ~表2.2.1- <u>21</u> に示す。	
_{Ī,} は「2.2.1.3 単位放出率あたりの年間平均濃度の計算」で求めた最大濃度の <u>約 1.5×10⁻⁹Bq/cm³</u> を用いて計	x,は「2.2.1.3単位放出率あたりの年間平均濃度の計算」で求めた最大濃度の Cs-134 約 5.0×10 ⁻¹⁰ Bq/cm ³ ,	評価条件の変更
算した結果, 葉菜摂取による実効線量は最大で年間約 <u>6.1×10⁻³</u> mSv である。	<u>Cs-137 約 5.0×10⁻⁹Bq/cm³</u> を用いて計算した結果,葉菜摂取による実効線量は最大で年間約 <u>9.8×10⁻³mSv</u> であ	に伴う最大濃
	る。	度、実効線量の
		変更
2.2.1.9.2 牛乳摂取による実効線量	2.2.1.9.2 牛乳摂取による実効線量	
牛乳摂取による実効線量は、評価対象核種が Cs-134 及び Cs-137 の長寿命核種であることから、沈着分から	牛乳摂取による実効線量は、評価対象核種が Cs-134 及び Cs-137 の長寿命核種であることから、沈着分から	
の間接移行経路を考慮した「一般公衆の線量評価」に基づき、次の計算式を用いる。	の間接移行経路を考慮した「一般公衆の線量評価」に基づき、次の計算式を用いる。	
$H_{M} = 365 \cdot \sum_{i} K_{Ti} \cdot A_{Mi} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	$H_{M} = 365 \cdot \sum_{i} K_{Ti} \cdot A_{Mi} \qquad \dots \qquad (2-2. \ 1-\underline{17}) \overrightarrow{R}$	記載の適正化

変更前	変更後
$A_{Mi} = \overline{x}_{i} \cdot \left\{ \frac{V_{gM} \cdot \left(1 - e^{-\lambda_{effi} \cdot t_{M}}\right)}{\lambda_{effi} \cdot \rho_{M}} + \frac{V_{gM}' \cdot B_{vi} \left(1 - e^{-\lambda_{vi} \cdot t_{0}}\right)}{\lambda_{ri} \cdot P_{v}} \right\} \cdot f_{t} \cdot Q_{f} \cdot F_{Mi} \cdot M_{M} \dots (2-2.1-\underline{21}) \overrightarrow{\mathbb{T}}$	$A_{Mi} = \overline{x}_{i} \cdot \left\{ \frac{V_{gM} \cdot \left(1 - e^{-\lambda_{eff} \cdot t_{1M}}\right)}{\lambda_{effi} \cdot \rho_{M}} + \frac{V_{gM}' \cdot B_{vi} \left(1 - e^{-\lambda_{ri} \cdot t_{0}}\right)}{\lambda_{ri} \cdot P_{v}} \right\} \cdot f_{i} \cdot Q_{f} \cdot F_{Mi} \cdot M_{M} \cdots \cdots \cdots$
ここで、 H_{u} : 牛乳摂取による年間の実効線量 (μ sv/年) A_{u} : 枝種: のヤ乳による摂取率 (Ω_{d}) V_{u} : 枚座への込着速度(m/s) $\lambda_{g} = \lambda_{e} + \lambda_{e}$ λ_{e} : 枝種: の物理的崩壊定数 ($1/s$) $\lambda_{u} : 2 + \sigma^{0} > 2 / 3 \eta$ 果による減少係数 ($1/s$) μ_{e} : 枚座の栽培密度 ($v/c\pi$) μ_{e} : 枚座の栽培物関 (s) V_{gu}' : 枚整合含む土塚への核種の比當速度 (cm/s) P : 運口移行に寄与する土壌の有効密度 (g/cm^{2}) μ_{e} : 土壤1 e 中に含まれる核種15%牧草に移行する割合 λ_{e} : 接触の客様期間 (s) λ_{e} : 基地の教問年間比 Q: 乳牛の牧草扱取量 (g/d) F_{u} : 乳牛が採取した核種15%牛乳に移行する割合 ($\Omega_{0}/c\pi^{2}$)/ Ω_{0}/d) M_{u} : 牛乳摂取量 (cm/d) F_{u} : 乳牛が採取した核種15%牛乳に移行する割合 ($\Omega_{0}/c\pi^{2}$)/ Ω_{0}/d) M_{u} : 牛乳摂取量 (cm/d) F_{u} : 2.1.3 単位放出率あた90 年間平均濃度の計算 (σ 未めた最大濃度の約1.5×10 $\Omega_{0}/c\pi^{2}$ を用いて計 算した結果、牛乳摂取による実効練量は最大で年間約9.9×10 [*] mSv である。	($\lambda_{ab}, \nu_{ab}, \lambda_{ab}, \lambda_{ab}, \lambda_{bb}$) ここで、 H_{ab} : 校種 i の牛乳による摂取率 (Bq/d) V_{sM} : 校車への沈着速度 (cm/s) $\lambda_{ab} = \lambda_{a} + \lambda_{b}$ $\lambda_{ab} = \psi = \psi + \psi$

	変	更	理	由
(2-2.1-18) 式	記載	の適	i正化	
d))				
_に示す。 農度の <u>Cs-134 約 5.0×10⁻¹⁰Bq/cm³,</u> 量は最大で年間約 <u>1.6×10⁻²m</u> Sv であ	評に作	5条件 半う 実交	ド の	王慶
	変更	Î -		

	変	更	理	由
N	周辺変更	D 監 ゼ を 反	見区域	成の
SSE W C SSW C SSW	評 に 件	五方注	去の変	更
			5	6 12

×棄却

0

<u>O</u>

Ο

0

 \times

 \times

Ο

0

Ο

0

Ο Ο

0

Ο

0

0

0

2.43

3.92

2.25

1.59

1.65

1.74

2.33

3.79

7.89

3.71

2.48

2.02

6.08

6.16

8.12

3.64

0.51

変更前

4.52

7.16

4.55

2.64

2.12

1.98

2.87

8.47

10.43

4.81

3.30

5.72

7.81

9.25

14.71

8.67

0.99

7.23

5.62

3.69

2.15

2.12

1.98

2.69

6.20

11.59

6.14

3.88

3.99

8.45

8.50

11.27

13.35

1.13

8.90

6.26

3.54

2.59

1.84

2.06

2.63

5.14

9.61

5.83

4.11

4.77

8.90

8.13

10.93

13.79

0.98

7.79

6.51

3.42

2.05

1.85

2.14

2.63

7.05

13.54

5.40

3.13

4.35

6.63

7.45

11.65

12.97

1.42

8.40

6.24

3.91

2.45

2.12

2.06

2.80

6.36

10.29

5.57

3.04

4.00

7.66

7.85

11.90

14.31

1.04

5.92

4.37

2.44

1.75

1.95

1.97

2.71

9.52

12.54

5.24

3.70

7.54

8.95

9.83

12.55

7.80

1.24

5.27

6.68

3.94

2.14

2.28

2.28

2.82

8.76

10.91

4.89

<u>3. 73</u>

6.71

9.44

9.57

12.19

7.32

1.07

風向

Ν

NNE

NE

ENE

Е

ESE

SE

SSE

S

SSW

SW

WSW

W

WNW

NW

NNW

静穏

表2.2.1-1 風向分布に対する棄却検定表

4.98

<u>5.39</u>

3.28

2.45

2.09

2.37

2.71

8.31

10.22

4.54

3.63

6.68

<u>9.31</u>

10.58

14.60

7.84

1.02

統計												検定年	棄却	限界	判定
年度	平成 12	平成 13	平成 14	平成 15	平成 16	平成 17	平成 18	平成 19	平成 20	平成 21	平均值	昭和 54	上限	下限	○採択

4.67

5.40

3.31

2.23

2.10

2.31

3.27

10.42

9.42

4.24

2.76

4.40

7.82

10.81

16.56

8.35

1.93

5.34

7.41

4.15

2.74

1.79

1.95

2.67

<u>6.85</u>

12.01

6.19

3.41

3.93

7.47

7.89

10.72

13.96

1.53

6.30

6.10

3.62

2.32

2.03

2.11

2.78

7.71

11.06

5.29

3.47

5.21

8.25

8.99

12.71

10.83

1.24

6.35

4.71

2.84

1.92

1.43

1.73

2.74

<u>6.52</u>

<u>9. 90</u>

<u>6.28</u>

<u>3.72</u>

<u>3.56</u>

<u>6.26</u>

<u>9.68</u>

14.46

16.76

1.13

10.18

8.28

4.99

3.05

2.40

2.48

3.23

11.62

14.22

<u>6.86</u>

4.46

8.40

10.41

11.81

17.30

18.03

1.97

						婆	5 更	後								変	更 ヨ	理由
			妻	₹2.	2.1	- 1	風向分	布に対	する棄	彩横河	官表					気象	条件(の変更
													<u>標高 46</u>	m(地上雨	高 10m)	に伴	う棄力	却検定
(統計	+											检定年	棄却『	界	<u>(%)</u> 判定	表の	変更	
年度	€ <u>2009</u>	<u>2011</u>	2012	<u>2013</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	平均值	2020	上限	下限(〇採択			
風向 \ N	6.35	5 32	5.58	5 60	5 79	8 25	8 58	8 15	8 30	8.97	7.09	10.21	10.59	3 60	×棄却			
NNE	4, 49	3.74	4. 32	4, 39	3, 59	4, 58	5, 03	4.74	4, 71	5, 31	4, 49	5. 76	5, 74	3. 24	×			
NE	3, 01	3, 37	3, 93	4. 09	4.24	3, 48	3, 19	2. 93	2. 34	3. 10	3, 37	3, 53	4.76	1.97	0			
ENE	3.76	2.66	2.69	2.79	2.79	2, 58	3.25	2.81	2.89	3.44	2.97	3.37	3, 89	2.05	0			
Е	2.62	2.63	2.67	2.48	2.58	2.46	1.82	1.74	2.02	2.27	2.33	1.84	3.16	1.50	0			
ESE	3.19	2.96	3.07	2.70	2.73	2.42	2.00	2.70	2.31	2.07	2.61	2.37	3.58	1.65	<u>0</u>			
SE	<u>4. 65</u>	<u>7.10</u>	5.83	<u>4. 05</u>	4.63	<u>4. 73</u>	<u>3. 44</u>	<u>4. 40</u>	<u>4.09</u>	<u>3. 58</u>	4.65	<u>3. 76</u>	7.24	2.05	0			
SSE	7.25	<u>6. 62</u>	<u>6. 62</u>	<u>7. 75</u>	7.85	<u>7. 93</u>	<u>6. 56</u>	<u>7. 90</u>	7.62	7.13	7.32	<u>6. 57</u>	<u>8. 66</u>	<u>5. 98</u>	0			
S	<u>5, 85</u>	<u>4. 99</u>	<u>5. 78</u>	<u>5. 42</u>	<u>5. 39</u>	<u>5. 14</u>	<u>6. 01</u>	<u>6. 73</u>	<u>6. 87</u>	7.23	<u>5. 94</u>	7.27	<u>7.77</u>	<u>4. 12</u>	0			
SSW	<u>3, 54</u>	<u>2. 95</u>	3.34	<u>4. 15</u>	4.23	<u>5. 48</u>	<u>5. 22</u>	<u>4. 65</u>	<u>4. 77</u>	<u>5. 23</u>	<u>4. 36</u>	<u>5. 55</u>	<u>6. 42</u>	<u>2. 30</u>	0			
SW	<u>2.96</u>	<u>2. 91</u>	<u>2. 91</u>	<u>2. 54</u>	<u>2.73</u>	<u>2. 91</u>	<u>2.40</u>	<u>2.40</u>	<u>2.05</u>	<u>2. 19</u>	<u>2.60</u>	2.21	<u>3. 39</u>	<u>1.81</u>	0			
WSW	5.00	<u>4.85</u>	4.98	<u>5.13</u>	4.15	4.09	<u>2.54</u>	<u>2.34</u>	<u>2.18</u>	2.42	3.77	2.18	<u>6.74</u>	0.79	0			
W	11.01	10.25	10.33	<u>9,96</u>	11.30	8.55	<u>6.65</u>	<u>6. 02</u>	<u>5.31</u>	4.86	8.43	<u>5.39</u>	14.32	2.53	0			
WINW	11.03	12.85	13.21	12.43	10.80	10.67	11.90	11.10	11 90	10.52	12.07	9.95	15.80	9.18	0			
NNW	9.17	9.20	9 11	9.61	10.30	11 23	14 53	12.85	15.01	15.20	11 63	14.87	17.66	5.60	0			
静积	2.10	2, 85	2. 30	2, 41	3. 29	4.84	5, 71	7.34	7.23	5, 81	4, 39	5, 38	9, 26	0.00	0			
注) 2010	年度は震	災により	り3月の	欠測率:	5 30%を見	<u>出</u> えるた	め除外											
			=	₹0	0 1	0	国油八	左にと	・ナス五	ことのような	2 ±.							
			1	ζΖ.	2. 1		風壓刀	/ 1 (C X)	りつ来	- 4月19月	EX		博 宣 4	с., (Ша I.	吉 10)			
													信向 4		<u>(1011)</u> (%)			
、 統計												検定年	棄却	限界	判定			
年度	2009	2011	2012	2013	2014	2015	2016	2017	2018	2019	平均值		1 111		○採択			
^{虬皮} 階級												2020	上限	下限	×棄却			
~ 0.4	2.10	2.85	<u>2.30</u>	<u>2.41</u>	3.29	<u>4. 84</u>	5.71	7.34	7.23	<u>5. 81</u>	4.39	<u>5. 38</u>	<u>9. 26</u>	<u>0. 00</u>	0			
$0.5 \sim 1.4$	21.12	24.85	23.09	20.38	27.40	32.14	<u>31. 01</u>	<u>34. 70</u>	<u>33. 38</u>	32.29	28.03	<u>29.76</u>	<u>40. 75</u>	<u>15. 32</u>	0			
$1.5 \sim 2.4$	35.97	35.63	33.66	33, 83	33.06	30.20	27.83	27.01	<u>26. 59</u>	27.77	31.16	<u>28, 56</u>	<u>39. 88</u>	22.43	0			
$2.5 \sim 3.4$	<u>20. 88</u>	<u>19. 15</u>	<u>21. 48</u>	<u>21. 83</u>	<u>17.42</u>	<u>17. 13</u>	<u>17. 56</u>	<u>15.88</u>	<u>16.40</u>	<u>16. 10</u>	<u>18.38</u>	<u>18.73</u>	<u>23. 80</u>	<u>12. 97</u>	0			
$3.5 \sim 4.4$	<u>10. 59</u>	<u>8.74</u>	<u>10. 18</u>	<u>10.74</u>	<u>9. 73</u>	<u>8. 87</u>	<u>9. 45</u>	<u>8.45</u>	<u>9. 08</u>	<u>8. 91</u>	<u>9.47</u>	<u>9. 33</u>	<u>11. 38</u>	<u>7. 56</u>	0			
$4.5 \sim 5.4$	<u>4. 94</u>	<u>4. 33</u>	<u>4. 97</u>	<u>5.48</u>	<u>4. 71</u>	<u>3. 95</u>	<u>4. 54</u>	<u>4.01</u>	<u>4.46</u>	<u>4. 79</u>	4.62	<u>4.43</u>	<u>5.72</u>	<u>3. 52</u>	0			
$5.5 \sim 6.4$	<u>2. 22</u>	<u>2. 07</u>	<u>2. 24</u>	<u>2. 48</u>	<u>2. 53</u>	<u>2. 09</u>	<u>2. 17</u>	<u>1.57</u>	<u>1. 99</u>	<u>2. 70</u>	<u>2. 20</u>	<u>2. 19</u>	<u>2. 96</u>	<u>1. 45</u>	0			
$5.5 \sim 7.4$	<u>1.07</u>	<u>1.02</u>	<u>0. 90</u>	<u>1.34</u>	<u>1.03</u>	<u>0. 65</u>	<u>1.14</u>	<u>0. 67</u>	<u>0. 52</u>	<u>1.04</u>	<u>0.94</u>	<u>1.03</u>	<u>1. 54</u>	0.34	0			
$7.5 \sim 8.4$	<u>0. 50</u>	<u>0. 47</u>	<u>0. 46</u>	<u>0. 80</u>	<u>0. 55</u>	<u>0. 07</u>	<u>0. 43</u>	<u>0. 22</u>	<u>0. 24</u>	<u>0. 36</u>	<u>0. 41</u>	<u>0. 42</u>	<u>0. 89</u>	<u>0. 00</u>	0			
$8.5 \sim 9.4$	<u>0. 23</u>	<u>0. 36</u>	<u>0. 26</u>	<u>0. 41</u>	<u>0. 24</u>	<u>0. 07</u>	<u>0. 09</u>	<u>0. 09</u>	<u>0. 05</u>	<u>0. 15</u>	<u>0. 20</u>	<u>0. 09</u>	<u>0. 50</u>	<u>0. 00</u>	0			
9.5~	<u>0. 37</u>	<u>0. 52</u>	<u>0. 46</u>	<u>0.31</u>	<u>0.06</u>	<u>0. 00</u>	<u>0.06</u>	<u>0.06</u>	<u>0. 07</u>	<u>0. 09</u>	<u>0. 20</u>	<u>0.06</u>	<u>0. 66</u>	<u>0. 00</u>	0			
注)2010年	= 度は震災	叱により	3月のク	て測率が	、30%を患	Ĕえるた	め除外											

表2.2.1-2 風速分布に対する棄却検定表

統計												検定年	棄却	限界	判定
年度 風速 階級	<u>平成 12</u>	平成 13	平成 14	平成 15	平成 16	平成 17	平成 18	平成 19	平成 20	平成 21	平均值	<u>昭和 54</u>	上限	下限	○採択 ×棄却
~ 0.4	<u>1.13</u>	<u>0. 98</u>	<u>1.04</u>	<u>1.42</u>	<u>1.24</u>	<u>1.07</u>	<u>0. 99</u>	<u>1. 02</u>	<u>1. 93</u>	<u>1. 53</u>	<u>1.24</u>	<u>1. 13</u>	<u>1. 97</u>	<u>0. 51</u>	0
$0.5 \sim 1.4$	<u>6.66</u>	<u>5. 19</u>	<u>6. 74</u>	<u>7.01</u>	<u>6.68</u>	<u>7.61</u>	<u>6. 63</u>	<u>7. 02</u>	<u>5.64</u>	<u>6.65</u>	<u>6.58</u>	<u>6. 27</u>	<u>8. 22</u>	<u>4. 94</u>	0
$1.5 \sim 2.4$	<u>11. 57</u>	<u>9.85</u>	<u>11. 70</u>	<u>11. 43</u>	<u>10.62</u>	<u>12. 11</u>	<u>12.69</u>	<u>12. 94</u>	<u>10. 57</u>	<u>11. 01</u>	<u>11.45</u>	<u>10. 21</u>	<u>13. 75</u>	<u>9.14</u>	0
2.5 \sim 3.4	<u>13. 13</u>	<u>13. 21</u>	<u>14.04</u>	<u>13.83</u>	<u>13. 59</u>	<u>14.06</u>	<u>15.21</u>	<u>16. 14</u>	<u>13.14</u>	<u>12. 53</u>	<u>13.89</u>	<u>13.06</u>	<u>16.44</u>	<u>11. 34</u>	0
$3.5 \sim 4.4$	<u>13. 62</u>	<u>13. 98</u>	<u>15. 59</u>	<u>13.07</u>	<u>12.73</u>	<u>15. 12</u>	<u>15. 19</u>	<u>15. 12</u>	<u>14. 47</u>	<u>13. 07</u>	<u>14.20</u>	<u>14. 30</u>	<u>16.66</u>	<u>11. 73</u>	0
4.5 \sim 5.4	<u>12. 96</u>	12.77	<u>13. 74</u>	<u>12.76</u>	<u>13. 27</u>	<u>14. 27</u>	<u>14.25</u>	<u>13. 86</u>	<u>13.00</u>	<u>12. 43</u>	<u>13.33</u>	<u>14. 50</u>	<u>14.89</u>	<u>11. 77</u>	0
5.5 \sim 6.4	<u>10. 91</u>	<u>12.21</u>	<u>11. 23</u>	<u>10. 29</u>	<u>11. 43</u>	<u>11. 82</u>	<u>11. 33</u>	<u>11. 68</u>	<u>10. 83</u>	<u>11. 85</u>	<u>11.36</u>	<u>12. 05</u>	<u>12. 71</u>	<u>10.00</u>	0
$6.5 \sim 7.4$	<u>9. 20</u>	<u>9.44</u>	<u>9. 03</u>	<u>8. 98</u>	<u>9.35</u>	<u>8.88</u>	<u>8. 54</u>	<u>8. 63</u>	<u>8. 94</u>	<u>8. 99</u>	<u>9.00</u>	<u>9. 26</u>	<u>9.67</u>	<u>8. 33</u>	0
$7.5 \sim 8.4$	<u>6. 90</u>	<u>7.48</u>	<u>5. 78</u>	<u>6.83</u>	<u>6.86</u>	<u>6. 24</u>	<u>6. 23</u>	<u>5.64</u>	<u>7.17</u>	<u>7.48</u>	<u>6.66</u>	<u>6. 46</u>	<u>8.22</u>	<u>5. 10</u>	0
$8.5 \sim 9.4$	<u>4.83</u>	<u>5.66</u>	<u>3. 71</u>	<u>4.42</u>	<u>4.60</u>	<u>4. 45</u>	<u>3. 82</u>	<u>3. 43</u>	<u>4. 95</u>	<u>5.06</u>	<u>4.49</u>	<u>4. 57</u>	<u>6.12</u>	<u>2. 87</u>	0
9.5 \sim	<u>9. 10</u>	<u>9.22</u>	<u>7. 38</u>	<u>9.95</u>	<u>9.62</u>	<u>4. 36</u>	<u>5.11</u>	<u>4. 53</u>	<u>9.35</u>	<u>9.40</u>	7.80	<u>8. 19</u>	<u>13. 20</u>	<u>2.40</u>	0

						婆	ぎ 更	後								変	更	理由
			Ā	長2.	2.1	-1,	風向分	布に交	する棄	医却横分	官表					気象	条件	の変更
													標高 46	6m(地上i	<u> 高10m)</u>	に伴	う棄	却検定
(統計	-											榆定年	棄却	限界	<u>(%)</u> 判定	表の	変更	
年度	2009	2011	2012	2013	2014	2015	2016	2017	<u>2018</u>	2019	平均值	2020	上限	下限	O 採択			
風向		5.00		5.00		0.05	0.50	0.15	0.00	0.07		2020	10.50	1 194	×棄却			
N	6.38	<u>5.32</u>	<u>5.58</u>	<u>5.60</u>	<u>5.79</u>	<u>8, 25</u>	<u>8.58</u>	8.15	8.30	<u>8.97</u>	<u>7.09</u>	<u>10, 21</u>	10.59	3.60	<u> </u>			
NIE	2.01	<u> </u>	<u>4.34</u> 2.02	4. 39	<u>3. 39</u>	4.00	<u>0.03</u> 2.10	9.02	9.24	<u>0.01</u> 2.10	4.49	<u>0.70</u> 2.52	<u>0.14</u> 4.76	<u>3. 24</u> 1. 07				
ENE	3.76	2.66	2, 69	2.79	2.79	2, 58	3, 25	2, 81	2. 89	3. 44	2.97	3, 37	3, 89	2. 05	0			
E	2, 62	2, 63	2.67	2, 48	2, 58	2. 46	1.82	1.74	2. 02	2. 27	2, 33	1.84	3, 16	1. 50	0			
ESE	3. 19	2.96	3.07	2.70	2.73	2.42	2.00	2.70	2. 31	2.07	2.61	2.37	3. 58	1.65	0			
SE	4.65	7.10	5.83	4.05	4.63	4.73	3.44	4.40	4.09	3, 58	4.65	3.76	7.24	2.05	0			
SSE	7.25	6. 62	6.62	7.75	7.85	7.93	6.56	7.90	7.62	7.13	7.32	6.57	8,66	5, 98	0			
S	5.85	4. 99	5.78	5.42	5.39	<u>5.14</u>	6.01	<u>6. 73</u>	6.87	7.23	5.94	7.27	7.77	4.12	0			
SSW	3.54	2.95	3.34	4.15	4.23	<u>5. 48</u>	5.22	<u>4. 65</u>	4.77	5.23	4.36	5, 55	6.42	2.30	0			
SW	<u>2. 96</u>	<u>2. 91</u>	2.91	2.54	<u>2.73</u>	<u>2. 91</u>	<u>2.40</u>	<u>2. 40</u>	<u>2. 05</u>	<u>2. 19</u>	<u>2. 60</u>	<u>2. 21</u>	<u>3. 39</u>	<u>1. 81</u>	0			
WSW	<u>5.00</u>	<u>4. 85</u>	<u>4. 98</u>	5, 13	4.15	<u>4. 09</u>	<u>2. 54</u>	<u>2. 34</u>	<u>2. 18</u>	<u>2. 42</u>	<u>3. 77</u>	<u>2. 18</u>	<u>6.74</u>	<u>0. 79</u>	0			
W	<u>11.01</u>	10.25	10.33	<u>9.96</u>	11.30	<u>8, 55</u>	<u>6. 65</u>	<u>6. 02</u>	<u>5. 31</u>	<u>4. 86</u>	8.43	<u>5, 39</u>	<u>14. 32</u>	<u>2, 53</u>	0			
WNW	<u>13.07</u>	12.85	13.21	12.43	13, 50	<u>10. 67</u>	<u>11. 90</u>	<u>11. 16</u>	<u>10.40</u>	10.68	<u>11. 99</u>	<u>10. 88</u>	<u>14. 79</u>	<u>9. 18</u>	0			
NW	<u>11. 93</u>	14.75	13.32	<u>14.49</u>	10.80	<u>10. 68</u>	<u>11. 17</u>	<u>11. 12</u>	<u>11. 90</u>	10.52	12.07	<u>8, 85</u>	15.80	<u>8. 33</u>	0			
NNW	<u>9. 17</u>	<u>9.20</u>	<u>9.11</u>	<u>9.61</u>	10.39	<u>11.23</u>	14.53	12.85	<u>15.01</u>	15.20	11.63	14.87	17.66	<u>5.60</u>	0			
静穏 注)2010	<u>2.10</u> 年度け信	<u>2.85</u> ビジルアナリ	<u>2.30</u> 03日の	<u>2.41</u> 欠測率	<u>3.29</u> 3.30%をi	<u>4.84</u> 招えろた	<u>5.71</u> め除外	<u>7.34</u>	7.23	<u>5, 81</u>	<u>4. 39</u>	<u>5, 38</u>	<u>9, 26</u>	0.00	0			
1007	1.00.000			210410														
			Ā	長2.	2.1	-2	風速分	布に交	する棄	和検知	Ē表							
													標高	46m(地上	<u>:高10m)</u>			
(43)														-	<u>(%)</u>			
												検定年	乗式	小 限界	判定			
風速	<u>2009</u>	2011	2012	<u>2013</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>	<u>2019</u>	平均值	2020	上限	下限	○採択 ×棄知			
階級	0.10	0.05	0.00	0.41	0.00	4.04	5 71	7.04	7.00	5.01	4.00	5.00	0.00		· · · · · ·			
~ 0.4	2. 10	2.80	22.00	20. 29	<u>3. 29</u> 27. 40	<u>4.84</u>	21.01	24 70	22 20	22.20	<u>4.39</u>	<u> </u>	<u>9.20</u>	<u>0.00</u>				
$0.5 \sim 1.4$	25.07	25.62	23.66	20.38	22.06	<u>32, 14</u> 20, 20	27 82	<u>34.70</u> 27.01	26 50	<u>34, 49</u> 97, 77	20.03	29.70	<u>40.75</u> 20.99	$\frac{10.02}{22.42}$				
1.5 - 2.4 $2.5 \sim 3.4$	20.88	19 15	21 48	21 83	17 49	17 13	17 56	15 88	16 40	16 10	18 38	18 73	23.80	12 07				
$2.5 \sim 3.4$	10.59	8 74	10 18	10 74	9.73	8.87	9.45	8 45	9.08	8 91	9.47	<u> </u>	11 38	7 56				
$4.5 \sim 5.4$	1 94	4 33	4 97	5 48	<u> </u>	3 95	4 54	4 01	4 46	<u>0.01</u> 4 79	<u> </u>	4 43	5.72	0 3.50				
$5.5 \sim 6.4$	<u>1. 51</u> 9. 99	2 07	2 24	2 48	2 53	2 09	2 17	1.57	1 99	2 70	2 20	2 19	2 96	1 45				
$6.5 \sim 7.4$	1.07	1.02	0, 90	1, 34	1, 03	0, 65	1, 14	0. 67	0. 52	1.04	0.94	1.03	1.54	0.34	0			
$7.5 \sim 8.4$	0, 50	0, 47	0, 46	0, 80	0, 55	0, 07	0, 43	0. 22	0.24	0.36	0.41	0.42	0.89	0.00				
$8.5 \sim 9.4$	0.23	0, 36	0.26	0. 41	0, 24	0. 07	0, 09	0.09	0.05	0.15	0.20	0.09	0. 50	0.00				
9.5 ~	0.37	0.52	0.46	0.31	0.06	0.00	0.06	0.06	0.07	0.09	0.20	0.06	0, 66	0.00				
注) 2010 年	度は震災	<u></u> 災により	<u>3</u> 月の	大測率が	<u>30%</u> を声	<u></u> 留えるた	<u></u> め除外					<u> </u>	<u> </u>					

変更前				変更後				変更理由				
(現行記載なし)	<u>表2.2.1-3</u> 風向別大気安定度別風速逆数の総和 標高 46m (地上高 10m)											
	大気安定度	A	<u>B</u>	<u>C</u>	D	E	<u> </u>					
	N	0	49. 59	25,66	270.33	14.08	158.66					
	<u>NNE</u>	2.47	45.20	31.57	137.18	1.68	55.83					
	<u>N E</u>	<u>1.20</u>	<u>72. 78</u>	<u>13.75</u>	<u>69.35</u>	<u>1.23</u>	<u>43. 93</u>					
	<u>ENE</u>	<u>5. 33</u>	<u>82.60</u>	<u>10.42</u>	<u>75.48</u>	<u>0.50</u>	<u>44. 08</u>					
	<u> </u>	<u>9.61</u>	<u>53. 30</u>	<u>1.90</u>	<u>44. 61</u>	<u>0.46</u>	<u>15.63</u>					
	<u>ESE</u>	<u>9. 51</u>	<u>69. 44</u>	<u>2. 53</u>	<u>64. 91</u>	<u>0</u>	<u>32.64</u>					
	<u>SE</u>	<u>6.77</u>	<u>94. 60</u>	<u>7.63</u>	<u>76.95</u>	<u>2.12</u>	<u>38.11</u>					
	<u>SSE</u>	<u>1.06</u>	<u>58. 25</u>	<u>50.05</u>	<u>92.72</u>	<u>1.65</u>	<u>28.48</u>					
	<u></u>	<u>0</u>	21.85	<u>17.64</u>	153.58	<u>19. 97</u>	78.18					
	<u>SSW</u>	<u>0</u>	<u>17. 23</u>	<u>6.33</u>	<u>132. 92</u>	<u>21. 91</u>	<u>137.30</u>					
	<u>SW</u>	<u>0</u>	<u>26.41</u>	0.46	<u>76.72</u>	<u>0</u>	<u>159.26</u>					
	WSW	12.52	<u>19.96</u>	0.29	122.16	0.50	<u>188.39</u>					
	WNW	<u> </u>	<u>49.95</u> 83.55	<u>0.50</u> 14.26	213.97	<u>0.50</u> 11.88	547 19					
	NW	1.56	49.03	14.41	208.80	15.81	326.86					
	NNW	0	61. 32	30, 10	371.03	26, 53	322.87					
(現行記載なし)	表2.2	. 1 — 4 風	,向别大気安定,	度別風速逆数	の平均及び風向	可別風速逆数の ¹ 世	区均 [高 46m(地上高 10m) (s / m)					
	<u>大気安定度</u> <u>風向</u>	A	B	<u>C</u>	<u>D</u> <u>E</u>	<u>F</u>	<u>全安定度</u>					
	<u>N</u>	<u>0</u>	0.62	<u>0.33</u>	<u>0.49</u> <u>0</u> .	<u>.37</u> <u>0.87</u>	0.56					
	<u>NNE</u>	0.61	0.54	0.31	<u>0.50</u> <u>0</u>	<u>33</u> <u>1.06</u>	0.52					
		0.60	0.52	0.35	0.64 0.	<u> 1.41 1.41 50 1.46 1</u>	0.62					
	F	0.60	0.58	0.47	0.90 0	45 1.60	0.73					
	ESE	0.63	0. 63	0. 36	0. 92	0 1.53	0, 80					
	S E	0.67	0. 51	0. 33	0.78 0.	42 1.40	0. 65					
	S S E	0.53	0. 45	0.26	0.40 0.	41 1.11	0.39					
	<u></u>	<u>0</u>	0.62	0.27	0.38 0.	36 0.82	0.44					
	<u>SSW</u>	0	0.79	0.33	<u>0.54</u> <u>0</u> .	<u>. 36</u> <u>0.84</u>	0.62					
	SW	<u>0</u>	<u>1. 22</u>	<u>0. 45</u>	<u>1.24</u>	<u>0</u> <u>1.22</u>	<u>1. 22</u>					
	<u>WSW</u>	<u>0. 78</u>	<u>1. 13</u>	0.29	1.38	<u>0</u> <u>1.32</u>	<u>1.30</u>					
	W	<u>0.67</u>	0.74	<u>0. 50</u>	<u>1. 30</u> <u>0</u>	<u>50</u> <u>1.32</u>	<u>1. 21</u>					
	WNW	<u>0. 69</u>	<u>0. 63</u>	0.32	<u>0.84</u> <u>0</u>	<u>. 35</u> <u>0. 99</u>	<u>0. 85</u>					
	NW	<u>0.77</u>	<u>0. 64</u>	<u>0.32</u>	<u>0.71</u> <u>0</u> .	<u>36</u> <u>0.89</u>	<u>0. 75</u>					
	<u>NNW</u>	<u>0</u>	<u>0. 66</u>	<u>0.32</u>	<u>0.51</u> <u>0</u> .	<u>. 39</u> <u>0. 86</u>	<u>0. 60</u>					

(現7元歳なし) <u>度</u> 2、2、1-5 風 <u>N</u> <u>NE</u> <u>NE</u> <u>E</u> <u>E</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u>	変更後	
M NNE NE ENR E SE SSF S. SW WSX W NNW NW NW	風向出現頻度及び風速 0.5	<u>~2.0m/s</u>
N NNE NE ENE E ESE SSE S SW WW WNW NNW	風向出現頻度	ļ
NE NE ENE E ESE SE SSW SW WSW WNW NNW NNW	8.5	
NE ENE E SE SSE SW WSW W WNW NW NW NW	4.5	
ENE E ESE SSE SSW SSW SSW SSW SSW SSW SSW	3. 3	_
E ESE SE S S SW W W W NW NNW	3.6	-
ESE SE SSW SW SW WSW W NW NW NNW	2.1	
SE SSE S SW WSW W WNW NW NNW	3.0	
SSE S SSW SW WSW W WNW NW NNW	<u>3. 7</u>	
S SSW SW WSW W WNW NWW NNW	3.8	
SSW SW WSW W WNW NW NNW	4.8	
SW WSW W WNW NW NNW	5.2	
WSW W WNW NW NNW	4.3	
W WNW NW NNW	<u>4.6</u>	
	<u>10.5</u>	
	<u>14. 5</u>	
<u>NNW</u>	10.2	
	13.4	

	変	更	理	由
n/s 風向出現頻度	気象	条件	この変	変更
標高 46m(地上高 10m)	に伴	う追	加	
(%)				
風速 0.5~2.0m/s				
風向出現頻度				
<u>7. 9</u>				
<u>4.0</u>				
<u>3. 1</u>				
<u>3.8</u>				
<u>2.3</u>				
<u>3. 5</u>				
<u>3. 9</u>				
<u>2.2</u>				
<u>3. 8</u>				
<u>5. 0</u>				
<u>4.5</u>				
<u>4. 5</u>				
<u>10. 6</u>				
<u>15. 9</u>				
<u>11.2</u>				
<u>13. 7</u>				

変更前				変更後				変更理由
								気象条件の変更
(現行記載なし)		表2.2	2.1-6 厘	「面別大気安定度	「別風谏逆数の	総和		に伴う追加
		<u>X81 8</u>				<u>///// </u>	131m(地上高 95m)	
						<u>177 [P]</u>	(s/m)	
	大気安定度					_		
	風向	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	<u>F</u>	
	<u>N</u>	<u>0.31</u>	<u>30. 97</u>	<u>15. 17</u>	<u>118.05</u>	<u>5. 46</u>	<u>61.21</u>	
	<u>NNE</u>	<u>2. 02</u>	<u>45. 18</u>	<u>23.72</u>	<u>85.15</u>	<u>0. 69</u>	<u>26. 22</u>	
	<u>NE</u>	<u>1. 75</u>	<u>54. 28</u>	<u>7.57</u>	<u>45. 34</u>	<u>0. 87</u>	<u>15.34</u>	
	<u>ENE</u>	<u>4.31</u>	40.57	<u>3.93</u>	47.26	0.11	<u>13. 25</u>	
	<u> </u>	<u>6.51</u>	<u>37.56</u>	<u>1.83</u>	<u>36.96</u>	0.30	10.40	
	<u>ESE</u>	<u>5.57</u> 2.00	<u>36.32</u>	<u>2.20</u>	<u>36.25</u> 20.01	0.22	<u>10.70</u>	
	<u>SSF</u>	<u> </u>	40.00	<u>0.51</u> 20.66	79.26	1.54	35.86	
	<u> </u>	<u>2.04</u> 1.70	32.05	18.34	127.89	12.66	94.97	
	<u> </u>	1. 12	17.16	2.95	60.63	5. 32	89.89	
	SW	0.40	15.90	0.47	48.81	0. 61	82.11	
	WSW	2.28	20. 52	0.12	42.47	0.11	70.71	
	W	<u>3. 80</u>	<u>29.64</u>	<u>3. 34</u>	<u>42. 95</u>	<u>1. 97</u>	<u>89. 28</u>	
	WNW	<u>0. 90</u>	<u>23. 33</u>	<u>5.46</u>	<u>67.87</u>	<u>5. 19</u>	<u>108.02</u>	
	<u>NW</u>	<u>0</u>	<u>31. 03</u>	<u>10.43</u>	<u>105.13</u>	<u>8. 10</u>	<u>138.04</u>	
	<u>N N W</u>	<u>0</u>	<u>44. 97</u>	<u>14. 38</u>	<u>176.70</u>	<u>9. 74</u>	<u>124. 88</u>	
(現行記載なし)	表2.2	2. 1-7	机向别大気安定	: <u>度別風速逆数の</u>	の平均及び風向	別風速逆数の平 標高	均 <u>131m(地上高 95m)</u> (s / m)	
	<u>大気安定度</u> 風向	A	<u>B</u>	<u> </u>	<u>) E</u>	<u>F</u>	<u>全安定度</u>	
	<u>N</u>	<u>0.31</u>	<u>0. 46</u>	0.23	<u>0. 28</u> <u>0.</u>	<u>20</u> <u>0.44</u>	<u>0.32</u>	
	<u>NNE</u>	<u>0. 50</u>	<u>0. 37</u>	0.21	<u>0. 31</u> <u>0.</u>	<u>22</u> <u>0.68</u>	<u>0.33</u>	
	<u>NE</u>	<u>0.58</u>	<u>0. 43</u>	0.26	<u>0. 41</u> <u>0.</u>	<u>28</u> <u>0.84</u>	0.43	
	<u>ENE</u>	0.54	0.44	0.30	<u>). 75 2.</u>	$\frac{00}{1.17}$	<u>0.58</u>	
	E	0.50	0.49	0.36	0.70 0.	$\frac{29}{21}$ 1.03	0.59	
	<u>ESE</u> SF	0.77	0.41	0.30	$\frac{0.57}{0.56}$ 0	$\frac{1.08}{35}$ 1.10	0.49	
	<u>SSE</u>	0. 52	0. 34	0.15	0. 31 0.	22 0.67	0.31	
	S	0. 42	0. 31	0.16	0. 22 0.	16 0.38	0. 25	
	<u> </u>	1.11	0. 43	0.21	0. 38 0.	<u>16</u> <u>0.36</u>	0.35	
	SW	0.40	0.69	0.16	0. 62 0.	<u>20</u> <u>0.43</u>	0.49	
	WSW	<u>0.21</u>	<u>0. 37</u>	0.12	<u>). 50</u> <u>2.</u>	<u>00</u> <u>0.39</u>	<u>0. 41</u>	
	W	0.20	0.22	0.11	<u>0. 31</u> <u>0.</u>	<u>14</u> <u>0.33</u>	<u>0. 28</u>	
	WNW	<u>0. 30</u>	<u>0. 28</u>	0.14	<u>0. 34</u> <u>0.</u>	<u>13</u> <u>0.37</u>	0.32	
	<u>NW</u>	<u>0</u>	<u>0. 34</u>	<u>0.15</u>	<u>0. 29</u> <u>0.</u>	<u>15 0.30</u>	<u>0. 28</u>	
	NNW	<u>0</u>	<u>0. 47</u>	0.20	<u>0. 26</u> <u>0.</u>	<u>17</u> <u>0.35</u>	0.29	

変更前		変更後		変更理由
(現行記載なし)	表2.2.1-	<u>0m/s 風向出現頻度</u>	気象条件の変更 に伴う追加	
			<u>標高 131m(地上高 95m)</u> (%)	
	風向	風向出現頻度	<u>風速 0.5~2.0m/s</u> 風向出現頻度	
	N	7.9	<u>6. 9</u>	
	NNE	<u>6. 2</u>	<u>5. 6</u>	
	NE	4.3	5.3	
	ENE	3.7	5.4	
	E	<u>3. 2</u>	4.9	
	ESE	<u>3. 1</u>	4.4	
	<u>S E</u>	<u>4. 1</u>	<u>5.4</u>	
	SSE	<u>6. 3</u>	<u>6.1</u>	
	<u></u>	<u>9.8</u>	7.2	
	SSW	<u>6. 0</u>	<u>6.0</u>	
	SW	<u>5. 1</u>	<u>6.7</u>	
	WSW	<u>4.6</u>	<u>5. 7</u>	
	W	<u>5. 8</u>	<u>5. 6</u>	
	WNW	7.2	7.1	
	NW	<u>10.0</u>	<u>7.8</u>	
	NNW	<u>12.6</u>	<u>10.0</u>	

				-你心人他们回父人吧我少		4.4/亦重百四/
		変更前				変 更 後
表2.	2. 1– <u>3</u> 1, 2	号機共用排気筒から敷地境界までの	つ距離	表2.	2. 1— <u>9</u> 1, 2	号機共用排気筒から敷地境
	計算地点の 古位	 1,2号機共用排気筒から 動地造異までの距離(m) 			計算地点の	1,2号機共用排気筒
	7712				方位	敷地境界までの距離
	8	1, 340			S	1, 340
	SSW	1, 100			SSW	1, 100
	SW	1,040			SW	1.040
	WSW	1,270			wew	1,010
					WSW	1.270

1,270

1,170

950

1,870

1,930

1,400

計算地点の	1,2 号機共用排気筒
方位	敷地境界までの距
S	1, 340
SSW	1,100
SW	1,040
WSW	1,270
W	1,270
WNW	1, 170
NW	950
NNW	1,870
N	1, 930
S 方向沿岸部	1,400

表2.2.1-<u>4</u>単位放出率あたりの年間平均濃度((Bq/cm³)/(Bq/s))

W

WNW

NW

NNW

Ν

S 方向沿岸部

-				
放出位置 評価位置	1号原子炉建屋	2号原子炉建屋	3号原子炉建屋	4号原子炉建屋
S	<u>約8.6×10⁻¹³</u>	<u>約 9.6×10⁻¹³</u>	<u>約1.1×10⁻¹²</u>	<u>約1.4×10⁻¹²</u>
SSW	<u>約7.6×10⁻¹³</u>	<u>約 8.8×10⁻¹³</u>	<u>約1.1×10⁻¹²</u>	<u>約 6.1×10⁻¹³</u>
SW	<u>約3.7×10⁻¹³</u>	<u>約4.1×10⁻¹³</u>	<u>約4.8×10⁻¹³</u>	<u>約7.9×10⁻¹³</u>
WSW	<u>約3.7×10⁻¹³</u>	<u>約4.0×10⁻¹³</u>	約4.2×10 ⁻¹³	<u>約3.6×10⁻¹³</u>
W	<u>約3.1×10⁻¹³</u>	<u>約3.2×10⁻¹³</u>	<u>約3.1×10⁻¹³</u>	<u>約3.2×10⁻¹³</u>
WNW	<u>約3.9×10⁻¹³</u>	<u>約3.8×10⁻¹³</u>	<u>約3.5×10⁻¹³</u>	<u>約 3.3×10⁻¹³</u>
NW	<u>約6.3×10⁻¹³</u>	<u>約 5.7×10⁻¹³</u>	<u>約4.8×10⁻¹³</u>	<u>約4.1×10⁻¹³</u>
NNW	<u>約 5.5×10⁻¹³</u>	<u>約 5.1×10⁻¹³</u>	<u>約4.6×10⁻¹³</u>	<u>約4.2×10⁻¹³</u>
N	<u>約8.1×10⁻¹³</u>	<u>約7.5×10⁻¹³</u>	<u>約6.8×10⁻¹³</u>	<u>約 6.2×10⁻¹³</u>
S 方向沿岸部	<u>約8.0×10⁻¹³</u>	<u>約8.9×10⁻¹³</u>	<u>約1.1×10⁻¹²</u>	約1.3×10 ⁻¹²

表2.2.1-<u>10</u>単位放出率あたりの年間平均濃度

放出位置 評価位置	1号原子炉建屋	2 号原子炉建屋	3 号原
S	<u>約2.9×10⁻¹²</u>	<u>約3.3×10⁻¹²</u>	<u>約3</u>
SSW	<u>約1.7×10⁻¹²</u>	<u>約2.0×10⁻¹²</u>	<u>約2</u>
SW	<u>約1.2×10⁻¹²</u>	<u>約1.4×10⁻¹²</u>	<u>約1</u>
WSW	<u>約 8.9×10⁻¹³</u>	約 9.5×10 ⁻¹³	約9
W	<u>約4.2×10⁻¹³</u>	<u>約4.3×10⁻¹³</u>	<u>約4</u>
WNW	<u>約 8.3×10⁻¹³</u>	<u>約 8.0×10⁻¹³</u>	<u>約7</u>
NW	<u>約1.5×10⁻¹²</u>	<u>約1.4×10⁻¹²</u>	<u>約1</u>
NNW	<u>約4.9×10⁻¹³</u>	<u>約4.6×10⁻¹³</u>	<u>約4</u>
N	<u>約9.3×10⁻¹³</u>	<u>約8.6×10⁻¹³</u>	約7
S 方向沿岸部	約 2.7×10 ⁻¹²	<u>約 3.0×10⁻¹²</u>	約3

		変	更	理	由
寛界までの距	海 推	記載	もの 通	軍正化	
<u>(m)</u>					
から					
離					
((Bq/cm ³)/(]	Bq/s))				
〔子炉建屋	4号原子炉建屋	気 第 に 伴 率 お	泉条作 ドう単 らたり	キの	変更 女出 F間
9×10^{-12}	約4.8×10 ⁻¹²	平均	习濃度	この変	更
4×10 ⁻¹²	<u>約2.0×10⁻¹²</u>				
6×10^{-12}	<u>約1.8×10⁻¹²</u>				
9×10 ⁻¹³	<u>約4.9×10⁻¹³</u>				
2×10 ⁻¹³	<u>約6.8×10⁻¹³</u>				
4×10 ⁻¹³	<u>約8.3×10⁻¹³</u>				
2×10^{-12}	<u>約1.0×10⁻¹²</u>				
1×10 ⁻¹³	<u>約3.8×10⁻¹³</u>				
8×10 ⁻¹³	<u>約7.1×10⁻¹³</u>				
6×10^{-12}	<u>約4.3×10⁻¹²</u>				
		1			

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

发 更 前								
表2.2.1- <u>5</u> Cs-134 <u>及び Cs-137</u> の年間平均濃度(Bq/cm ³)								
放出位置 評価位置	1号 原子炉建屋	2 号 原子炉建屋	3号 原子炉建屋	4号 原子炉建屋	合計			
S	<u>約4.0×10⁻¹⁰</u>	<u>約 9.1×10⁻¹¹</u>	<u>約8.1×10⁻¹⁰</u>	<u>約1.7×10⁻¹⁰</u>	<u>約1.5×10-9</u>			
SSW	<u>約3.6×10⁻¹⁰</u>	<u>約 8.2×10⁻¹¹</u>	<u>約7.5×10⁻¹⁰</u>	<u>約7.2×10⁻¹¹</u>	<u>約1.3×10-9</u>			
SW	<u>約1.7×10⁻¹⁰</u>	約 3.9×10 ⁻¹¹	約3.4×10 ⁻¹⁰	約 9.3×10 ⁻¹¹	約 6.4×10 ⁻¹⁰			
WSW	<u>約1.8×10⁻¹⁰</u>	<u>約 3.7×10⁻¹¹</u>	<u>約2.9×10⁻¹⁰</u>	<u>約4.2×10⁻¹¹</u>	<u>約5.5×10-10</u>			
W	<u>約1.5×10⁻¹⁰</u>	<u>約3.0×10⁻¹¹</u>	<u>約2.2×10⁻¹⁰</u>	<u>約3.8×10⁻¹¹</u>	<u>約4.3×10⁻¹⁰</u>			
WNW	<u>約1.9×10⁻¹⁰</u>	<u>約 3.6×10⁻¹¹</u>	<u>約2.5×10⁻¹⁰</u>	約 3.9×10 ⁻¹¹	<u>約5.1×10⁻¹⁰</u>			
NW	<u>約2.9×10⁻¹⁰</u>	<u>約 5.3×10⁻¹¹</u>	<u>約3.4×10⁻¹⁰</u>	<u>約4.8×10⁻¹¹</u>	<u>約7.4×10⁻¹⁰</u>			
NNW	<u>約2.6×10⁻¹⁰</u>	<u>約4.8×10⁻¹¹</u>	<u>約3.3×10⁻¹⁰</u>	<u>約5.0×10⁻¹¹</u>	<u>約6.9×10⁻¹⁰</u>			
N	<u>約 3.8×10⁻¹⁰</u>	<u>約7.1×10⁻¹¹</u>	<u>約4.8×10⁻¹⁰</u>	<u>約7.3×10⁻¹¹</u>	<u>約1.0×10-9</u>			
S 方向沿岸部	約 3.8×10 ⁻¹⁰	約 8.4×10 ⁻¹¹	約7.5×10 ⁻¹⁰	約1.5×10 ⁻¹⁰	約 1.4×10-9			

(現行記載なし)

変更後

	表2.2.1- <u>11</u> Cs-134の年間平均濃度(Bq/cm ³)						
	放出位置 評価位置	1号 原子炉建屋	2 号 原子炉建屋	3 号 原子炉建屋	4号 原子炉建屋	合計	
	S	約1.4×10 ⁻¹⁰	約 3.1×10 ⁻¹¹	約2.8×10 ⁻¹⁰	<u>約5.7×10⁻¹¹</u>	<u>約5.0×10⁻¹⁰</u>	評価条件の変更
	SSW	<u>約8.0×10⁻¹¹</u>	<u>約1.8×10⁻¹¹</u>	<u>約1.7×10⁻¹⁰</u>	<u>約2.3×10⁻¹¹</u>	<u>約2.9×10⁻¹⁰</u>	に伴う年間平均
	SW	<u>約 5.7×10⁻¹¹</u>	<u>約1.3×10⁻¹¹</u>	<u>約1.1×10⁻¹⁰</u>	<u>約2.2×10⁻¹¹</u>	約2.0×10 ⁻¹⁰	派及り友父
	WSW	<u>約 4.2×10⁻¹¹</u>	<u>約 8.9×10⁻¹²</u>	<u>約7.0×10⁻¹¹</u>	<u>約5.8×10⁻¹²</u>	<u>約1.3×10⁻¹⁰</u>	
	W	<u>約2.0×10⁻¹¹</u>	約4.1×10 ⁻¹²	<u>約3.0×10⁻¹¹</u>	<u>約8.2×10⁻¹²</u>	約 6.2×10 ⁻¹¹	
	WNW	<u>約3.9×10⁻¹¹</u>	<u>約7.5×10⁻¹²</u>	<u>約5.2×10⁻¹¹</u>	<u>約9.9×10⁻¹²</u>	<u>約1.1×10⁻¹⁰</u>	
	NW	<u>約7.0×10⁻¹¹</u>	<u>約1.3×10⁻¹¹</u>	<u>約8.3×10⁻¹¹</u>	<u>約1.2×10⁻¹¹</u>	<u>約1.8×10⁻¹⁰</u>	
	NNW	約 2.3×10 ⁻¹¹	<u>約 4.3×10⁻¹²</u>	<u>約2.9×10⁻¹¹</u>	<u>約4.5×10⁻¹²</u>	約 6.1×10 ⁻¹¹	
	Ν	<u>約4.4×10⁻¹¹</u>	<u>約 8.1×10⁻¹²</u>	<u>約 5.5×10⁻¹¹</u>	<u>約8.5×10⁻¹²</u>	<u>約1.2×10⁻¹⁰</u>	
	S 方向沿岸部	<u>約1.3×10⁻¹⁰</u>	約 2.9×10 ⁻¹¹	<u>約2.6×10⁻¹⁰</u>	<u>約5.2×10⁻¹¹</u>	約4.6×10 ⁻¹⁰	
		<u>表2.2.</u>	<u>l – 1 2 Cs-137</u>	7の年間平均濃度	<u>(Bq/cm³)</u>		評価条件の変更
	<u>放田位直</u> 評価位置	<u>1号</u> 原子炉建屋	<u>2 号</u> 原子炉建屋	<u>3号</u> 原子炉建屋	<u>4号</u> 原子炉建屋	<u>合計</u>	に伴う年間平均 濃度の追加
The	<u>放田位置</u> 平価位置 <u>S</u>	<u>1号</u> 原子炉建屋 約1.4×10 ⁻⁹	<u>2 号</u> 原子炉建屋 約 3.1×10 ⁻¹⁰	<u>3 号</u> 原子炉建屋 約 2.8×10 ⁻⁹	<u>4 号</u> 原子炉建屋 約 5.7×10 ⁻¹⁰	<u>合計</u> 約 5.0×10 ⁻⁹	に伴う年間平均 濃度の追加
	<u>放出位直</u> 評価位置 <u>SSW</u>	<u>1号</u> 原子炉建屋 約1.4×10 ⁻⁹ 約8.0×10 ⁻¹⁰	<u>2 号</u> 原子炉建屋 約 3.1×10 ⁻¹⁰ 約 1.8×10 ⁻¹⁰	<u>3 号</u> 原子炉建屋 約 2.8×10 ⁻⁹ 約 1.7×10 ⁻⁹	<u>4 号</u> 原子炉建屋 約 5.7×10 ⁻¹⁰ 約 2.3×10 ⁻¹⁰	<u>合計</u> 約 5.0×10 ⁻⁹ 約 2.9×10 ⁻⁹	に伴う年間平均 濃度の追加
	<u>放出位直</u> 評価位置 <u>SSW</u> <u>SSW</u>	<u>1号</u> 原子炉建屋 約1.4×10 ⁻⁹ 約8.0×10 ⁻¹⁰ 約5.7×10 ⁻¹⁰	<u>2 号</u> 原子炉建屋 約 3.1×10 ⁻¹⁰ 約 1.8×10 ⁻¹⁰ 約 1.3×10 ⁻¹⁰	<u>3 号</u> 原子炉建屋 約 2.8×10 ⁻⁹ 約 1.7×10 ⁻⁹ 約 1.1×10 ⁻⁹	<u>4 号</u> 原子炉建屋 約 5.7×10 ⁻¹⁰ 約 2.3×10 ⁻¹⁰ 約 2.2×10 ⁻¹⁰	<u>合計</u> 約 5.0×10 ⁻⁹ 約 2.9×10 ⁻⁹ 約 2.0×10 ⁻⁹	に伴う年間平均 濃度の追加
	<u>放田位直</u> <u> 平価位置</u> <u> SSW</u> <u> SSW</u> <u> SW</u> <u> WSW</u>	<u>1号</u> 原子炉建屋 約1.4×10 ⁻⁹ 約8.0×10 ⁻¹⁰ 約5.7×10 ⁻¹⁰ 約4.2×10 ⁻¹⁰	<u>2 号</u> 原子炉建屋 約 3.1×10 ⁻¹⁰ 約 1.8×10 ⁻¹⁰ 約 1.3×10 ⁻¹⁰ 約 8.9×10 ⁻¹¹	<u>3 号</u> 原子炉建屋 約 2.8×10 ⁻⁹ 約 1.7×10 ⁻⁹ 約 1.1×10 ⁻⁹ 約 7.0×10 ⁻¹⁰	<u>4 号</u> 原子炉建屋 約 5.7×10 ⁻¹⁰ 約 2.3×10 ⁻¹⁰ 約 2.2×10 ⁻¹⁰ 約 5.8×10 ⁻¹¹	<u>合計</u> 約5.0×10 ⁻⁹ 約2.9×10 ⁻⁹ 約2.0×10 ⁻⁹ 約1.3×10 ⁻⁹	に伴う年間平均 濃度の追加
	<u>放田位置</u> <u> <u> </u> /u>	<u>1号</u> 原子炉建屋 約1.4×10 ⁻⁹ 約8.0×10 ⁻¹⁰ 約5.7×10 ⁻¹⁰ 約4.2×10 ⁻¹⁰ 約2.0×10 ⁻¹⁰	<u>2 号</u> 原子炉建屋 約 3.1×10 ⁻¹⁰ 約 1.8×10 ⁻¹⁰ 約 1.3×10 ⁻¹⁰ 約 8.9×10 ⁻¹¹ 約 4.1×10 ⁻¹¹	<u>3 号</u> 原子炉建屋 約 2.8×10 ⁻⁹ 約 1.7×10 ⁻⁹ 約 1.1×10 ⁻⁹ 約 7.0×10 ⁻¹⁰ 約 3.0×10 ⁻¹⁰	<u>4 号</u> 原子炉建屋 約 5.7×10 ⁻¹⁰ 約 2.3×10 ⁻¹⁰ 約 2.2×10 ⁻¹⁰ 約 5.8×10 ⁻¹¹ 約 8.2×10 ⁻¹¹	<u>合計</u> 約5.0×10 ⁻⁹ 約2.9×10 ⁻⁹ 約2.0×10 ⁻⁹ 約1.3×10 ⁻⁹ 約6.2×10 ⁻¹⁰	に伴う年間平均 濃度の追加
	<u>放田位直</u> <u> </u> <u> /u>	<u>1</u> 号 原子炉建屋 約1.4×10 ⁻⁹ 約8.0×10 ⁻¹⁰ 約5.7×10 ⁻¹⁰ 約4.2×10 ⁻¹⁰ 約2.0×10 ⁻¹⁰ 約3.9×10 ⁻¹⁰	<u>2</u> 号 原子炉建屋 約3.1×10 ⁻¹⁰ 約1.8×10 ⁻¹⁰ 約1.3×10 ⁻¹⁰ 約8.9×10 ⁻¹¹ 約4.1×10 ⁻¹¹ 約7.5×10 ⁻¹¹	3号 原子炉建屋 約2.8×10 ⁻⁹ 約1.7×10 ⁻⁹ 約1.1×10 ⁻⁹ 約7.0×10 ⁻¹⁰ 約3.0×10 ⁻¹⁰ 約5.2×10 ⁻¹⁰	<u>4 号</u> 原子炉建屋 約 5.7×10 ⁻¹⁰ 約 2.3×10 ⁻¹⁰ 約 2.2×10 ⁻¹⁰ 約 5.8×10 ⁻¹¹ 約 8.2×10 ⁻¹¹ 約 9.9×10 ⁻¹¹	<u>合計</u> 約5.0×10 ⁻⁹ 約2.9×10 ⁻⁹ 約2.0×10 ⁻⁹ 約1.3×10 ⁻⁹ 約6.2×10 ⁻¹⁰ 約1.1×10 ⁻⁹	に伴う年間平均 濃度の追加
	<u>放田位直</u> <u>S</u> <u>SSW</u> <u>SSW</u> <u>SW</u> <u>WSW</u> <u>WNW</u> <u>NW</u>	1号 原子炉建屋 約1.4×10 ⁻⁹ 約5.7×10 ⁻¹⁰ 約4.2×10 ⁻¹⁰ 約2.0×10 ⁻¹⁰ 約3.9×10 ⁻¹⁰ 約7.0×10 ⁻¹⁰	2号 原子炉建屋 約3.1×10 ⁻¹⁰ 約1.8×10 ⁻¹⁰ 約1.3×10 ⁻¹⁰ 約8.9×10 ⁻¹¹ 約4.1×10 ⁻¹¹ 約7.5×10 ⁻¹¹ 約1.3×10 ⁻¹⁰	3号 原子炉建屋 約2.8×10 ⁻⁹ 約1.7×10 ⁻⁹ 約1.1×10 ⁻⁹ 約7.0×10 ⁻¹⁰ 約3.0×10 ⁻¹⁰ 約5.2×10 ⁻¹⁰ 約8.3×10 ⁻¹⁰	<u>4 号</u> 原子炉建屋 約 5.7×10 ⁻¹⁰ 約 2.3×10 ⁻¹⁰ 約 2.2×10 ⁻¹⁰ 約 5.8×10 ⁻¹¹ 約 8.2×10 ⁻¹¹ 約 9.9×10 ⁻¹¹	<u>合計</u> 約5.0×10 ⁻⁹ 約2.9×10 ⁻⁹ 約2.0×10 ⁻⁹ 約1.3×10 ⁻⁹ 約6.2×10 ⁻¹⁰ 約1.1×10 ⁻⁹ 約1.8×10 ⁻⁹	に伴う年間平均 濃度の追加
	放田位直 Y価位置 SSW SSW SW WSW W WNW NW NNW	1号 原子炉建屋 約1.4×10 ⁻⁹ 約5.7×10 ⁻¹⁰ 約5.7×10 ⁻¹⁰ 約2.0×10 ⁻¹⁰ 約3.9×10 ⁻¹⁰ 約7.0×10 ⁻¹⁰	2号 原子炉建屋 約3.1×10 ⁻¹⁰ 約1.8×10 ⁻¹⁰ 約1.3×10 ⁻¹⁰ 約4.1×10 ⁻¹¹ 約7.5×10 ⁻¹¹ 約1.3×10 ⁻¹⁰ 約4.1×10 ⁻¹¹ 約1.3×10 ⁻¹⁰ 約1.3×10 ⁻¹¹	3号 原子炉建屋 約2.8×10 ⁻⁹ 約1.7×10 ⁻⁹ 約1.1×10 ⁻⁹ 約7.0×10 ⁻¹⁰ 約3.0×10 ⁻¹⁰ 約5.2×10 ⁻¹⁰ 約8.3×10 ⁻¹⁰ 約2.9×10 ⁻¹⁰	<u>4 号</u> 原子炉建屋 約 5.7×10 ⁻¹⁰ 約 2.3×10 ⁻¹⁰ 約 2.2×10 ⁻¹⁰ 約 5.8×10 ⁻¹¹ 約 8.2×10 ⁻¹¹ 約 9.9×10 ⁻¹¹ 約 1.2×10 ⁻¹⁰	<u>合計</u> 約5.0×10 ⁻⁹ 約2.9×10 ⁻⁹ 約2.0×10 ⁻⁹ 約1.3×10 ⁻⁹ 約1.3×10 ⁻⁹ 約1.1×10 ⁻⁹ 約1.1×10 ⁻⁹ 約1.8×10 ⁻⁹	に伴う年間平均 濃度の追加
	放田位直 <u>S</u> <u>SSW</u> <u>SSW</u> <u>SW</u> <u>WSW</u> <u>W</u> <u>NW</u> <u>NW</u> <u>N</u>	1号 原子炉建屋 約1.4×10 ⁻⁹ 約5.7×10 ⁻¹⁰ 約5.7×10 ⁻¹⁰ 約2.0×10 ⁻¹⁰ 約7.0×10 ⁻¹⁰ 約2.3×10 ⁻¹⁰ 約2.3×10 ⁻¹⁰	2号 原子炉建屋 約3.1×10 ⁻¹⁰ 約1.8×10 ⁻¹⁰ 約1.3×10 ⁻¹⁰ 約4.1×10 ⁻¹¹ 約7.5×10 ⁻¹¹ 約1.3×10 ⁻¹⁰ 約4.1×10 ⁻¹¹ 約5.1×10 ⁻¹¹ 約4.3×10 ⁻¹⁰ 約4.3×10 ⁻¹¹	3号 原子炉建屋 約2.8×10 ⁻⁹ 約1.7×10 ⁻⁹ 約1.1×10 ⁻⁹ 約7.0×10 ⁻¹⁰ 約3.0×10 ⁻¹⁰ 約5.2×10 ⁻¹⁰ 約2.9×10 ⁻¹⁰ 約5.5×10 ⁻¹⁰	4 号原子炉建屋約 5.7×10 ⁻¹⁰ 約 2.3×10 ⁻¹⁰ 約 2.2×10 ⁻¹⁰ 約 5.8×10 ⁻¹¹ 約 5.2×10 ⁻¹¹ 約 9.9×10 ⁻¹¹ 約 1.2×10 ⁻¹⁰ 約 4.5×10 ⁻¹¹ 約 8.5×10 ⁻¹¹	<u>合計</u> 約5.0×10 ⁻⁹ 約2.9×10 ⁻⁹ 約2.0×10 ⁻⁹ 約1.3×10 ⁻⁹ 約1.3×10 ⁻⁹ 約1.1×10 ⁻⁹ 約1.1×10 ⁻⁹ 約1.8×10 ⁻⁹ 約6.1×10 ⁻¹⁰	に伴う年間平均 濃度の追加
	放田位直 Y価位置 SSW SSW SW WSW W WNW NW NNW NNW NNW NNW S S S S	1号 原子炉建屋 約1.4×10 ⁻⁹ 約5.7×10 ⁻¹⁰ 約5.7×10 ⁻¹⁰ 約2.0×10 ⁻¹⁰ 約7.0×10 ⁻¹⁰ 約2.3×10 ⁻¹⁰ 約2.3×10 ⁻¹⁰ 約4.4×10 ⁻¹⁰	2号 原子炉建屋 約3.1×10 ⁻¹⁰ 約1.8×10 ⁻¹⁰ 約1.3×10 ⁻¹⁰ 約8.9×10 ⁻¹¹ 約4.1×10 ⁻¹¹ 約7.5×10 ⁻¹¹ 約1.3×10 ⁻¹⁰ 約3.1×10 ⁻¹¹ 約7.5×10 ⁻¹¹ 約1.3×10 ⁻¹⁰ 約1.3×10 ⁻¹¹ 約2.9×10 ⁻¹¹	3号原子炉建屋約2.8×10 ⁻⁹ 約1.7×10 ⁻⁹ 約1.7×10 ⁻⁹ 約1.1×10 ⁻⁹ 約7.0×10 ⁻¹⁰ 約3.0×10 ⁻¹⁰ 約5.2×10 ⁻¹⁰ 約2.9×10 ⁻¹⁰ 約5.5×10 ⁻¹⁰ 約2.6×10 ⁻⁹	4号原子炉建屋約5.7×10 ⁻¹⁰ 約2.3×10 ⁻¹⁰ 約2.2×10 ⁻¹⁰ 約2.2×10 ⁻¹¹ 約5.8×10 ⁻¹¹ 約5.2×10 ⁻¹¹ 約4.5×10 ⁻¹¹ 約8.2×10 ⁻¹¹ 約5.2×10 ⁻¹¹	<u>合計</u> 約5.0×10 ⁻⁹ 約2.9×10 ⁻⁹ 約2.0×10 ⁻⁹ 約1.3×10 ⁻⁹ 約6.2×10 ⁻¹⁰ 約1.1×10 ⁻⁹ 約1.1×10 ⁻⁹ 約1.1×10 ⁻⁹ 約1.2×10 ⁻⁹	に伴う年間平均 濃度の追加
	放田位直 Y価位置 SSW SSW SW WSW W NW NW	1号 原子炉建屋 約1.4×10 ⁻⁹ 約8.0×10 ⁻¹⁰ 約5.7×10 ⁻¹⁰ 約2.0×10 ⁻¹⁰ 約3.9×10 ⁻¹⁰ 約7.0×10 ⁻¹⁰ 約1.3×10 ⁻⁹	2号 原子炉建屋 約3.1×10 ⁻¹⁰ 約1.8×10 ⁻¹⁰ 約1.3×10 ⁻¹⁰ 約4.1×10 ⁻¹¹ 約7.5×10 ⁻¹¹ 約1.3×10 ⁻¹⁰ 約2.9×10 ⁻¹¹ 約3.1×10 ⁻¹¹	3号原子炉建屋約2.8×10 ⁻⁹ 約1.7×10 ⁻⁹ 約1.1×10 ⁻⁹ 約1.0×10 ⁻¹⁰ 約7.0×10 ⁻¹⁰ 約3.0×10 ⁻¹⁰ 約5.2×10 ⁻¹⁰ 約5.5×10 ⁻¹⁰ 約2.6×10 ⁻⁹	4号原子炉建屋約5.7×10 ⁻¹⁰ 約2.3×10 ⁻¹⁰ 約2.2×10 ⁻¹⁰ 約5.8×10 ⁻¹¹ 約5.8×10 ⁻¹¹ 約9.9×10 ⁻¹¹ 約1.2×10 ⁻¹⁰ 約4.5×10 ⁻¹¹ 約5.2×10 ⁻¹⁰ 約5.2×10 ⁻¹⁰	合計 約 5. 0×10^{-9} 約 2. 9×10^{-9} 約 2. 0×10^{-9} 約 1. 3×10^{-9} 約 6. 2×10^{-10} 約 1. 1×10^{-9} 約 1. 8×10^{-9} 約 6. 1×10^{-10} 約 4. 6×10^{-9}	に伴う年間平均 濃度の追加

変更理由

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

変更前								
表2.2.1- <u>6</u> Cs-134 の単位放出率あたりの実効線量 ((µ Sv/年)/(Bq/s))								
放出位置 評価位置	1号原子炉建屋	2号原子炉建屋	3号原子炉建屋	4号原子炉建屋				
S	<u>約 7.7×10-7</u>	<u>約 8.5×10-7</u>	<u>約 9.8×10-7</u>	<u>約1.2×10-6</u>				
SSW	<u>約7.0×10-7</u>	<u>約7.6×10-7</u>	<u>約 8.3×10-7</u>	<u>約9.0×10⁻⁷</u>				
SW	<u>約 4.5×10-7</u>	<u>約 5.2×10-7</u>	<u>約 6.1×10-7</u>	<u>約7.2×10⁻⁷</u>				
WSW	<u>約 4.0×10-7</u>	<u>約4.2×10-7</u>	<u>約4.3×10-7</u>	<u>約4.3×10⁻⁷</u>				
W	<u>約 3.7×10-7</u>	<u>約 3.7×10-7</u>	<u>約 3.6×10-7</u>	<u>約3.4×10⁻⁷</u>				
WNW	<u>約 3.9×10-7</u>	<u>約 3.9×10-7</u>	<u>約 3.8×10-7</u>	<u>約3.7×10⁻⁷</u>				
NW	<u>約 6.9×10-7</u>	<u>約 6.7×10-7</u>	<u>約7.2×10-7</u>	<u>約7.4×10⁻⁷</u>				
NNW	<u>約 5.9×10-7</u>	<u>約 5.8×10-7</u>	<u>約 5.5×10-7</u>	<u>約5.1×10⁻⁷</u>				
N	<u>約7.8×10-7</u>	<u>約7.4×10-7</u>	<u>約 6.8×10-7</u>	<u>約6.3×10⁻⁷</u>				
S 方向沿岸部	<u>約 8.5×10-7</u>	<u>約 9.6×10-7</u>	<u>約1.1×10-6</u>	<u>約1.3×10⁻⁶</u>				

変更後						
表2.2.	1 – <u>1 3</u> Cs-134 0	D単位放出率あたりの	D実効線量((μSv/年	=)/(Bq/s))	記載の適正化	
放出位置 評価位置	1号原子炉建屋	2 号原子炉建屋	3号原子炉建屋	4号原子炉建屋		
S	<u>約2.4×10-6</u>	<u>約2.6×10-6</u>	<u>約3.0×10-6</u>	<u>約3.4×10-6</u>	気象条件の変更	
SSW	<u>約1.5×10-6</u>	<u>約1.6×10-6</u>	<u>約1.8×10-6</u>	<u>約2.0×10⁻⁶</u>	に伴う単位放出	
SW	<u>約1.1×10-6</u>	<u>約1.2×10-6</u>	<u>約1.3×10-6</u>	<u>約1.5×10⁻⁶</u>	率あたりの実効	
WSW	<u>約8.3×10-7</u>	<u>約8.1×10-7</u>	<u>約7.5×10-7</u>	<u>約6.6×10⁻⁷</u>	緑重の変更	
W	<u>約4.8×10-7</u>	<u>約4.9×10-7</u>	<u>約 5.3×10-7</u>	<u>約 5.7×10⁻⁷</u>		
WNW	<u>約7.4×10-7</u>	<u>約7.6×10-7</u>	<u>約7.5×10-7</u>	<u>約7.3×10⁻⁷</u>		
NW	<u>約1.3×10-6</u>	<u>約1.2×10-6</u>	<u>約1.1×10-6</u>	<u>約 9.9×10⁻⁷</u>		
NNW	<u>約5.6×10-7</u>	<u>約5.3×10-7</u>	<u>約5.0×10-7</u>	<u>約4.7×10⁻⁷</u>		
N	<u>約8.8×10-7</u>	<u>約8.3×10-7</u>	<u>約7.7×10-7</u>	<u>約7.1×10⁻⁷</u>		
S 方向沿岸部	<u>約2.5×10-6</u>	<u>約2.8×10-6</u>	<u>約3.2×10-6</u>	<u>約3.7×10⁻⁶</u>		
表2.2.	1- <u>14</u> Cs-137の 1号原子炉建屋	D単位放出率あたりの 2 号原子炉建屋	D実効線量((μSv/年 3号原子炉建屋	^E)/(Bq/s)) 4 号原子炉建屋	記載の適正化	
計1回1立直	¥19.0×10 ⁻⁷	約1.0×10 ⁻⁶	終11.0×10 ⁻⁶	¥5113×10 ⁻⁶	戸舟を供の亦更	
SSW	<u>約5.0×10</u> 約5.7×10 ⁻⁷	<u>約6.2×10-7</u>	<u>約6.9×10-7</u>	<u>約7.6×10-7</u>	ス家条件の変更 に伴う単位放出	
SW	<u>称7.0.7×10</u> 約.4.2×10 ⁻⁷	<u>称1.6×10⁻⁷</u>	<u>称5.5×10</u> 約5.1×10 ⁻⁷	<u>称5.6×10⁻⁷</u>	率あたりの実効	
WSW	<u>約4.2×10</u> 約3.2×10 ⁻⁷	<u>約4.0×10</u> 約3.1×10 ⁻⁷	<u>約2.9×10⁻⁷</u>	<u>称9.5×10-7</u> 約2.5×10-7	線量の変更	
W	<u>約1.8×10⁻⁷</u>	<u>約1.9×10⁻⁷</u>	<u>約2.0×10⁻⁷</u>	<u>約2.2×10⁻⁷</u>		
WNW	約 2.9×10 ⁻⁷	約 2.9×10 ⁻⁷	約 2.9×10 ⁻⁷	約 2.8×10 ⁻⁷		
NW	約 4.9×10 ⁻⁷	約 4.7×10 ⁻⁷	約 4. 2×10 ⁻⁷	約 3.8×10 ⁻⁷		
NNW	約 2.1×10 ⁻⁷	約 2.0×10 ⁻⁷	約 1.9×10 ⁻⁷	約 1.8×10 ⁻⁷		
N	約 3.4×10 ⁻⁷	約 3.2×10 ⁻⁷	約 3.0×10 ⁻⁷	約 2.7×10 ⁻⁷		
S 方向沿岸部	約 9.7×10 ⁻⁷	約 1.1×10 ⁻⁶	約 1.2×10 ⁻⁶	約 1.4×10 ⁻⁶		

表 2. 2. 1-<u>7</u> Cs-137 の単位放出率あたりの実効線量((µ Sv/年)/(Bq/s))

放出位置 評価位置	1号原子炉建屋	2号原子炉建屋	3号原子炉建屋	4号原子炉建屋
S	<u>約3.0×10-7</u>	<u>約3.3×10-7</u>	<u>約3.8×10-7</u>	<u>約4.4×10-7</u>
SSW	<u>約2.7×10-7</u>	<u>約2.9×10-7</u>	<u>約 3.2×10-7</u>	<u>約3.4×10-7</u>
SW	<u>約 1.7×10-7</u>	<u>約2.0×10-7</u>	<u>約2.3×10-7</u>	<u>約2.7×10⁻⁷</u>
WSW	<u>約1.6×10-7</u>	<u>約1.6×10-7</u>	<u>約1.6×10-7</u>	<u>約1.7×10⁻⁷</u>
W	<u>約1.4×10-7</u>	<u>約 1.4×10-7</u>	<u>約1.4×10-7</u>	<u>約1.3×10⁻⁷</u>
WNW	<u>約 1.5×10-7</u>	<u>約 1.5×10-7</u>	<u>約 1.5×10-7</u>	<u>約1.4×10⁻⁷</u>
NW	<u>約2.6×10-7</u>	<u>約2.6×10-7</u>	<u>約2.8×10-7</u>	<u>約2.8×10⁻⁷</u>
NNW	<u>約2.3×10-7</u>	<u>約2.2×10-7</u>	<u>約2.1×10-7</u>	<u>約2.0×10⁻⁷</u>
N	<u>約3.0×10-7</u>	<u>約2.8×10-7</u>	<u>約2.6×10-7</u>	<u>約2.4×10⁻⁷</u>
S 方向沿岸部	約 3.3×10-7	約 3.7×10-7	<u>約4.3×10-7</u>	<u>約5.0×10-7</u>

変更後						
表2.2.	1 – <u>1 3</u> Cs-134 0	の単位放出率あたりの	D実効線量((μSv/年	=)/(Bq/s))	記載の適正化	
放出位置 評価位置	1号原子炉建屋	2 号原子炉建屋	3 号原子炉建屋	4号原子炉建屋		
S	<u>約2.4×10-6</u>	<u>約2.6×10-6</u>	<u>約3.0×10-6</u>	<u>約3.4×10-6</u>	気象条件の変更	
SSW	<u>約1.5×10-6</u>	<u>約1.6×10-6</u>	<u>約1.8×10-6</u>	<u>約2.0×10-6</u>	に伴う単位放出	
SW	<u>約1.1×10-6</u>	<u>約1.2×10-6</u>	<u>約1.3×10-6</u>	<u>約1.5×10⁻⁶</u>	率あたりの実効	
WSW	<u>約8.3×10-7</u>	<u>約8.1×10-7</u>	<u>約7.5×10-7</u>	<u>約6.6×10-7</u>	緑重の変更	
W	<u>約4.8×10-7</u>	<u>約4.9×10-7</u>	<u>約5.3×10-7</u>	<u>約5.7×10-7</u>		
WNW	<u>約7.4×10-7</u>	<u>約7.6×10-7</u>	<u>約7.5×10-7</u>	<u>約7.3×10⁻⁷</u>		
NW	<u>約1.3×10-6</u>	<u>約1.2×10-6</u>	<u>約1.1×10-6</u>	<u>約9.9×10-7</u>		
NNW	<u>約5.6×10-7</u>	<u>約5.3×10-7</u>	<u>約 5.0×10-7</u>	<u>約4.7×10-7</u>		
Ν	<u>約8.8×10-7</u>	<u>約8.3×10-7</u>	<u>約7.7×10-7</u>	<u>約7.1×10-7</u>		
S 方向沿岸部	<u>約2.5×10-6</u>	<u>約2.8×10-6</u>	<u>約3.2×10-6</u>	<u>約3.7×10⁻⁶</u>		
表2.2.	1- <u>14</u> Cs-137の 1号原子炉建屋	の単位放出率あたりの 2 号原子炉建屋	D実効線量((μSv/年 3号原子炉建屋	^(E) /(Bq/s)) 4 号原子炉建屋	記載の適正化	
評価位直	約0.0×10-7	約1.0×10-6	約10×10-6	約1.2 × 10-6	日午在小小。本王	
S W22	<u>赤り9.0×10⁻⁷</u> 約.5.7×10 ⁻⁷	<u>赤り1.0×10⁻⁷</u> 約6.2×10 ⁻⁷	<u>赤り1.0×10⁻⁷</u> 約6.0×10 ⁻⁷	<u>赤り1.3×10⁻⁷</u> 約7.6×10 ⁻⁷	気象条件の変更に伴う単位放出	
55%	<u>赤り5.7×10⁻⁷</u>	<u>赤り0.2×10</u> 約4.6×10-7	<u>赤り0.9×10⁻⁷</u>	<u>赤り7.0×10⁻⁷</u>	率あたりの実効	
Sw WSW	<u>赤94.2×10</u> 約3.2×10 ⁻⁷	<u>赤94.0×10</u> 約3.1×10 ⁻⁷	<u>赤り3.1×10</u> 約2.0×10 ⁻⁷	<u>赤9.5.6×10</u> 約.2.5×10 ⁻⁷	線量の変更	
w	<u>赤9.3.2×10</u> 約1.8×10 ⁻⁷	<u>新3.1×10</u> 約1.9×10 ⁻⁷	<u>赤り2.9×10</u> 約2.0×10 ⁻⁷	<u>赤り2.3×10</u> 約2.2×10 ⁻⁷		
wnw	<u>称1.8×10</u> 約2.9×10 ⁻⁷	<u>約29×10-7</u>	<u>約2.0×10</u> 約2.9×10 ⁻⁷	<u></u> 約2.2×10 約2.8×10 ⁻⁷		
NW	<u>新4.9×10-7</u>	<u>約4.7×10-7</u>	<u>称 4 2×10⁻⁷</u>	<u>約3.8×10⁻⁷</u>		
NNW	約2.1×10 ⁻⁷	約2.0×10 ⁻⁷	<u>約1.9×10⁻⁷</u>	約1.8×10 ⁻⁷		
N	約 3.4×10 ⁻⁷	約 3.2×10 ⁻⁷	約 3. 0×10 ⁻⁷	約 2.7×10 ⁻⁷		
S 方向沿岸部	約 9.7×10 ⁻⁷	約 1.1×10 ⁻⁶	約 1.2×10 ⁻⁶	約 1.4×10 ⁻⁶		
I						

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

		変更	前				
表2.2.1	$1 - \frac{8}{10}$ Cs-134	の放射性雲からの	Dγ線に起因する	」実効線量(μ Sv	/年)		表2.2
放出位置 評価位置	1 号 原子炉建屋	2 号 原子炉建屋	3 号 原子炉建屋	4号 原子炉建屋	合計		放出位評価位置
S	<u>約3.6×10-4</u>	<u>約8.0×10-5</u>	<u>約6.9×10-4</u>	<u>約1.4×10⁻⁴</u>	<u>約1.3×10-3</u>		S
SSW	<u>約3.3×10-4</u>	<u>約7.1×10-5</u>	<u>約5.8×10-4</u>	<u>約1.1×10⁻⁴</u>	<u>約1.1×10-3</u>		SSW
SW	<u>約2.1×10⁻⁴</u>	<u>約4.9×10-5</u>	<u>約4.3×10-4</u>	<u>約8.4×10⁻⁵</u>	<u>約7.8×10-4</u>		SW
WSW	<u>約1.9×10⁻⁴</u>	<u>約3.9×10-5</u>	<u>約3.0×10-4</u>	<u>約 5.1×10⁻⁵</u>	<u>約 5.8×10-4</u>	Γ	WSW
W	<u>約1.7×10-4</u>	<u>約3.5×10-5</u>	<u>約2.5×10-4</u>	<u>約4.0×10-5</u>	<u>約 5.0×10-4</u>		W
WNW	<u>約1.9×10⁻⁴</u>	<u>約3.6×10-5</u>	<u>約2.7×10⁻⁴</u>	<u>約4.4×10-4</u>	<u>約 5.3×10-4</u>		WNW
NW	<u>約3.2×10⁻⁴</u>	<u>約6.4×10-5</u>	<u>約 5.1×10⁻⁴</u>	<u>約 8.7×10⁻⁵</u>	<u>約9.8×10-4</u>	Γ	NW
NNW	<u>約2.8×10⁻⁴</u>	<u>約 5.4×10-5</u>	<u>約3.9×10-4</u>	<u>約6.0×10-5</u>	<u>約7.8×10-4</u>	Γ	NNW
N	<u>約3.7×10⁻⁴</u>	<u>約7.0×10-5</u>	<u>約4.8×10⁻⁴</u>	<u>約7.4×10⁻⁵</u>	<u>約1.0×10-3</u>		Ν
S 方向沿岸部	<u>約4.0×10-4</u>	<u>約9.0×10-5</u>	<u>約7.8×10-4</u>	<u>約1.5×10-4</u>	<u>約1.4×10-3</u>		S 方向沿岸部

		変更	後			変更理由
表2.2.1	- <u>15</u> Cs-134	の放射性雲から	のγ線に起因す	る実効線量(μS	v/年)	記載の適正化
放出位置	1号	2号	3号	4号	合計	
評価位置	原子炉建屋	原子炉建屋	原子炉建屋	原子炉建屋		
S	<u>約1.1×10⁻⁴</u>	<u>約2.4×10⁻⁵</u>	<u>約2.1×10⁻⁴</u>	<u>約4.1×10⁻⁵</u>	<u>約3.9×10-4</u>	評価条件の変更
SSW	<u>約7.0×10-5</u>	<u>約1.5×10-5</u>	<u>約1.3×10⁻⁴</u>	<u>約2.4×10-5</u>	<u>約2.4×10-4</u>	に伴う実効線量
SW	<u>約5.1×10-5</u>	<u>約1.1×10-5</u>	<u>約9.5×10-5</u>	<u>約1.8×10-5</u>	<u>約1.7×10-4</u>	の変更
WSW	<u>約3.9×10-5</u>	<u>約7.6×10-6</u>	<u>約5.3×10-5</u>	<u>約7.9×10-6</u>	<u>約1.1×10-4</u>	
W	<u>約2.2×10-5</u>	<u>約4.6×10-6</u>	<u>約3.8×10-5</u>	<u>約6.8×10-6</u>	<u>約7.2×10-5</u>	
WNW	<u>約3.5×10-5</u>	<u>約7.2×10-6</u>	<u>約 5.3×10-5</u>	<u>約8.8×10-6</u>	<u>約 1.0×10⁻⁴</u>	
NW	<u>約6.0×10-5</u>	<u>約1.2×10-5</u>	<u>約7.8×10-5</u>	<u>約1.2×10-5</u>	<u>約 1.6×10⁻⁴</u>	
NNW	<u>約2.6×10-5</u>	<u>約 5.0×10-6</u>	<u>約3.5×10-5</u>	<u>約 5.7×10-6</u>	<u>約7.2×10-5</u>	
N	<u>約4.1×10⁻⁵</u>	<u>約7.8×10-6</u>	<u>約 5.5×10⁻⁵</u>	<u>約 8.5×10⁻⁶</u>	<u>約 1.1×10⁻⁴</u>	
S 方向沿岸部	<u>約1.2×10⁻⁴</u>	<u>約2.6×10-5</u>	<u>約2.3×10-4</u>	<u>約4.5×10-5</u>	<u>約 4.2×10⁻⁴</u>	
表2.2.1	— <u>16</u> Cs-137	の放射性雲からの	のγ線に起因する	る実効線量(μ Sv	7/年)	記載の適正化
放出位置	1 号 原子炉建屋	2 号 原子炉建屋	3 号 原子炉建屋	4号 百乙炬建屋	合計	
S		174 · 4 /7 / · · · · ·	MAN I / AE/EE	赤丁が建定		
U U	約4.2×10 ⁻⁴	約 9.4×10 ⁻⁵	約 8.0×10 ⁻⁴	旅了产建重 約1.6×10 ⁻⁴	約1.5×10-3	評価条件の変更
SSW	<u>約 4.2×10⁻⁴</u> 約 2.7×10 ⁻⁴	<u>約 9.4×10⁻⁵</u> 約 5.8×10 ⁻⁵	<u>約8.0×10⁻⁴</u> 約4.9×10 ⁻⁴	<u>約1.6×10⁻⁴</u> 約9.1×10 ⁻⁵	<u>約1.5×10⁻³</u> 約9.0×10 ⁻⁴	評価条件の変更 に伴う実効線量
SSW	<u>約 4.2×10⁻⁴</u> 約 2.7×10 ⁻⁴ 約 2.0×10 ⁻⁴	<u>約 9.4×10⁻⁵</u> 約 5.8×10 ⁻⁵ 約 4.3×10 ⁻⁵	<u>約 8. 0×10⁻⁴</u> <u>約 4. 9×10⁻⁴</u> <u>約 3. 6×10⁻⁴</u>	<u>約1.6×10⁻⁴</u> 約9.1×10 ⁻⁵ 約6.8×10 ⁻⁵	<u>約1.5×10⁻³</u> 約9.0×10 ⁻⁴ 約6.7×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
SSW SW WSW	<u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u>	<u>約 9.4×10⁻⁵</u> <u>約 5.8×10⁻⁵</u> <u>約 4.3×10⁻⁵</u> <u>約 2.9×10⁻⁵</u>	<u>約8.0×10⁻⁴</u> <u>約4.9×10⁻⁴</u> <u>約3.6×10⁻⁴</u> 約2.0×10 ⁻⁴	<u>約1.6×10⁻⁴</u> <u>約9.1×10⁻⁵</u> <u>約6.8×10⁻⁵</u> <u>約3.1×10⁻⁵</u>	<u>約1.5×10⁻³</u> 約9.0×10 ⁻⁴ 約6.7×10 ⁻⁴ 約4.1×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
SSW SW WSW W	<u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u> <u>約 8.6×10⁻⁵</u>	<u>約 9.4×10⁻⁵</u> <u>約 5.8×10⁻⁵</u> <u>約 4.3×10⁻⁵</u> <u>約 2.9×10⁻⁵</u> <u>約 1.8×10⁻⁵</u>	<u>約8.0×10⁻⁴</u> <u>約4.9×10⁻⁴</u> <u>約3.6×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約1.5×10⁻⁴</u>	<u>約1.6×10⁻⁴</u> <u>約9.1×10⁻⁵</u> <u>約6.8×10⁻⁵</u> <u>約3.1×10⁻⁵</u> <u>約2.6×10⁻⁵</u>	<u>約1.5×10⁻³</u> <u>約9.0×10⁻⁴</u> <u>約6.7×10⁻⁴</u> <u>約4.1×10⁻⁴</u> 約2.7×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
SSW SW WSW W WNW	<u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u> <u>約 8.6×10⁻⁵</u> <u>約 1.3×10⁻⁴</u>	<u>約 9.4×10⁻⁵</u> <u>約 5.8×10⁻⁵</u> <u>約 4.3×10⁻⁵</u> <u>約 2.9×10⁻⁵</u> <u>約 1.8×10⁻⁵</u> <u>約 2.8×10⁻⁵</u>	<u>約8.0×10⁻⁴</u> <u>約4.9×10⁻⁴</u> <u>約3.6×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約1.5×10⁻⁴</u> <u>約2.0×10⁻⁴</u>	<u>約1.6×10⁻⁴</u> <u>約9.1×10⁻⁵</u> <u>約6.8×10⁻⁵</u> <u>約3.1×10⁻⁵</u> <u>約2.6×10⁻⁵</u> <u>約3.4×10⁻⁵</u>	<u>約1.5×10⁻³</u> <u>約9.0×10⁻⁴</u> <u>約6.7×10⁻⁴</u> <u>約4.1×10⁻⁴</u> 約2.7×10 ⁻⁴ 約4.0×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
SSW SSW WSW W WNW NW	<u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u> <u>約 8.6×10⁻⁵</u> <u>約 1.3×10⁻⁴</u> <u>約 2.3×10⁻⁴</u>	<u>約 9.4×10⁻⁵</u> <u>約 5.8×10⁻⁵</u> <u>約 4.3×10⁻⁵</u> <u>約 2.9×10⁻⁵</u> <u>約 1.8×10⁻⁵</u> <u>約 2.8×10⁻⁵</u> <u>約 4.4×10⁻⁵</u>	<u>約8.0×10⁻⁴</u> <u>約4.9×10⁻⁴</u> <u>約3.6×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約1.5×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約2.0×10⁻⁴</u>	<u>約1.6×10⁻⁴</u> 約9.1×10 ⁻⁵ 約6.8×10 ⁻⁵ 約3.1×10 ⁻⁵ 約2.6×10 ⁻⁵ 約3.4×10 ⁻⁵ 約3.4×10 ⁻⁵	<u>約1.5×10⁻³</u> <u>約9.0×10⁻⁴</u> <u>約6.7×10⁻⁴</u> <u>約4.1×10⁻⁴</u> 約2.7×10 ⁻⁴ 約4.0×10 ⁻⁴ 約6.2×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
SSW SSW WSW W WNW NW NW	<u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u> <u>約 8.6×10⁻⁵</u> <u>約 1.3×10⁻⁴</u> <u>約 2.3×10⁻⁴</u> <u>約 1.0×10⁻⁴</u>	<u>約 9.4×10⁻⁵</u> <u>約 5.8×10⁻⁵</u> <u>約 4.3×10⁻⁵</u> <u>約 2.9×10⁻⁵</u> <u>約 1.8×10⁻⁵</u> <u>約 2.8×10⁻⁵</u> <u>約 4.4×10⁻⁵</u> <u>約 1.9×10⁻⁵</u>	<u>約8.0×10⁻⁴</u> <u>約4.9×10⁻⁴</u> <u>約3.6×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約1.5×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約3.0×10⁻⁴</u> <u>約3.0×10⁻⁴</u>	<u>約1.6×10⁻⁴</u> <u>約9.1×10⁻⁵</u> <u>約6.8×10⁻⁵</u> <u>約3.1×10⁻⁵</u> <u>約2.6×10⁻⁵</u> <u>約3.4×10⁻⁵</u> <u>約4.6×10⁻⁵</u> <u>約2.2×10⁻⁵</u>	<u>約1.5×10⁻³</u> <u>約9.0×10⁻⁴</u> <u>約6.7×10⁻⁴</u> <u>約4.1×10⁻⁴</u> <u>約2.7×10⁻⁴</u> <u>約4.0×10⁻⁴</u> <u>約6.2×10⁻⁴</u> 約2.8×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
SSW SSW WSW WNW NW NW NNW	<u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u> <u>約 8.6×10⁻⁵</u> <u>約 1.3×10⁻⁴</u> <u>約 2.3×10⁻⁴</u> <u>約 1.0×10⁻⁴</u> <u>約 1.6×10⁻⁴</u>	<u>約 9.4×10⁻⁵</u> <u>約 5.8×10⁻⁵</u> <u>約 4.3×10⁻⁵</u> <u>約 2.9×10⁻⁵</u> <u>約 1.8×10⁻⁵</u> <u>約 2.8×10⁻⁵</u> <u>約 4.4×10⁻⁵</u> <u>約 1.9×10⁻⁵</u> <u>約 3.0×10⁻⁵</u>	<u>約8.0×10⁻⁴</u> <u>約4.9×10⁻⁴</u> <u>約3.6×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約1.5×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約3.0×10⁻⁴</u> <u>約1.4×10⁻⁴</u> <u>約2.1×10⁻⁴</u>	<u>約1.6×10⁻⁴</u> 約9.1×10 ⁻⁵ 約6.8×10 ⁻⁵ 約3.1×10 ⁻⁵ 約2.6×10 ⁻⁵ 約3.4×10 ⁻⁵ 約4.6×10 ⁻⁵ 約2.2×10 ⁻⁵ 約2.2×10 ⁻⁵	<u>約1.5×10⁻³</u> <u>約9.0×10⁻⁴</u> <u>約6.7×10⁻⁴</u> <u>約4.1×10⁻⁴</u> <u>約2.7×10⁻⁴</u> <u>約4.0×10⁻⁴</u> <u>約6.2×10⁻⁴</u> <u>約2.8×10⁻⁴</u> <u>約4.3×10⁻⁴</u>	評価条件の変更 に伴う実効線量 の変更
SSW SSW WSW WSW WNW NW NW NW NNW S方向沿岸部	<u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u> <u>約 1.3×10⁻⁴</u> <u>約 2.3×10⁻⁴</u> <u>約 1.0×10⁻⁴</u> <u>約 1.6×10⁻⁴</u> <u>約 4.6×10⁻⁴</u>	<u>約 9.4×10⁻⁵</u> <u>約 5.8×10⁻⁵</u> <u>約 4.3×10⁻⁵</u> <u>約 2.9×10⁻⁵</u> <u>約 1.8×10⁻⁵</u> <u>約 2.8×10⁻⁵</u> <u>約 4.4×10⁻⁵</u> <u>約 1.9×10⁻⁵</u> <u>約 3.0×10⁻⁵</u> 約 1.0×10 ⁻⁴	<u>約8.0×10⁻⁴</u> <u>約4.9×10⁻⁴</u> <u>約3.6×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約1.5×10⁻⁴</u> <u>約2.0×10⁻⁴</u> <u>約3.0×10⁻⁴</u> <u>約1.4×10⁻⁴</u> <u>約2.1×10⁻⁴</u> <u>約8.7×10⁻⁴</u>	<u>約1.6×10⁻⁴</u> <u>約9.1×10⁻⁵</u> <u>約9.1×10⁻⁵</u> <u>約6.8×10⁻⁵</u> <u>約3.1×10⁻⁵</u> <u>約2.6×10⁻⁵</u> <u>約3.4×10⁻⁵</u> <u>約2.2×10⁻⁵</u> <u>約3.3×10⁻⁵</u> <u>約3.3×10⁻⁵</u>	<u>約1.5×10⁻³</u> <u>約9.0×10⁻⁴</u> <u>約6.7×10⁻⁴</u> <u>約4.1×10⁻⁴</u> <u>約2.7×10⁻⁴</u> <u>約4.0×10⁻⁴</u> <u>約6.2×10⁻⁴</u> <u>約2.8×10⁻⁴</u> <u>約4.3×10⁻⁴</u> <u>約1.6×10⁻³</u>	評価条件の変更 に伴う実効線量 の変更

表2.2.1-<u>9</u> Cs-137の放射性雲からのγ線に起因する実効線量(μSv/年)

放出位置 評価位置	1号 原子炉建屋	2 号 原子炉建屋	3号 原子炉建屋	4号 原子炉建屋	合計
s	<u>約1.4×10-4</u>	<u>約3.1×10-5</u>	<u>約2.7×10-4</u>	<u>約5.2×10-5</u>	<u>約4.9×10-4</u>
SSW	<u>約1.3×10-4</u>	<u>約2.7×10-5</u>	<u>約2.2×10-4</u>	<u>約4.1×10-5</u>	<u>約4.2×10-4</u>
SW	<u>約8.2×10-5</u>	<u>約1.9×10-5</u>	<u>約1.7×10-4</u>	<u>約3.2×10-5</u>	<u>約3.0×10-4</u>
WSW	<u>約7.3×10-5</u>	<u>約1.5×10-5</u>	<u>約1.2×10-4</u>	<u>約2.0×10-5</u>	<u>約2.2×10⁻⁴</u>
W	<u>約6.7×10-5</u>	<u>約1.3×10-5</u>	<u>約9.7×10-5</u>	<u>約1.5×10-5</u>	<u>約1.9×10⁻⁴</u>
WNW	<u>約7.1×10⁻⁵</u>	<u>約1.4×10-5</u>	<u>約1.0×10-4</u>	<u>約1.7×10-5</u>	<u>約2.1×10⁻⁴</u>
NW	<u>約1.2×10⁻⁴</u>	<u>約2.4×10-5</u>	<u>約2.0×10-4</u>	<u>約3.4×10-5</u>	<u>約3.8×10-4</u>
NNW	<u>約1.1×10⁻⁴</u>	<u>約2.1×10⁻⁵</u>	<u>約1.5×10-4</u>	<u>約2.3×10-5</u>	<u>約3.0×10-4</u>
N	<u>約1.4×10⁻⁴</u>	<u>約2.7×10-5</u>	<u>約1.9×10-4</u>	<u>約2.8×10-5</u>	<u>約3.8×10-4</u>
S 方向沿岸部	約1.5×10 ⁻⁴	約 3.5×10 ⁻⁵	約 3.0×10 ⁻⁴	<u>約5.9×10-5</u>	約 5.5×10 ⁻⁴

		変更	後			変更理由
表2.2.1	- <u>15</u> Cs-134	の放射性雲から	のγ線に起因す	る実効線量(μS	v /年)	記載の適正化
放出位置	1号 原子炉建屋	2 号 原子炉建屋	3 号 原子炉建屋	4号 原子炉建屋	合計	
S	約1.1×10 ⁻⁴	約 2.4×10 ⁻⁵	約2.1×10 ⁻⁴	約 4.1×10 ⁻⁵	約 3.9×10 ⁻⁴	証価条件の変更
SSW	約7.0×10⁻⁵	約 1.5×10 ⁻⁵	約1.3×10 ⁻⁴	約 2.4×10 ⁻⁵	約 2.4×10 ⁻⁴	に伴う実効線量
SW	約 5.1×10 ⁻⁵	約 1.1×10 ⁻⁵	約 9.5×10-5	約 1.8×10 ⁻⁵	約 1.7×10-4	の変更
WSW	<u>約3.9×10-5</u>	<u>約7.6×10-6</u>	<u>約 5.3×10-5</u>	<u>約7.9×10-6</u>	<u>約1.1×10-4</u>	
W	<u>約2.2×10-5</u>	<u>約4.6×10-6</u>	<u>約3.8×10-5</u>	<u>約6.8×10-6</u>	<u>約7.2×10-5</u>	
WNW	<u>約3.5×10-5</u>	<u>約7.2×10-6</u>	<u>約 5.3×10-5</u>	<u>約8.8×10-6</u>	<u>約1.0×10-4</u>	
NW	<u>約6.0×10-5</u>	<u>約1.2×10-5</u>	<u>約7.8×10-5</u>	<u>約1.2×10-5</u>	<u>約1.6×10-4</u>	
NNW	<u>約2.6×10-5</u>	<u>約 5.0×10-6</u>	<u>約3.5×10-5</u>	<u>約 5.7×10-6</u>	<u>約7.2×10-5</u>	
N	<u>約4.1×10⁻⁵</u>	<u>約7.8×10⁻⁶</u>	<u>約 5.5×10⁻⁵</u>	<u>約 8.5×10⁻⁶</u>	<u>約1.1×10⁻⁴</u>	
S 方向沿岸部	<u>約1.2×10⁻⁴</u>	<u>約2.6×10-5</u>	<u>約2.3×10⁻⁴</u>	<u>約4.5×10-5</u>	<u>約4.2×10-4</u>	
表2.2.1	- <u>16</u> Cs-137	の放射性雲からの	のγ線に起因する	δ実効線量(μ Sy	v/年)	記載の適正化
放出位置 評価位置	1 号 原子炉建屋	2 号 原子炉建屋	3号 原子炉建屋	4号 原子炉建屋	合計	
放出位置 評価位置 S	1号 原子炉建屋 <u>約4.2×10⁻⁴</u>	2号 原子炉建屋 <u>約9.4×10⁻⁵</u>	3 号 原子炉建屋 <u>約 8.0×10⁻⁴</u>	4 号 原子炉建屋 <u>約 1.6×10⁻⁴</u>	合計 <u>約1.5×10⁻³</u>	評価条件の変更
放出位置 評価位置 S SSW	1号 原子炉建屋 <u>約4.2×10⁻⁴</u> 約2.7×10 ⁻⁴	2 号 原子炉建屋 <u>約 9.4×10⁻⁵</u> 約 5.8×10 ⁻⁵	3 号 原子炉建屋 <u>約 8.0×10⁻⁴</u> 約 4.9×10 ⁻⁴	4 号 原子炉建屋 <u>約 1.6×10⁻⁴</u> 約 9.1×10 ⁻⁵	合計 <u>約1.5×10⁻³</u> 約9.0×10 ⁻⁴	評価条件の変更 に伴う実効線量
放出位置 評価位置 S SSW SW	1 号 原子炉建屋 <u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u>	2 号 原子炉建屋 <u>約 9.4×10⁻⁵</u> <u>約 5.8×10⁻⁵</u> <u>約 4.3×10⁻⁵</u>	3 号 原子炉建屋 <u>約 8.0×10⁻⁴</u> <u>約 4.9×10⁻⁴</u> <u>約 3.6×10⁻⁴</u>	4 号 原子炉建屋 <u>約 1.6×10⁻⁴</u> <u>約 9.1×10⁻⁵</u> <u>約 6.8×10⁻⁵</u>	合計 <u>約1.5×10⁻³</u> <u>約9.0×10⁻⁴</u> <u>約6.7×10⁻⁴</u>	評価条件の変更 に伴う実効線量 の変更
放出位置 評価位置 S SSW SW WSW	1 号 原子炉建屋 <u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u>	2 号 原子炉建屋 <u>約 9.4×10⁻⁵</u> <u>約 5.8×10⁻⁵</u> <u>約 4.3×10⁻⁵</u> <u>約 2.9×10⁻⁵</u>	3 号 原子炉建屋 <u>約 8.0×10⁻⁴</u> <u>約 4.9×10⁻⁴</u> <u>約 3.6×10⁻⁴</u> <u>約 2.0×10⁻⁴</u>	4 号 原子炉建屋 <u>約 1.6×10⁻⁴</u> <u>約 9.1×10⁻⁵</u> <u>約 6.8×10⁻⁵</u> <u>約 3.1×10⁻⁵</u>	合計 <u>約1.5×10⁻³</u> 約9.0×10 ⁻⁴ 約6.7×10 ⁻⁴ 約4.1×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
放出位置 評価位置 S SSW SW WSW WSW	1 号 原子炉建屋 <u>約 4.2×10⁻⁴</u> <u>約 2.7×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u> <u>約 8.6×10⁻⁵</u>	2 号 原子炉建屋 約 9.4×10 ⁻⁵ 約 5.8×10 ⁻⁵ 約 4.3×10 ⁻⁵ 約 2.9×10 ⁻⁵ 約 1.8×10 ⁻⁵	3 号 原子炉建屋 <u>約 8.0×10⁻⁴</u> <u>約 4.9×10⁻⁴</u> <u>約 3.6×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 1.5×10⁻⁴</u>	4 号 原子炉建屋 <u>約 1.6×10⁻⁴</u> <u>約 9.1×10⁻⁵</u> <u>約 6.8×10⁻⁵</u> <u>約 3.1×10⁻⁵</u> <u>約 2.6×10⁻⁵</u>	合計 約1.5×10 ⁻³ 約9.0×10 ⁻⁴ 約6.7×10 ⁻⁴ 約4.1×10 ⁻⁴ 約2.7×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
放出位置 評価位置 S SSW SW WSW WSW WSW	1 号 原子炉建屋 約 4.2×10 ⁻⁴ 約 2.7×10 ⁻⁴ 約 2.0×10 ⁻⁴ 約 1.5×10 ⁻⁴ 約 8.6×10 ⁻⁵ 約 1.3×10 ⁻⁴	2 号 原子炉建屋 約 9.4×10 ⁻⁵ 約 5.8×10 ⁻⁵ 約 4.3×10 ⁻⁵ 約 2.9×10 ⁻⁵ 約 1.8×10 ⁻⁵ 約 2.8×10 ⁻⁵	3 号 原子炉建屋 <u>約 8.0×10⁻⁴</u> <u>約 4.9×10⁻⁴</u> <u>約 3.6×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 2.0×10⁻⁴</u>	4 号 原子炉建屋 約 1.6×10 ⁻⁴ 約 9.1×10 ⁻⁵ 約 6.8×10 ⁻⁵ 約 3.1×10 ⁻⁵ 約 2.6×10 ⁻⁵ 約 3.4×10 ⁻⁵	合計 約1.5×10 ⁻³ 約9.0×10 ⁻⁴ 約6.7×10 ⁻⁴ 約4.1×10 ⁻⁴ 約2.7×10 ⁻⁴ 約4.0×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
放出位置 評価位置 S SSW SW WSW WSW WNW WNW	1 号 原子炉建屋 約 4.2×10 ⁻⁴ 約 2.7×10 ⁻⁴ 約 2.0×10 ⁻⁴ 約 1.5×10 ⁻⁴ 約 8.6×10 ⁻⁵ 約 1.3×10 ⁻⁴ 約 2.3×10 ⁻⁴	2 号 原子炉建屋 約 9.4×10 ⁻⁵ 約 5.8×10 ⁻⁵ 約 4.3×10 ⁻⁵ 約 2.9×10 ⁻⁵ 約 1.8×10 ⁻⁵ 約 2.8×10 ⁻⁵ 約 2.8×10 ⁻⁵	3 号 原子炉建屋 <u>約 8.0×10⁻⁴</u> <u>約 4.9×10⁻⁴</u> <u>約 3.6×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 2.0×10⁻⁴</u> <u>約 3.0×10⁻⁴</u>	4 号 原子炉建屋 <u>約 1.6×10⁻⁴</u> 約 9.1×10 ⁻⁵ 約 6.8×10 ⁻⁵ 約 3.1×10 ⁻⁵ 約 2.6×10 ⁻⁵ 約 3.4×10 ⁻⁵ 約 4.6×10 ⁻⁵	合計 約1.5×10 ⁻³ 約9.0×10 ⁻⁴ 約6.7×10 ⁻⁴ 約4.1×10 ⁻⁴ 約2.7×10 ⁻⁴ 約4.0×10 ⁻⁴ 約4.0×10 ⁻⁴ 約6.2×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
放出位置 評価位置 S SSW SW WSW WSW WSW WNW NNW	1 号 原子炉建屋 約 4.2×10 ⁻⁴ 約 2.7×10 ⁻⁴ 約 2.0×10 ⁻⁴ 約 1.5×10 ⁻⁴ 約 8.6×10 ⁻⁵ 約 1.3×10 ⁻⁴ 約 2.3×10 ⁻⁴ 約 1.0×10 ⁻⁴	2 号 原子炉建屋 約 9.4×10 ⁻⁵ 約 5.8×10 ⁻⁵ 約 2.9×10 ⁻⁵ 約 1.8×10 ⁻⁵ 約 2.8×10 ⁻⁵ 約 2.8×10 ⁻⁵ 約 2.8×10 ⁻⁵ 約 4.4×10 ⁻⁵	3 号 原子炉建屋 約 8.0×10 ⁻⁴ 約 4.9×10 ⁻⁴ 約 3.6×10 ⁻⁴ 約 2.0×10 ⁻⁴ 約 1.5×10 ⁻⁴ 約 2.0×10 ⁻⁴ 約 3.0×10 ⁻⁴ 約 1.4×10 ⁻⁴	4 号 原子炉建屋 <u>約 1.6×10⁻⁴</u> 約 9.1×10 ⁻⁵ 約 6.8×10 ⁻⁵ 約 3.1×10 ⁻⁵ 約 2.6×10 ⁻⁵ 約 3.4×10 ⁻⁵ 約 4.6×10 ⁻⁵ 約 2.2×10 ⁻⁵	合計 約1.5×10 ⁻³ 約9.0×10 ⁻⁴ 約6.7×10 ⁻⁴ 約4.1×10 ⁻⁴ 約2.7×10 ⁻⁴ 約2.7×10 ⁻⁴ 約4.0×10 ⁻⁴ 約6.2×10 ⁻⁴ 約2.8×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
放出位置 評価位置 S SSW SW WSW WSW WNW NNW NNW NNW	1号 原子炉建屋 約4.2×10 ⁻⁴ 約2.7×10 ⁻⁴ 約2.0×10 ⁻⁴ 約1.5×10 ⁻⁴ 約8.6×10 ⁻⁵ 約1.3×10 ⁻⁴ 約2.3×10 ⁻⁴ 約1.6×10 ⁻⁴	2 号 原子炉建屋 約 9.4×10 ⁻⁵ 約 5.8×10 ⁻⁵ 約 2.9×10 ⁻⁵ 約 2.9×10 ⁻⁵ 約 1.8×10 ⁻⁵ 約 2.8×10 ⁻⁵ 約 1.9×10 ⁻⁵ 約 1.9×10 ⁻⁵	3 号 原子炉建屋 約 8.0×10 ⁻⁴ 約 4.9×10 ⁻⁴ 約 3.6×10 ⁻⁴ 約 2.0×10 ⁻⁴ 約 1.5×10 ⁻⁴ 約 2.0×10 ⁻⁴ 約 3.0×10 ⁻⁴ 約 1.4×10 ⁻⁴ 約 2.1×10 ⁻⁴	4 号 原子炉建屋 <u>約 1.6×10⁻⁴</u> <u>約 9.1×10⁻⁵</u> <u>約 6.8×10⁻⁵</u> <u>約 3.1×10⁻⁵</u> <u>約 2.6×10⁻⁵</u> <u>約 3.4×10⁻⁵</u> <u>約 4.6×10⁻⁵</u> <u>約 2.2×10⁻⁵</u> <u>約 3.3×10⁻⁵</u>	合計 約1.5×10 ⁻³ 約9.0×10 ⁻⁴ 約6.7×10 ⁻⁴ 約4.1×10 ⁻⁴ 約2.7×10 ⁻⁴ 約2.7×10 ⁻⁴ 約2.2×10 ⁻⁴ 約6.2×10 ⁻⁴ 約2.8×10 ⁻⁴ 約4.3×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更
放出位置 評価位置 S SSW SW WSW WSW WSW WNW NW NW NW NW S S 方向沿岸部	1号 原子炉建屋 約4.2×10 ⁻⁴ 約2.7×10 ⁻⁴ 約2.0×10 ⁻⁴ 約1.5×10 ⁻⁴ 約8.6×10 ⁻⁵ 約1.3×10 ⁻⁴ 約2.3×10 ⁻⁴ 約1.6×10 ⁻⁴ 約1.6×10 ⁻⁴	2 号 原子炉建屋 約 9.4×10 ⁻⁵ 約 5.8×10 ⁻⁵ 約 2.9×10 ⁻⁵ 約 2.9×10 ⁻⁵ 約 2.8×10 ⁻⁵ 約 2.8×10 ⁻⁵ 約 1.9×10 ⁻⁵ 約 1.9×10 ⁻⁵ 約 3.0×10 ⁻⁵	3 号 原子炉建屋 約 8. 0×10 ⁻⁴ 約 4. 9×10 ⁻⁴ 約 3. 6×10 ⁻⁴ 約 2. 0×10 ⁻⁴ 約 2. 0×10 ⁻⁴ 約 3. 0×10 ⁻⁴ 約 3. 0×10 ⁻⁴ 約 3. 0×10 ⁻⁴ 約 1. 4×10 ⁻⁴ 約 2. 1×10 ⁻⁴	4 号 原子炉建屋 約 1.6×10 ⁻⁴ 約 9.1×10 ⁻⁵ 約 3.1×10 ⁻⁵ 約 3.1×10 ⁻⁵ 約 3.4×10 ⁻⁵ 約 3.4×10 ⁻⁵ 約 3.4×10 ⁻⁵ 約 3.3×10 ⁻⁵ 約 3.3×10 ⁻⁵	合計 約1.5×10 ⁻³ 約9.0×10 ⁻⁴ 約6.7×10 ⁻⁴ 約4.1×10 ⁻⁴ 約2.7×10 ⁻⁴ 約2.7×10 ⁻⁴ 約2.2×10 ⁻⁴ 約6.2×10 ⁻⁴ 約2.8×10 ⁻⁴ 約2.8×10 ⁻⁴ 約4.3×10 ⁻⁴	評価条件の変更 に伴う実効線量 の変更

		変更後					変更理由	
		<u>表2.2.1-17</u> 外部被ばく		外部被ばく実	<u>美効線量換算係数[1]</u>			評価方法の変更
	<u>元素</u>	記号	単位			<u>数値</u>		に伴う追加
	<u>Cs-134</u>	V	(/ (1-D - /2)		5.4×10^{-6}		
	<u>Cs-137</u>	<u>r</u>	<u>(mSv/h)</u>	/(KBq/m²)		2.1×10^{-6}		
	/							
		表2.2.	1 – <u>1 8</u>	吸入摂取の	評価パラメータ	· [2]		記載の適正化
	,	パラメータ		記号	単位	数值		
ľ		呼吸率		Ma	cm ³ /d	2.22×10^{7}		
L				1				
		表2.	. 2. 1-	- <u>19</u> 実効約	線量係数 <mark>[3]</mark>			
[元素	吸入摂取(H	(μS ¹	v/Bq)	経口摂	取 (K _{Ti}) (µSv/Bq)		
ł	Cs-134	2.0	$\times 10^{-2}$			1.9×10 ⁻²		評価方法の変更
ł	Cs-137	3.9	$\times 10^{-2}$			1.3×10 ⁻²		(バフメータ統一)に伴う変更
L) に件) 及父

		変 更 俊			変 史 埋 田
	表2.2.1	<u>L-17</u> 外部被ばく	実効線量換算例	系数[1]	評価方法の変更
<u>元素</u>	記号	<u>単位</u>		<u>数値</u>	に伴う追加
<u>Cs-134</u>	V	(C/L) / (LD - /2)		5.4×10^{-6}	
<u>Cs-137</u>	<u>^</u>	<u>(mSv/n)/(KBq/m⁻)</u>	-	2.1×10^{-6}	
	•	•			
	表2.2.	1- <u>18</u> 吸入摂取の	の評価パラメー	夕[2]	記載の適正化
	パラメータ	記号	単位	数値	
	呼吸率	Ma	cm ³ /d	2.22×10^{7}	
			·		
	表 2	.2.1- <u>19</u> 実刻	动線量係数 <mark>[3]</mark>		
元素	吸入摂取(I	$(\mu \text{ Sv/Bq})$	経口摂	₹取(K _{Ti})(μSv/Bq)	亚価古社の亦更
Cs-134	<u>2.0</u>	$\times 10^{-2}$		1.9×10^{-2}	(パラメータ統
Cs-137	<u>3. 9</u>	$\times 10^{-2}$		1.3×10^{-2}	ー)に伴う変更

		发	史 俊			変 史 珪 田
	表2.2.1	<u>l – 1 7 3</u>	外部被ばく実	効線量換算係	数[1]	評価方法の変更
元素	記号	〕	位		<u>数値</u>	に伴う追加
<u>Cs-134</u>	V	($/(1 - D_{cr} / m^2)$		5.4×10^{-6}	
<u>Cs=137</u>	Δ	(11.5 v / 11)	/ (KDQ/III ⁻)		2.1×10^{-6}	
	表2.2.	1 – <u>1 8</u>	吸入摂取の評	平価パラメータ	7 <u>[2]</u>	記載の適正化
	パラメータ		記号	単位	数値	
	呼吸率		Ma	cm³/d	2.22×10^{7}	
						_
	表2.	. 2. 1-	<u>19</u> 実効総	泉量係数[3]		
元素	吸入摂取(K	(μSv)	r/Bq)	経口摂	取 (K _{Ti}) (µSv/Bq)	
Cs-134	<u>2.0</u>	$\times 10^{-2}$			1.9×10 ⁻²	評価方法の変更 (パラメータ統)
Cs-137	<u>3. 9</u>	$ imes 10^{-2}$			1.3×10 ⁻²	一)に伴う変更

表2.2.1-<u>10</u>吸入摂取の評価パラメータ^山

変更前

(現行記載なし)

パラメータ	記号	単位	数值
呼吸率	Ma	cm³/d	2.22×10^{7}

表 2 . 2 . 1 - <u>1 1</u> 実効線量<u>換算</u>係数^[2]

元素	吸入摂取(K _{Ii})(µSv/Bq)	経口摂取(K _{Ti})(µSv/Bq)
Cs-134	9.6×10^{-3}	1.9×10^{-2}
Cs-137	6.7×10^{-3}	1.3×10^{-2}

		変更前	Ĵ			
		表2.2.1- <u>12</u> 葉菜及び牛乳	乳摂取の評価	パラメータ		
	経路	パラメータ	記号	単位	数値	稻
		核種の葉菜への沈着速度[1][3]	Vg	cm/s	1	
		ウェザリング効果による減少定数 ^[3]	λ.	1/s	5.73×10 ⁻⁷ (14 日相当)	
		葉菜の栽培密度 <mark>11</mark>	ρ	g/cm ²	0.23	
		葉菜の栽培期間 ^[3]	t_1	s	5.184×10 ⁶ (60 日)	
	葉菜	葉菜を含む土壌への核種の沈着速度[3]	, Vg	cm/s	1	葉
	摂取	経根移行に寄与する土壌の有効密度 ^[3]	$P_{\rm v}$	g/cm ²	24	抒
		核種の蓄積期間	t ₀	s	3.1536×10 ⁷ (1 年間)	
		葉菜の栽培期間年間比 <mark>11</mark>	\mathbf{f}_{t}	_	0.5	
		調理前洗浄による核種の残留比[3]	\mathbf{f}_{d}	_	1	
		葉菜摂取量(成人)	Mv	g/d	100	
		核種の牧草への沈着速度[1]	V _{gM}	cm/s	0.5	
		ウェザリング効果による減少定数 ^[3]	λ.	<u>g/cm³</u>	5.73×10 ⁻⁷ (14 日相当)	
		牧草の栽培密度[4]	Рм	g/cm ³	0.07	
	牛乳	牧草の栽培期間[4]	${\tt t}_{1M}$	S	2.592×10 ⁶ (30 日間)	4
	摂取	牧草を含む土壌への核種の沈着速度[3]	V _{gM} ,	cm/s	1	抒
		経根移行に寄与する土壌の有効密度[3]	P_{v}	g/cm ²	24	
		放牧期間年間比 <mark>11</mark>	\mathbf{f}_{t}	_	0.5	
		乳牛の牧草摂取量 ^[3]	$Q_{\rm f}$	g/d wet	$5\! imes\!10^4$	
		牛乳摂取量(成人)	Мм	cm ³ /d	200	

変更後								理	由
表2.2.1- <u>20</u> 葉菜及び牛乳摂取の評価パラメータ							战の適	正化	
経路	経路 パラメータ			単位	数值				
		核種の葉菜への沈着速度[2][4]	Vg	cm/s	1				
	ウコ	- ザリング効果による減少定数 <mark>[4]</mark>	λ.	1/s	5.73×10 ⁻⁷ (14 日相当)				
		葉菜の栽培密度 ^[2]	ρ	g/cm ²	0.23				
		葉菜の栽培期間 <mark>4</mark>	t_1	S	5.184×10 ⁶ (60 日)				
葉菜	葉菜	を含む土壌への核種の沈着速度[4]	, Vg	cm/s	1				
摂取	経根	移行に寄与する土壌の有効密度 <mark>4</mark>	$P_{\rm v}$	g/cm ²	24				
		核種の蓄積期間	t ₀	S	3.1536×10 ⁷ (1 年間)				
		葉菜の栽培期間年間比 ^[2]	\mathbf{f}_{t}	_	0.5				
	調	理前洗浄による核種の残留比 ^[4]	${\tt f}_{\tt d}$	-	1				
		葉菜摂取量(成人)[2]	M_{ν}	g/d	100				
		核種の牧草への沈着速度 [2]	V_{gM}	cm/s	0.5				
	ウコ	- ザリング効果による減少定数[4]	λ.	<u>1/s</u>	5.73×10 ⁻⁷ (14 日相当)				
		牧草の栽培密度[5]		g/cm ³	0.07				
牛乳		牧草の栽培期間		S	2.592×10 ⁶ (30 日間)				
摂取	牧草を含む土壌への核種の沈着速度[4]		V _{gM}	cm/s	1				
	経根移行に寄与する土壌の有効密度 ^[4]		$P_{\rm v}$	g/cm ²	24				
		放牧期間年間比 ^[2]	ft	-	0.5				
		乳牛の牧草摂取量 ^[4]	Q_{f}	g/d wet	5×10^{4}				
		牛乳摂取量(成人)[2]	Мм	cm ³ /d	200				
表2.2.1- <u>21</u> 葉菜及び牛乳摂取の評価パラメータ ^[5]									
_	志	土壌 1g 中に含まれる核種 i が葉菜	乳牛が	摂取した核種	重i が牛乳に移行				
元	术	及び牧草に移行する割合 (B _{vi})	する割	合 (F _{Mi}) ((B	q/cm ³)/(Bq/d))				
С	s	1.0×10^{-2}		1.2×1	10 ⁻⁵				

表2.2.1-<u>13</u>葉菜及び牛乳摂取の評価パラメータ<mark>4</mark>

元表	土壌1g中に含まれる核種iが葉菜	乳牛が摂取した核種iが牛乳に移行す
7658	及び牧草に移行する割合 (B _{vi})	る割合 (F _{Mi}) ((Bq/cm ³)/(Bq/d))
Cs	1.0×10^{-2}	1.2×10^{-5}

変更後									由
表2.2.1- <u>20</u> 葉菜及び牛乳摂取の評価パラメータ							戈の適	正化	
経路	経路 パラメータ			単位	数值				
		核種の葉菜への沈着速度[2][4]	Vg	cm/s	1				
	ウコ	- ザリング効果による減少定数 ^[4]	λ.	1/s	5.73×10 ⁻⁷ (14 日相当)				
		葉菜の栽培密度 ^[2]	ρ	g/cm ²	0.23				
		葉菜の栽培期間 <mark>④</mark>	t_1	s	5.184×10 ⁶ (60 日)				
葉菜	葉菜	を含む土壌への核種の沈着速度[4]	, Vg	cm/s	1				
摂取	経根	移行に寄与する土壌の有効密度[4]	P_{v}	g/cm ²	24				
		核種の蓄積期間	t ₀	s	3.1536×10 ⁷ (1 年間)				
		葉菜の栽培期間年間比 ^[2]	$\mathbf{f}_{\mathtt{t}}$	_	0.5				
	調	理前洗浄による核種の残留比 ^[4]	$\mathbf{f}_{\mathtt{d}}$	_	1				
		葉菜摂取量(成人) ^[2]	Mv	g/d	100				
		核種の牧草への沈着速度[2]	V_{gM}	cm/s	0.5				
	ウコ	- ザリング効果による減少定数 <mark>[4]</mark>	λ.	<u>1/s</u>	5.73×10 ⁻⁷ (14 日相当)				
		牧草の栽培密度 [5]		g/cm ³	0.07				
牛乳		牧草の栽培期間 ^[5]	t_{1M}	s	2.592×10 ⁶ (30 日間)				
摂取	牧草を含む土壌への核種の沈着速度[4]		V _{gM}	cm/s	1				
	経根移行に寄与する土壌の有効密度[4]		$P_{\mathbf{v}}$	g/cm ²	24				
	放牧期間年間比[2]		\mathbf{f}_{t}	-	0.5				
		乳牛の牧草摂取量[4]	Q_{f}	g/d wet	5×10^{4}				
		牛乳摂取量(成人)[2]	Мм	cm ³ /d	200				
		表2.2.1- <u>21</u> 葉菜及び牛乳	摂取の評価	パラメータ <u>[5]</u>					
_	±	土壌 1g 中に含まれる核種 i が葉菜	乳牛が	摂取した核種	重iが牛乳に移行				
元	系	及び牧草に移行する割合 (B _{vi})	する割	合 (F _{Mi}) ((B	$q/cm^3)/(Bq/d)$)				
С	s	1.0×10^{-2}		1.2×10^{-1}	10 ⁻⁵				

福島第一原子力発電所 特定原子力施設に係ろ実施計画変更比較表 (第Ⅲ音 3編 99線最評価)

		田町分「小17」九屯川						
(出曲) (出曲)					<u> </u>			
(現行記載なし)		$(\Pi \neq \forall)$	2:Generic procedures for assessment	and re				
				emergency 2000				
 [1] 発電用軽水型原子炉施設	と周辺の線量目標値に対する評価指金	+ 平成 13 年 3 月 29 日. 原	原子力安全委員会一	[2] 発電用軽水型原子	- 炉施設周辺の線量目標値に対する評価指針	平成 13		
部改訂				部改訂				
[2] 東京電力株式会社福島第	5一原子力発電所原子炉施設の保安及	なび特定核燃料物質の防護に	二関して必要な事項	(削除)				
を定める告示(平成 25	年4月12日原子力規制委員会告示領	<u> </u>						
(現行記載なし)				[3] <u>ICRP</u> Publicati	on 72:Age-dependent Doses to Membe	ers of		
				Radionuclides;P	art 5 Complitation of Ingestion and Inha	<u>alation I</u>		
[3] 発電用軽水型原子炉施設	その安全審査における一般公衆の線量	評価について 平成 13 年	3月29日, 原子力	[4] 発電用軽水型原子	ゲ炉施設の安全審査における一般公衆の線量調	評価につい		
安全委員会一部改訂				安全委員会一部改	女訂			
[4] U.S.NRC : Calculation	of Annual Doses to Man from Ro	utine Releases of Reactor	Effluents for the	[5] U.S.NRC : Calculation of Annual Doses to Man from Routine Relea				
Purpose of Evaluating	Compliance with 10 CFR Part 50,A	ppendix I, Regulatory Gui	de 1.109, Revision	Purpose of Evaluating Compliance with 10 CFR Part 50, Append				
1,1977				Revision 1,1977				
	表2.2.1- <u>14</u> 土壤	分析結果			表 2 . 2 . 1 - <u>2 2</u> 土壤分	<i>ì</i> 析結果		
	土壌(Bq/kg) (グラウンド約西南西 500m)	分析日]		土壌(Bq/kg) (グラウンド約西南西 500m)			
Cs-134	4. 1×10^{5}	2011 年 11 月 7 日		Cs-134	4. 1×10^5	2		
Cs-137	4. 7×10^{5}	2011年11月7日	1	Cs-137	4. 7×10 ⁵	2		
Sr-89	1.8×10^{2}	2011年10月10日		Sr-89	1.8×10^{2}	20		
Sr-90	2.5×10^{2}	2011年10月10日		Sr-90	2.5×10^{2}	20		
Pu-238	2. 6×10^{-1}	2011年10月31日		Pu-238	2. 6×10^{-1}	20		
Pu-239	1.1×10 ⁻¹	2011年10月31日]	Pu-239	1. 1×10 ⁻¹	20		
Pu-240	1.1×10 ⁻¹	2011年10月31日]	Pu-240	1. 1×10 ⁻¹	20		

(中略)

(中略)

		変	更理	1	由
<u>response during a radio</u> 式 13 年 3 月 29 日,原子力安全著	o <u>logical</u> 委員会一	評価 (パ 一) の追	i方法の ジラメー に伴う 加、削	変タ出除	更 統 典
<u>of the Public from Int</u> <u>on Dose Coefficients, 1996</u> こついて 平成 13 年 3 月 29 日, leases of Reactor Effluents pendix I, Regulatory Guide	<u>ake of</u> ,原子力 for the 1.109,	記載 (書 化)	の適正 書 体 の	化 適	正
果					
分析日					
2011年11月7日					
2011年11月7日					
2011年10月10日					
2011年10月10日					
2011年10月31日					
2011年10月31日					
2011年10月31日					

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

	変	更	理	由
線量				
	気体	の彩	記書	平価
	の変	更に	こ伴い	い線
	量評	価値	[を削	除
	(気	体に	こよる	る敷
	地境	.界の)最大	大線
	量は	、南	方位の	の地
	表沈	:着と	:吸기	入摂
	取に	よる	5線量	量と
	南方	「向兆	合岸音	部の
	放射	性雲	裏に。	よる
	線量	の合	計で	であ
<u></u>	り、肩	該密 ≀	こは同	南方
$\sim / 2$	位の)気(2	「最フ	大評
	仙地	1点と	: は f	直が
	異な	るた	め)	
気体最大評価地点*				
量評価地点				
的放出は極めて より評価				

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅲ章 3編 2.2線量評価)

変更前	変更後
2.2.4 線量評価のまとめ	2.2.4 線量評価のまとめ
現状の設備の運用により,気体廃棄物放出分で約0.03mSv/年,敷地内各施設からの直接線及びスカイシャイ	現状の設備の運用により、気体廃棄物放出分で約 8.8×10 ⁻³ mSv/年、敷
ン線の線量分で約 0.55mSv/年, 放射性液体廃棄物等の排水分で約 0.22mSv/年, 構内散水した堰内雨水の処理	シャイン線の線量分で約 0.55mSv/年,放射性液体廃棄物等の排水分で約(
済水の H-3 を吸入摂取した場合の敷地境界の実効線量は約 3.3×10 ⁻² mSv/年,構内散水した5・6号機滞留水	┃の処理済水の H-3 を吸入摂取した場合の敷地境界の実効線量は約3.3×10
の処理済水の地表に沈着した放射性物質からのy線に起因する実効線量は約 4.6×10 ⁻² mSv/年となり合計約	 滞留水の処理済水の地表に沈着した放射性物質からのγ線に起因する実効
<u>0.88</u> mSv/年となる ^{注)} 。	合計約 <u>0.86</u> mSv/年となる ^{注)} 。
注)四捨五入した数値を記載しているため、合算値が合計と合わない場合がある。	注)四捨五入した数値を記載しているため、合算値が合計と合わない場合があ

	変	更	理	由
	新石	╤╧┈	上体。	 つ <i>亦</i>
地r」台旭設加らの直接感及のヘルイ 0.22mSv/年,構内散水した堰内雨水	評11 更に	山万石 二伴う	5 寺の う 評価	ラ変
) ⁻² mSv/年,構内散水した5・6号機	の変	変更		
効線量は約 4.6×10 ⁻² mSv/年となり				
ある。				

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表 (Ⅲ 第3編 6 特定原子力施設の設備,機器の解体撤去に係る補足説明)

変 更 前	変 更 後	変 更 理 由
6 特定原子力施設の設備,機器の解体撤去に係る補足説明 (中略)	6 特定原子力施設の設備,機器の解体撤去に係る補足説明 (中略)	
添付資料-5 淡水化装置(R0-1A/B, R0-2)の撤去方法について (中略)	添付資料-5 淡水化装置(R0-1A/B, R0-2)の撤去方法について (中略)	
 瓦礫類発生量 撤去に伴う瓦礫類は約 240m³ 発生する見込みである。 	 瓦礫類発生量 撤去に伴う瓦礫類は約 240m³ 発生する見込みである。 	
<u>7. 淡水化装置(R0-1A/B, R0-2)の撤去に係る確認事項について</u> <u>淡水化装置(R0-1A/B, R0-2)の撤去に係る確認事項を表-1に示す。</u>	(削除)	Ⅱ 2.5 汚染水処理設備等の添 付 27 へ移管に伴う記載削除
	(中略)	付 27 へ移管に伴う記載削除

		変更前		変 更 後	変更理由
			添付資料-9	添付資料-9	
	一時保管エリン	アA1, A2仮設保管設備(テ	ント)解体	一時保管エリアA1, A2仮設保管設備(テント)解体	
(中略)				(中略)	
1.4 瓦礫類発生量 瓦礫類は0.1mSv/h以下の表面線量率であり,約7,730m ³ 発生する見込みである。 発生した瓦礫類は表面線量率に応じて定められた一時保管エリア(受入目安表面線量率0.1mSv/h以下 のエリア(一時保管エリアC, P1, W1, 固体廃棄物貯蔵庫第9棟1階))へ搬入する。				 1.4 瓦礫類発生量 瓦礫類は0.1mSv/h以下の表面線量率であり、約7,730m³発生する見込みである。 発生した瓦礫類は表面線量率に応じて定められた一時保管エリア(受入目安表面線量率0.1mSv/h以下 のエリア(一時保管エリアC, P1, <u>BB, CC, DD, e,</u>固体廃棄物貯蔵庫第9棟1階)<u>等)</u>へ搬 入する。 	現場実態の反映に伴う記載の 適正化
1.5 エリア面積につい 低線量率の瓦礫類を	いて :一時保管するエリ	アに転用(ケース1から)	ケース2へ切替)した後のエリア面積	1.5 エリア面積について 低線量率の瓦礫類を一時保管するエリアに転用(ケース1からケース2へ切替)した後のエリア面積	
は以下のとおり。 	- リア面積 (m ²)	一時保管エリアA1 一 863	持保管エリアA2 1,902	は以下のとおり。	
	表一1 一時份	 そ 管 エリア A 1 , A 2 に 係	る確認項目	(削除)	2.10 放射性固体廃棄物等の管
<u>確認事項</u>	確認項目				理施設の添付 10 へ移管に伴う 記載削除
遮敝殘脏	丁法唯認	<u>美施計画Ⅲ3.2.2</u> <u>に記載されている</u> <u>遮蔽の高さ,厚さを</u> 確認する。	<u>局さ3m以上,厚さ</u> <u>120mm以上であるこ</u> <u>と。</u>		山戦日小
	密度確認	<u>実施計画Ⅲ3.2.2</u> に記載されている 遮蔽の密度を確認	<u>密度 2.1g/cm³以上</u> <u>であること。</u>		
	外観確認	<u>する。</u> <u>遮蔽機能を損なう</u> 異常がないことを <u>確認する。</u>	<u>高さ3m以上,厚さ</u> <u>120mm以上を確保で</u> <u>きない陥没・欠けがな</u> いこと		
	据付状況	遮蔽壁の設置間隔	<u> </u>		
<u>保管容量</u>	<u>寸法確認</u>	<u>を確認する。</u> 実施計画Ⅱ2.10 に 記載されているエ リア面積であるこ とを確認する。	<u> 以下であること。</u> <u> エリア面積A1:863</u> <u>+19m², A2:1,902</u> <u>+40m²であること。</u>		
(以下,省略)				(以下,省略)	
変更前	変更後	変更理由			
--	---	--------			
V 燃料デブリの取り出し・廃炉 (中略)	 V 燃料デブリの取り出し・廃炉 (中略) 				
添付資料-4	添付資料-4				
原子炉格納容器バウンダリ施工箇所開放時の影響評価に関する説明資料	原子炉格納容器バウンダリ施工箇所開放時の影響評価に関する説明資料	記載の適正化			
1. 目的 新設の温度計の設置等に伴い事故後に施工した原子炉格納容器(以下, PCV と <u>言う</u>)の貫通部等が開放 し, PCV 内の核分裂生成物を含む気体(以下 PCV ガスと <u>言う</u>)が環境中に放出された場合の周辺の公衆に 対する放射線被ばくの影響評価を行う。	1. 目的 新設の温度計の設置等に伴い事故後に施工した原子炉格納容器(以下 PCV と <u>いう</u>)の貫通部等が開放 し, PCV 内の核分裂生成物を含む気体(以下 PCV ガスと <u>いう</u>)が環境中に放出された場合の周辺の公衆に 対する放射線被ばくの影響評価を行う。				
 2. 放出量評価 (1) PCV 圧力は、現状では 10 kPa 程度の正圧となっているため、施工箇所の損傷によって大気に開放された場合、差圧分の PCV ガスが原子炉建屋内に放出されるものと想定される。また、本評価では原子炉格納容器ガス管理設備の放射性物資の放出抑制機能を期待しないこととし、上記差圧分の放出に加え、開放したPCV 貫通部を閉じるまでの間、窒素封入量相当の PCV ガスの放出が継続するものとする。なお、現在施工を終えている設備の貫通部においては、施工時に PCV 内の水位が低く液体の放出がないことを確認しているため、本評価では気体のみの放出とする。 	 2. 放出量評価 (1) PCV 圧力は、現状では 10 kPa 程度の正圧となっているため、施工箇所の損傷によって大気に開放された場合、差圧分の PCV ガスが原子炉建屋内に放出されるものと想定される。また、本評価では原子炉格納容器ガス管理設備の放射性物質の放出抑制機能を期待しないこととし、上記差圧分の放出に加え、開放したPCV 貫通部を閉じるまでの間、窒素封入量相当の PCV ガスの放出が継続するものとする。なお、現在施工を終えている設備の貫通部においては、施工時に PCV 内の水位が低く液体の放出がないことを確認しているため、本評価では気体のみの放出とする。 				
(2) 差圧分の放出容積は、20kPa 程度に相当する容積として、PCV 容積(4240 m ³ :1号機よりも容積の大きい 2,3号機の値(ベント管含む)。PCV 空間部容積は、PCV 下部に蓄積している液相体積を差し引く必要があ るが、ここでは保守的に液相がないものとして放出容積を評価。)の2割(848m ³)とする。また、窒素封 入量は今後必要な封入量が減少していくことから、過去の封入量の最大値を包絡するよう、保守的に 50m ³ /hとし、施工箇所のPCV 貫通部を再度閉じる作業に3日間程度要すると考え、窒素封入量相当のPCV ガスの放出継続時間は72時間とする。	 (2) 差圧分の放出容積は、20kPa 程度に相当する容積として、PCV 容積(4240 m³:1号機よりも容積の大きい2,3号機の値(ベント管含む)。PCV 空間部容積は、PCV 下部に蓄積している液相体積を差し引く必要があるが、ここでは保守的に液相がないものとして放出容積を評価。)の2割(848m³)とする。また、窒素封入量は今後必要な封入量が減少していくことから、過去の封入量の最大値を包絡するよう、保守的に50m³/hとし、施工箇所のPCV 貫通部を再度閉じる作業に3日間程度要すると考え、窒素封入量相当のPCV ガスの放出継続時間は72時間とする。 				
(3) 評価対象核種は支配的核種であるセシウム 134 とセシウム 137 とし、PCV 内における濃度は、平成 25 年 4 月~5 月頃に実施した、1~3 号機 PCV ガス管理設備(HEPA フィルタ入口側)の気体(粒子状フィルタ、 チャコールフィルタ) および凝縮水(マリネリ瓶)のサンプリング結果より、実績の最大値を包絡するよう、以下の通りとする。	(3) 評価対象核種は支配的核種であるセシウム 134 とセシウム 137 とし, PCV 内における濃度は, 平成 25 年 4 月~5 月頃に実施した, 1~3 号機 PCV ガス管理設備(HEPA フィルタ入口側)の気体(粒子状フィルタ, チャコールフィルタ)及び凝縮水(マリネリ瓶)のサンプリング結果より,実績の最大値を包絡するよう, 以下の <u>とおり</u> とする。				
PCV ガス中の放射能濃度セシウム 1342.0×10 ⁻³ Bq/cm ³ セシウム 1372.0×10 ⁻³ Bq/cm ³	PCV ガス中の放射能濃度セシウム 1342.0×10 ⁻³ Bq/cm³セシウム 1372.0×10 ⁻³ Bq/cm³				

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第V章燃料デブリの取り出し・廃炉)

	変更前	変 更 後
3.	線量影響評価	3. 線量影響評価
(1)	大気中へ放出される核分裂生成物は,原子炉建屋から地上放散されるものとし,周辺の公衆に対する <u>,</u> 放 射線被ばくの影響を年間の実効線量を用いて評価する。	(1) 大気中へ放出される核分裂生成物は、原子炉建屋から地上放散される 線被ばくの影響を年間の実効線量を用いて評価する。
(2)	実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算する。被ばく経路としては、放射性雲中のセシウム <u>からの</u> 外部被ばくと内部被ばくと、地表沈着したセシウムによる外部被ばくと内部被ばくを考慮する。	(2) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばる。被ばく経路としては、放射性雲中のセシウム <u>による</u> 外部被ばくと ムによる外部被ばくと内部被ばくを考慮する。
(3)	放射性雲のセシウムからの γ 線 <u>の</u> 外部被ばく <u>による</u> 実効線量の評価に用いる式を以下に示す。 $H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{cs} \cdot 1000$ H_{γ} : 放射性雲のセシウムからの γ 線 <u>の</u> 外部被ばく <u>による</u> 実効線量[mSv] K : 空気カーマから実効線量への換算係数[Sv/Gy] E_{γ} : γ 線の実効エネルギー[MeV] D/Q : 相対線量[Gy/Bq] Q_{cs} : セシウムの大気放出量[Bq]	(3) 放射性雲のセシウムからの γ 線 <u>による</u> 外部被ばく実効線量の評価に $H_{\gamma} = K \cdot E_{\gamma}/0.5 \cdot D/Q \cdot Q_{cs} \cdot 1000$ H_{γ} : 放射性雲のセシウムからの γ 線 <u>による</u> 外部被ばく実 K : 空気カーマから実効線量への換算係数[Sv/Gy] E_{γ} : γ 線の実効エネルギー[MeV] D/Q : 相対線量[Gy/Bq] Q_{cs} : セシウムの大気放出量[Bq]
(4)	放射性雲のセシウム <u>から</u> の吸入摂取による内部被ばく <u>の</u> 実効線量の評価に用いる式を以下に示す。 $H_{cs} = K_{in} \cdot R_1 \cdot \chi/Q \cdot Q_{cs}$ H_{cs} :放射性雲のセシウム <u>から</u> の吸入摂取による内部被ばく <u>の</u> 実効線量[mSv] K_{in} :内部被ばく線量換算係数[mSv/Bq] R_1 :呼吸率[m ³ /s] χ/Q :相対濃度[s/m ³]	(4) 放射性雲のセシウムの吸入摂取による内部被ばく実効線量の評価に用 $H_{cs} = K_{in} \cdot R_1 \cdot \chi / Q \cdot Q_{cs}$ H_{cs} : 放射性雲のセシウムの吸入摂取による内部被ばく実務 K_{in} : 内部被ばく実効線量係数[mSv/Bq] R_1 : 呼吸率[m ³ /s] χ / Q : 相対濃度[s/m ³]
(5)	地表沈着したセシウムからの外部被ばく <u>による</u> 実効線量の評価に用いる式を以下に示す。1年間居住し 続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊については保守的に考慮しない。 $G_{ex} = K_{ex} \cdot \chi/Q \cdot V \cdot f \cdot Q_{Cs} \cdot T \cdot 1000$ G_{ex} : 地表沈着したセシウムからの外部被ばく <u>による</u> 実効線量[mSv] K_{ex} : 外部被ばく線量換算係数[(Sv/s)/(Bq/m ²)] V : 沈降速度[m/s] f : 残存割合[-] T : 被ばく時間[s]	(5) 地表沈着したセシウムからの <u>γ線による</u> 外部被ばく実効線量の評価 住し続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊 $G_{ex} = K_{ex} \cdot \chi/Q \cdot V \cdot f \cdot Q_{cs} \cdot T \cdot 1000$ G_{ex} : 地表沈着したセシウムからの <u>γ線による</u> 外部被ばく K_{ex} : 外部被ばく実効線量換算係数[(Sv/s)/(Bq/m ²)] V : 沈降速度[m/s] f : 残存割合[-] T : 被ばく時間[s]
(6)	地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部被ばく <u>の</u> 実効線量の評価に用いる 式を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊について は保守的に考慮しない。 $G_{in} = R_2 \cdot K_{in} \cdot \chi/Q \cdot V \cdot f \cdot F \cdot Q_{Cs} \cdot T$ G_{in} : 地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内部 被ばく <u>の</u> 実効線量[mSv] R_2 : 呼吸率[m ³ /s] F : 再浮遊率[m ⁻¹]	(6) 地表沈着したセシウムから再浮遊したセシウムの吸入摂取による内容 を以下に示す。1年間居住し続ける場合を考慮し、1年間の線量を評 保守的に考慮しない。 $G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_{cs} \cdot T$ G_{in} : 地表沈着したセシウムから再浮遊したセシウムの吸力 被ばく実効線量[mSv] R_2 : 呼吸率[m ³ /s] F : 再浮遊率[m ⁻¹]

	変	更	理	由
	記載	載の適	面正化	
ものとし、周辺の公衆に対する放射				
くによる実効線量の和として計算す				
内部彼はくと、地表沈者したセシウ				
用いる式を以下に示す。				
効線量「mSv]				
2224747 AB [IIIO 4]				
目いる式を以下に示す。				
边線量[mSv]				
に用いるれを以下に不可。1年間居 「たっいてけ保空的に考慮」ない、				
&に フィーレは休可的に 与愿 しない。				
≤劝纨昙「mSw]				
<>>>」//水里[IIIOV]				
部被ばく実効線量の評価に用いる式				
価する。セシウムの崩壊については				
、摂取による内部				

	変更	前			変更	更後
 (7)相対濃度と相対線量については、 <u>散を想定し、</u>下表の値を用いる。 	<u>本事象では核分裂</u>	生成物は主排気筒。	<u>より放出されないことから, 地上放</u>	 (7) 相対濃度と相対線量につい⁻ <u>される</u>下表の値を用いる。 	ては, <u>「Ⅱ 2.1 原子炉</u>	王力容器・格納容器
		敷地境界				敷地境界
木	泪対濃度[s/m ³]	2.6×10^{-5}			相対濃度[s/m ³]	8.1×10^{-5}
木	泪対線量[Gy/Bq]	3.0×10^{-19}			相対線量[Gy/Bq]	7.3×10^{-19}

4. 評価結果

本事象時に放出されるセシウム量及び敷地境界での実効線量について評価した結果は下表のとおり であり、周辺の公衆に対し、著しい放射線被ばくのリスクを与えることはない。

セシウム 134 放出量	約 8.9×10 ⁶ Bq
セシウム 137 放出量	約 8.9×10 ⁶ Bq
年間の実効線量	約 <u>1.6×10⁻⁴</u> mSv

4. 評価結果

本事象時に加 であり、周辺の

変更後							理	由
線量について を用いる。	は, <u>「Ⅱ 2.1 原子炉</u> 」	王力容器・格納容器	主水設備添付	<u> †資料 5 別紙 1」に記載</u>	気 ((等 の		‡の 1 目 対 派	変更 農度
		敷地境界 <u>8.1×10⁻⁵</u>						
	相対線量[Gy/Bq]	7.3×10^{-19}						
放出されるセ の公衆に対し	シウム量及び敷地境 ,著しい放射線被ば<	界での実効線量につ くのリスクを与える、	いて評価し ことはない。	た結果は下表のとおり				
セシウ	ウム 134 放出量	約 8.9×10 ⁶ B	q		EA	一次日	4 0 7	田
セシウ	7ム 137 放出量 間の実効線量	約 8. 9×10° B 約 <u>4. 9×10⁻⁴</u> n	q ıSv		べ 湾 に 住	く未作 ドう J S 西	F0)》 尾効彩	泉量
				以上	0) 沒	2史		
					<u> </u>		7	

以上

変更前	变 更 後	変更理由
添付資料-6	添付資料-6	記載の適正化
1号機原子炉格納容器内部詳細調査について	1号機原子炉格納容器内部詳細調査について	
(中略)	(中略)	
別添一 6	月10日11日11日11日11日11日11日11日11日11日11日11日11日1	
1 号機原子炉格納容器内部詳細調査 原子炉格納容器バウンダリ施工箇所開放時の 影響評価に関する説明資料	1 号機原子炉格納容器内部詳細調査 原子炉格納容器バウンダリ施工箇所開放時の 影響評価に関する説明資料	
1. 目的	1. 目的	
1 号機原子炉格納容器内部詳細調査に伴い,事故後に施工した原子炉格納容器(以下, PCV と <u>言う</u>)の	1号機原子炉格納容器内部詳細調査に伴い、事故後に施工した原子炉格納容器(以下 PCV という)の貫	
貫通部等が開放し, PCV 内の核分裂生成物を含む気体(以下 PCV ガスと <u>言う</u>)が環境中に放出された場合の周辺の公衆に対する放射線被ばくの影響評価を行う。	通部等が開放し, PCV 内の核分裂生成物を含む気体(以下 PCV ガスと <u>いう</u>)が環境中に放出された場合の 周辺の公衆に対する放射線被ばくの影響評価を行う。	
2. 故山鲁河伍	2. 故山鲁颖伍	
2. 瓜山里計Ш (中略)		
(3) 評価対象核種は支配的核種であるセシウム 134 とセシウム 137 とし, PCV 内における濃度は, 1 号機 PCV ガス管理設備(HEPA フィルタ入口側)の気体(粒子状フィルタ,チャコールフィルタ) <u>および</u> 凝縮水(マ リネリ瓶)のサンプリング結果より,以下の <u>通り</u> とする。	(3) 評価対象核種は支配的核種であるセシウム 134 とセシウム 137 とし, PCV 内における濃度は, 1 号機 PCV ガス管理設備(HEPA フィルタ入口側)の気体(粒子状フィルタ,チャコールフィルタ) <u>及び</u> 凝縮水(マ リネリ瓶)のサンプリング結果より,以下の <u>とおり</u> とする。	
PCV ガス中の放射能濃度	PCV ガス中の放射能濃度	
セシウム 134 1.5×10 ⁻⁴ Bq/cm ³	セシウム 134 1.5×10 ⁻⁴ Bq/cm ³	
セシウム 137 1.0×10 ⁻³ Bq/cm ³	セシウム 137 1.0×10 ⁻³ Bq/cm ³	
 線量影響評価 (中略) 	 線量影響評価 (中略) 	
(2) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算す	(2) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算す	
る。彼はく経路としては、放射性雲中のセンリム <u>からの</u> 外部被はくと内部被はくと、地表沈着したセンリ ムによる外部被げくと内部被げくを考慮する	る。彼はく経路としては、放射性雲中のセンリム <u>による</u> 外部彼はくと内部彼はくと、地表沈着したセンリ 人による外部神ばくと内部神ばくを考慮する	
(3) 放射性雲のセシウムからの γ 線 <u>の</u> 外部被ばく <u>による</u> 実効線量の評価に用いる式を以下に示す。	(3) 放射性雲のセシウムからの γ線による外部被ばく実効線量の評価に用いる式を以下に示す。	
$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{Cs} \cdot 1000$	$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{Cs} \cdot 1000$	
H_{γ} :放射性雲のセシウムからの γ 線 o 外部被ばくによる実効線量[mSv]	H_{γ} :放射性雲のセシウムからの γ 線 <u>による</u> 外部被ばく実効線量[mSv]	
K : 空気カーマから実効線量への換算係数[Sv/Gy]	K : 空気カーマから実効線量への換算係数[Sv/Gy]	
E_{γ} : γ 線の実効エネルギー[MeV]	E_{γ} : γ 線の実効エネルギー[MeV]	
D/Q:相対線量[Gy/Bq]	D/Q:相対線量[Gy/Bq]	
Q_{cs} : ビンワムの人気成出軍[Bq]	Q_{Cs} : ビンワムの人気成出重[Bq]	

(4) 放射性雲のセシウム	ム <u>から</u> の吸入摂取による内部被	皮ばく <u>の</u> 実効線量の評価に用いる式を」	以下に示す。	(4) 放射性雲のセシ	ウムの吸入摂取による内部	被ばく実効線量の評価に用い	る式を以下に示す。	記載の適正化
$H_{Cs} = K_{in} \cdot R_1$	$\cdot \chi / Q \cdot Q_{Cs}$			$H_{Cs} = K_{in} \cdot$	$R_1 \cdot \chi / Q \cdot Q_{Cs}$			
<i>H_{cs}</i> :放射性雲のセシウム <u>から</u> の吸入摂取による内部被ばく <u>の</u> 実効線量[mSv]			H_{Cs} :	放射性雲のセシウムの吸入	、摂取による内部被ばく実効線	量[mSv]		
K_{in} : r	內部被ばく線量 <mark>換算</mark> 係数[mSv/I	Bq]		K_{in}	: 内部被ばく <u>実効</u> 線量係数[[mSv/Bq]		
R_1 :呼	-吸率[m ³ /s]			R_{1}	:呼吸率[m³/s]			
χ/Q :相	目対濃度[s/m ³]			χ/Q	:相対濃度[s/m³]			
(5) 地表沈着したセシウ ける場合を考慮し、 $G_{ex} = K_{ex} \cdot \chi /$ $G_{ex} : 地K_{ex} : 地V : 沈f : 残T : 被$	ウムからの外部被ばく <u>による</u> 1 年間の線量を評価する。 $\frac{1}{Q} \cdot V \cdot f \cdot Q_{cs} \cdot T \cdot 1000$ 表沈着したセシウムからの外 部被ばく線量換算係数[(Sv/s) 降速度[n/s] 存割合[-] ばく時間[s]	E効線量の評価に用いる式を以下に示 ⁻ Eシウムの崩壊については保守的に考け 部被ばく <u>による</u> 実効線量[mSv])/(Bq/m ²)]	す。1 年間居住し続 慮しない。	(5) 地表沈着したセ し続ける場合を $G_{ex} = K_{ex} \cdot$ $G_{ex} :$ $K_{ex} :$ V : f T	シウムからの <u>y線による</u> 外 考慮し,1年間の線量を評 $\chi/Q·V·f·Q_{cs}·T·1000$ 地表沈着したセシウムから 外部被ばく <u>実効</u> 線量換算係 沈降速度 $[m/s]$: 残存割合 $[-]$	部被ばく実効線量の評価に用い 価する。セシウムの崩壊につい の <u>y線による</u> 外部被ばく実効 系数[(Sv/s)/(Bq/m ²)]	いる式を以下に示す。1 年間居住 いては保守的に考慮しない。 線量[mSv]	
(6) 地表沈着したセシリ 式を以下に示す。1 は保守的に考慮した $G_{in} = R_2 \cdot K_{in} \cdot$ $G_{in} : 地税R_2 : 呼吸F : 再酒$	ウムから再浮遊したセシウムの L 年間居住し続ける場合を考慮 ない。 $\cdot \chi/Q \cdot V \cdot f \cdot F \cdot Q_{Cs} \cdot T$ 表沈着したセシウムから再浮 ばく <u>の</u> 実効線量[mSv] 吸率[m ³ /s] 孚遊率[m ⁻¹]	の吸入摂取による内部被ばく <u>の</u> 実効線 重し,1年間の線量を評価する。セシウ 遊したセシウムの吸入摂取による内部	8量の評価に用いる ウムの崩壊について	(6) 地表沈着したセ を以下に示す。 保守的に考慮し $G_{in} = R_2 \cdot R$ G_{in} : R_2 : F :	シウムから再浮遊したセシ 1 年間居住し続ける場合を ない。 $X_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_{Cs} \cdot T$ 地表沈着したセシウムから 被ばく実効線量[mSv] 呼吸率[m ³ /s] 再浮遊率[m ⁻¹]	マウムの吸入摂取による内部被 考慮し,1年間の線量を評価す の再浮遊したセシウムの吸入摂	さばく実効線量の評価に用いる式 する。セシウムの崩壊については 取による内部	
(7) 相対濃度と相対線量	量については, <u>本事象では核分</u>	裂生成物は主排気筒より放出されない	いことから,地上放	(7) 相対濃度と相対	線量については, <u>「Ⅱ 2.1 」</u>	原子炉圧力容器・格納容器注	水設備添付資料 5 別紙 1」に記載	
<u>散を想定し</u> ,下表の	の値を用いる。			<u>される</u> 下表の値	を用いる。			
		敷地境界				敷地境界		
	相対濃度[s/m ³]	1.9×10^{-5}			相対濃度[s/	$/m^3$] <u>6.0×10⁻⁵</u>		
	相対線量[Gy/Bq]	2.5×10^{-19}			相対線量[Gy	y/Bq] 6.1×10^{-19}		気象条件の変更
								に伴う相対濃度
4. 評価結果				4. 評価結果				等の変更
本事象時に放け	出されるセシウム量及び敷地	寛界での実効線量について評価した結	「果は下表のとおり	本事象時に	放出されるセシウム量及び	「敷地境界での実効線量につい	て評価した結果は下表のとおり	
であり,周辺の4	公衆に対し、著しい放射線被は	ばくのリスクを与えることはない。		であり、周辺	の公衆に対し、著しい放射	線被ばくのリスクを与えるこ	とはない。	
	セシウム 134 放出量	約 6. 0×10° Bq			セシウム 134 放出量	■ 約 6.0×10 ⁵ Bq		与免冬州の亦軍
	セシワム 137 放出量	約 4. 0×10° Bq			セシウム 137 放出量	重 約 4. 0×10 ⁶ Bq		に伴う宝动線島
l	牛間の美効緑量	がJ <u>2. 0×10 °</u> mSv			牛間の実効緑量	約 <u>6.5×10⁻⁵</u> mS	V	の変更
			DT L.				DF 1.	
(□下 劣政)			以上	(凹下 少败)			以上	
(以下、11略)				(以下、11哈)				

変更前	変更後 変更理由
添付資料-7	添付資料-7 記載の適正化
2号機原子炉格納容器内部詳細調査及び試験的取り出しについて	2号機原子炉格納容器内部詳細調査及び試験的取り出しについて
(中略)	(中略)
別 添一 1 4	別添一14
2 号機原子炉格納容器内部詳細調査 原子炉格納容器バウンダリ施工筒所開放時の	2号機原子炉格納容器内部詳細調査 原子炉格納容器バウンダリ施工筒所開放時の
影響評価に関する説明資料	影響評価に関する説明資料
(中略)	(中略)
3. 線量影響評価	3. 線量影響評価
(1) 大気中へ放出される核分裂生成物は、原子炉建屋から地上放散されるものとし、周辺の公衆に対する、放	(1) 大気中へ放出される核分裂生成物は、原子炉建屋から地上放散されるものとし、周辺の公衆に対する放射
射線被はくの影響を牛間の美効線重を用いて評価する。 	歳彼はくの影響を年間の美効様重を用いて評価する。
 (2) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算す	(2) 実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算す
る。被ばく経路としては、放射性雲中のセシウムからの外部被ばくと内部被ばくと、地表沈着したセシウ	る。被ばく経路としては、放射性雲中のセシウムによる外部被ばくと内部被ばくと、地表沈着したセシウ
ムによる外部被ばくと内部被ばくを考慮する。	ムによる外部被ばくと内部被ばくを考慮する。
(3) 放射性雲のセシウムからの γ 線 <mark>の</mark> 外部被ばく <u>による</u> 実効線量の評価に用いる式を以下に示す。	(3) 放射性雲のセシウムからの γ 線 <mark>による</mark> 外部被ばく実効線量の評価に用いる式を以下に示す。
$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{Cs} \cdot 1000$	$H_{\gamma} = K \cdot E_{\gamma} / 0.5 \cdot D / Q \cdot Q_{Cs} \cdot 1000$
H _γ : 放射性雲のセシウムからの γ 線 <u>の</u> 外部被ばく <u>による</u> 実効線量[mSv]	H_{γ} :放射性雲のセシウムからの γ 線 <u>による</u> 外部被ばく実効線量[mSv]
K : 空気カーマから実効線量への換算係数[Sv/Gy]	K : 空気カーマから実効線量への換算係数[Sv/Gy]
E_{γ} : γ 線の実効エネルギー[MeV]	E_{γ} : γ 線の実効エネルギー[MeV]
D/Q:相対線量[Gy/Bq]	D/Q:相対線量[Gy/Bq]
Q_{cs} : セシワムの大気放出量[Bq]	Q_{cs} :セシウムの大気放出量[Bq]
(4) 放射性雲のセシウムからの吸入摂取による内部被ばくの実効線量の評価に用いる式を以下に示す。	 (4) 放射性雲のセシウムの吸入摂取による内部被ばく実効線量の評価に用いる式を以下に示す。
$H_{Cs} = K_{in} \cdot R_1 \cdot \chi / Q \cdot Q_{Cs}$	$H_{Cs} = K_{in} \cdot R_1 \cdot \chi / Q \cdot Q_{Cs}$
H_{Cs} :放射性雲のセシウムからの吸入摂取による内部被ばくの実効線量[mSv]	H_{Cs} :放射性雲のセシウムの吸入摂取による内部被ばく実効線量[mSv]
K_{in} :内部被ばく線量 <mark>換算</mark> 係数[mSv/Bq]	K_{in} :内部被ばく実効線量係数[mSv/Bq]
R_1 :呼吸率[m ³ /s]	R_1 : 呼吸率[m ³ /s]
χ/Q :相対濃度 $[s/m^3]$	χ/Q :相対濃度 $[s/m^3]$
(5) 地表沈着したヤシウムからの外部被げくによろ実効線量の評価に用いる式を以下に示す。1 年間民住し	 (5) 地表沈着したセシウムからの y線による 外部被げく実効線量の評価に用いろ式を以下に示す 1 年間民
続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊については保守的に考慮しない。	住し続ける場合を考慮し、1年間の線量を評価する。セシウムの崩壊については保守的に考慮しない。
$G_{av} = K_{av} \cdot \chi / Q \cdot V \cdot f \cdot Q_{Cv} \cdot T \cdot 1000$	$G_{av} = K_{av} \cdot \chi / Q \cdot V \cdot f \cdot Q_{Cv} \cdot T \cdot 1000$
G_{ex} : 地表沈着したセシウムからの外部被ばくによる実効線量[mSv]	G_{ex} : 地表沈着したセシウムからの γ 線による外部被ばく実効線量[mSv]
K_{ex} :外部被ばく線量換算係数 $[(Sv/s)/(Bq/m^2)]$	K_{ex} :外部被ばく実効線量換算係数 $[(Sv/s)/(Bq/m^2)]$
V : 沈降速度 $[m/s]$	V : 沈降速度 $[m/s]$

変	更前		変厚	E 後		変更理由
<i>f</i> :残存割合[-]		<i>f</i> :残 [;]	存割合[-]			
T : 被ばく時間[s]		T : 被認	ばく時間[s]			
(6) 地表沈着したセシウムから再浮遊したセシウム	への吸入摂取による内部被ばく <u>の</u> 実効線量の評価に用い	る (6) 地表沈着したセシウ	フムから再浮遊したセシウムの	吸入摂取による内部被ばく実効約	泉量の評価に用いる式	記載の適正化
式を以下に示す。1年間居住し続ける場合を考	慮し、1年間の線量を評価する。セシウムの崩壊につい	てを以下に示す。1年	間居住し続ける場合を考慮し,	1年間の線量を評価する。セシリ	ウムの崩壊については	
は保守的に考慮しない。		保守的に考慮しない				
$G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_{Cs} \cdot I$		$G_{in} = R_2 \cdot K_{in} \cdot j$	$\chi/Q \cdot V \cdot f \cdot F \cdot Q_{Cs} \cdot I$. 49	
G _{in} :地表沈着したセシウムから再消	を遊したセシウムの吸入摂取による内部	G _{in} :地表	長沈者したセシウムから冉浮遊 ジェカ娘見「^^	したセシウムの吸入摂取による内	156	
		彼は	、〈 夫幼禄重[mSv]			
\mathbf{K}_2 : 吁吸华[IIT/S] \mathbf{E} : 百淫游家[m ⁻¹]		R2<	.ቍ[m⁻/ S] ,ፚ索[m⁻1]			
 (7) 相対濃度と相対線量については,本事象では核	分裂生成物は主排気筒より放出されないことから, 地上	:放 (7) 相対濃度と相対線量	については,「Ⅱ 2.1 原子炉	王力容器・格納容器注水設備添付	資料5別紙1」に記載	気象条件の変更
<u>散を想定し</u> ,下表の値を用いる。			いる。			に伴う相対濃度
						等の変更
	敷地境界			敷地境界		
相対濃度[s/m ³]	2.0×10^{-5}		相対濃度[s/m ³]	6.9×10^{-5}		
相対線量[Gy/Bq	$\frac{2.4 \times 10^{-19}}{2.4 \times 10^{-19}}$		相対線量[Gy/Bq]	6.6×10^{-19}		
4. 評価結果		4. 評価結果				
本事象時に放出されるセシウム量及び敷地	地境界での実効線量について評価した結果は下表のとお	50 本事象時に放出	されるセシウム量及び敷地境	界での実効線量について評価した	に結果は下表のとおり	
であり, 周辺の公衆に対し, 著しい放射線被	はくのリスクを与えることはない。	であり、周辺の公	衆に対し、著しい放射線被は、	くのリスクを与えることはない。		
セシウム 134 故出量	約1.2.9×10 ⁶ Ba	Г	セシウム 134 故出島	約2.0×10 ⁶ Ba		
<u> </u>	352.3×10^{6} Bq	-	センウム 134 放田重 セシウム 137 放出量	約 5. 4×10 ⁶ Bq		
年間の実効線量	約4.9×10 ⁻⁵ mSv	-	年間の実効線量	約1.7×10 ⁻⁴ mSy		気象条件の変更
			十间》天勿林重			に伴う相対濃度
	以上 人				以上	等の変更

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第V章燃料デブリの取り出し・廃炉)

変更前	変更後	変更理由
別添一15	別添一15	記載の適正化
2 号機原子炉格納容器内部詳細調査 アクセスルート構築作業時の影響評価について	2号機原子炉格納容器内部詳細調査 アクセスルート構築作業時の影響評価について	
(中略)	(中略)	
5. 線量影響評価	5. 線量影響評価	
大気中へ放出される放射性核種は, R/B から地上放散されるものとし, 周辺の公衆に対する放射線被ばく	大気中へ放出される放射性核種は, R/B から地上放散されるものとし, 周辺の公衆に対する放射線被ばく	
の影響を,実効線量を用いて評価する。	の影響を,実効線量を用いて評価する。	
実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算す	実効線量は、以下に述べる内部被ばくによる実効線量及び外部被ばくによる実効線量の和として計算す	
る。被ばく経路としては、放射性雲中の核種からの外部被ばくと内部被ばく、地表沈着した核種による外部	る。被ばく経路としては、放射性雲中の核種による外部被ばくと内部被ばく、地表沈着した核種による外部	
被ばくと内部被ばくを考慮する。	被ばくと内部被ばくを考慮する。	
(1) 放射性雪中の核種からの v 線の外部被ぼく	(1) 放射性雪中の核種からの y 線による外部被ばく	
放射性雲中の核種からの γ 線の外部被ばくによる実効線量の評価に用いる式を以下に示す。	放射性雲中の核種からの γ線による外部被ばく実効線量の評価に用いる式を以下に示す。	
	H = K E / 0.5 D / 0.0 1000	
$\boldsymbol{H}_{\gamma} = \boldsymbol{K} \cdot \boldsymbol{E}_{\gamma} / 0.5 \cdot \boldsymbol{D} / \boldsymbol{Q} \cdot \boldsymbol{Q}_{R} \cdot 1000$	$H_{\gamma} = K \cdot E_{\gamma} / 0.3 \cdot D / Q \cdot Q_R \cdot 1000$	
H_{γ} : 放射性雲中の核種からの外部被ばく <u>による</u> 実効線量[mSv]	H_{γ} :放射性雲中の核種からの γ 線による外部被ばく実効線量[mSv]	
K : 空気カーマから実効線量への換算係数[Sv/Gy]	K : 空気カーマから実効線量への換算係数[Sv/Gy]	
E_{γ} : γ 線の実効エネルギー[MeV]	E_{γ} : γ 線の実効エネルギー[MeV]	
D/Q:相対線量[Gy/Bq]	D/Q:相対線量[Gy/Bq]	
Q_{R} : 放射性核種の大気放出量(各経路の DF を考慮した合計) [Bq]	Q_R :放射性核種の大気放出量(各経路の DF を考慮した合計)[Bq]	
(2) 放射性雲中の核種 <u>から</u> の内部被ばく	(2) 放射性雲中の核種の <mark>吸入摂取による</mark> 内部被ばく	
放射性雲中の核種 <u>から</u> の吸入摂取による内部被ばく <u>の</u> 実効線量の評価に用いる式を以下に示す。	放射性雲中の核種の吸入摂取による内部被ばく実効線量の評価に用いる式を以下に示す。	
$H_I = K_{in} \cdot R_1 \cdot \chi / Q \cdot Q_R$	$H_I = K_{in} \cdot R_1 \cdot \chi / Q \cdot Q_R$	
<i>H₁</i> : 放射性雲中の核種 <u>から</u> の吸入摂取による内部被ばく <u>の</u> 実効線量[mSv]	H ₁ : 放射性雲中の核種の吸入摂取による内部被ばく実効線量[mSv]	
<i>K_{in}</i> :内部被ばく線量 <u>換算</u> 係数[mSv/Bq]	K_{in} :内部被ばく <u>実効</u> 線量係数[mSv/Bq]	
R_1 :呼吸率[m ³ /s]	R_1 :呼吸率[m ³ /s]	
χ/Q :相対濃度 $[s/m^3]$	χ/Q :相対濃度[s/m³]	
(3) 地表沈着した核種からの外部被ばく	(3) 地表沈着した核種からの y <mark>線による</mark> 外部被ばく	
地表沈着した核種からの外部被ばく <u>による</u> 実効線量の評価に用いる式を以下に示す。1年間居住し続け	地表沈着した核種からの <u>γ線による</u> 外部被ばく実効線量の評価に用いる式を以下に示す。1年間居住し	
る場合を考慮し、1年間の線量を評価する。核種の崩壊については保守的に考慮しない。	続ける場合を考慮し、1年間の線量を評価する。核種の崩壊については保守的に考慮しない。	
$G_{ex} = K_{ex} \cdot \chi / Q \cdot V \cdot f \cdot Q_R \cdot T \cdot 1000$	$G_{ex} = K_{ex} \cdot \chi / Q \cdot V \cdot f \cdot Q_R \cdot T \cdot 1000$	
G_{ex} :地表沈着した核種からの外部被ばく <u>による</u> 実効線量[mSv]	G_{ex} :地表沈着した核種からの γ 線による外部被ばく実効線量[mSv]	
K_{ex} :外部被ばく線量換算係数[(Sv/s)/(Bq/m ²)]	K_{ex} :外部被ばく実効線量換算係数[(Sv/s)/(Bq/m ²)]	
V :沈降速度[m/s]	V : 沈降速度[m/s]	
f : 残存割合[-]	f : 残存割合[-]	
T : 被ばく時間[s]	T : 被ばく時間[s]	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第V章燃料デブリの取り出し・廃炉)

変更前								変更理由	
(4) 地表沈着した核種 <u>から</u> の内部被ばく 地表沈着した核種から再浮遊した核種の吸入摂取による内部被ばく <u>の</u> 実効線量の評価に用いる式を以下 に示す。1年間居住し続ける場合を考慮し、1年間の線量を評価する。核種の崩壊については保守的に考慮 しない。 $G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot f \cdot F \cdot Q_R \cdot T$			 (4) 地表沈着した核種の吸入想 地表沈着した核種から再消 示す。1年間居住し続ける場ない。 	<mark>取による</mark> 内部被ばく 浮遊した核種の吸入摂取に 合を考慮し,1年間の線	よる内部被ばく実効線量の評価に 量を評価する。核種の崩壊について	ニ用いる式を以下に こは保守的に考慮し	記載の適正化		
$G_{in} = R_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot J \cdot F \cdot Q_R \cdot I$ G_{in} : 地表沈着した核種から再浮遊した核種の吸入摂取による内部 被ばく <u>の</u> 実効線量[mSv] R_2 : 呼吸率[m ³ /s] F_{a} : 再浮遊率[m ⁻¹]			$G_{in} = K_2 \cdot K_{in} \cdot \chi / Q \cdot V \cdot J \cdot F \cdot Q_R \cdot I$ G_{in} :地表沈着した核種から再浮遊した核種の吸入摂取による内部 被ばく実効線量[mSv] R_2 :呼吸率[m ³ /s]						
(5) 相対濃 相対濃 <u>散を想定</u> <u>放出,異</u>	r 度及び相対線量 度と相対線量につい <u>でする</u> 。また,作業期 常時については短時	」 ては, <u>本事象では放射性核種</u> 間は月オーダーを要すると想 <u>間放出とする。表 4 に評価に</u>	<u>重は主排気筒より放出されないこ</u> 定するため, <u>通常時については4</u> 二 <u>用いた値を示す</u> 。	<u>とから,地上放</u> <u>手間 5 回の間欠</u>	 ア : 円存歴率[m] (5) 相対濃度及び相対線量 <u>異常時の</u>相対濃度と相対線 <u>1」に記載される表4の値を</u> 一を要すると想定するため、 	⁻ 」 泉量については, <u>「Ⅱ 2.1</u> <u>用いる</u> 。また, <u>通常時のᡮ</u> <u>年間5回の間欠放出とし</u>	<u>原子炉圧力容器・格納容器注水影 目対濃度と相対線量については、</u> 作 <u>て求めた表4の値を用いる</u> 。	<u>≷備添付資料 5 別紙</u> Ξ業期間は月オーダ	気象条件の変更 に伴う相対濃度 等の変更
	r	表4 評価に用いる相対濃	度,相対線量	1		表 4 評価に用いる相	対濃度,相対線量		
		通常時	異常時	-		通常時	異常時		
	相対濃度	$\frac{1.7 \times 10^{-6}}{10^{-6}} \text{ s/m}^3$	2.0×10^{-5} s/m ³	-	相対濃度	4.1×10^{-6} s/r	$\frac{6.9 \times 10^{-5}}{10^{-5}} \text{ s/m}^3$		
6. 評価結 当該 [,] りであ	 果 作業に伴う放射性核和 り,周辺の公衆に対し 表5 アク 	重の放出量及び敷地境界での し,著しい放射線被ばくのリ マセスルート構築作業に伴い	実効線量について評価した結果は スクを与えることはない。 改出される放射性核種の放射能量	t表 5, 6 のとお	 評価結果 当該作業に伴う放射性 おりであり,周辺の公衆 表5 ア 	核種の放出量及び敷地境。 に対し,著しい放射線被(クセスルート構築作業に	界での実効線量について評価した約 ずくのリスクを与えることはない。 伴い放出される放射性核種の放射	詰果は表 5, 6 のと 能量	
		及び敷地境界での実効線量	評価結果(通常時)			及び敷地境界での実家	动線量評価結果(通常時)		
			通常時				通常時		
	Cs-	-134 放出量	約1.6×10 ⁷ Bq		Cs	☞134 放出量	約 1.6×10 ⁷ Bq		
	Cs-	-137 放出量	約 1.9×10 ⁸ Bq		Cs	5−137 放出量	約1.9×10 ⁸ Bq		
	<u>α</u> 核種	(Am-241) 放出量	約1.9×10 ⁶ Bq		<u>α</u> 核種	(Am-241) 放出量	約1.9×10 ⁶ Bq		
	β核種	(Sr-90) 放出量	約 4.8×10 ⁹ Bq		β核種	(Sr-90) 放出量	約4.8×10 ⁹ Bq		気象条件の変更
	敷地:	境界実効線量	約 <u>8.0×10⁻⁴</u> mSv		敷地	地境界実効線量	約 <u>1.9×10⁻³</u> mSv		に伴う敷地境界 実効線量の変更

					_
変更	前		変	更後	

変	更 後		変	更	理	田
表6 アクセスルート構築作業 及び敷地境界での	業に伴い放出される放射性核種の放)実効線量評価結果(異常時)	射能量				
	里觉哇					
	英市町 (②-1 CRD レール切断作業)					
Cs-134 放出量	約 2.1×10 ⁸ Bq					
Cs-137 放出量	約 2.7×10 ⁹ Bq					
α核種(Am-241)放出量	約 2.7×10 ⁷ Bq					
β核種(Sr-90)放出量	約 6.7×10 ¹⁰ Bq		気象	2条作	中の変	E更
敷地境界実効線量	約 <u>4.5×10⁻¹</u> mSv		に肖	≤う旉	女地步	管界
			実効	線量	の変	更
		以上				

表 6 アクセスルート構築作業に伴い放出される放射性核種の放射能量 及び敷地境界での実効線量評価結果(異常時)

	異常時
	(②-1 CRD レール切断作業)
Cs-134 放出量	約 2.1×10 ⁸ Bq
Cs-137 放出量	約 2.7×10 ⁹ Bq
α核種(Am-241)放出量	約 2.7×10 ⁷ Bq
β核種(Sr-90)放出量	約 6.7×10 ¹⁰ Bq
敷地境界実効線量	約 <u>1.3×10⁻¹ m</u> Sv

以上

	変更	前			変更後	変更理由
				(別添-15)別紙	(別添-15)別紙1	
2 号機原子炉格納容器内部詳細調 (中略) 4. 線量影響評価結果の内訳 各作業及びダスト浮遊要因毎の敷地境 放出量の大きな作業工程である CRD レー じた場合の敷地境界での実効線量(異常	周査 アクセス 補足説明資 アでの実効線量 ル切断作業(2 時)の内訳を別	ルート構築作業	時の影響評価]訳を別表(1)-) 時にバウン 。	についての -6 に示す。また,最 ダリ施工箇所開放が	2 号機原子炉格納容器内部詳細調査 アクセスルート構築作業時の影響評価についての 補足説明資料 (中略) 線量影響評価結果の内訳 各作業及びダスト浮遊要因毎の敷地境界での実効線量(通常時)の内訳を別表(1)-6 に示す。また,最も 放出量の大きな作業工程である CRD レール切断作業(本文表 1 の②-1)時にバウンダリ施工箇所開放が生 じた場合の敷地境界での実効線量(異常時)の内訳を別表(1)-7 に示す。	
別表(1)-6 首	通常時の敷地境	界での実効線量	の内訳		別表(1)-6 通常時の敷地境界での実効線量の内訳	
	合計 (mSv)	 洗浄または 切断による ダスト浮遊 	内訳 (mSv) 切断片の 落下による ダスト浮遊	AWJ 影響範囲の 表面剥離による ダスト浮遊	内訳 (mSv) 内訳 (mSv) 合計 (mSv) 次浄または 切断片の AWJ 影響範囲の ダスト浮遊 ダスト浮遊 ダスト浮遊	
①X-6 ペネ内					①X-6 ペネ内	
①-1 X-6 ペネ堆積物	7.3×10^{-5}	1.2×10^{-5}	<u>6. 1×10⁻⁵</u>		①-1 X-6 ペネ堆積物 1.8×10 ⁻⁴ 2.9×10 ⁻⁵ 1.5×10 ⁻⁴ -	気象条件の変更に伴う実効線量
①-2 ケーブル ①-3 レールガイド	$- 2.4 \times 10^{-4}$		$\frac{1.2 \times 10^{-5}}{5.1 \times 10^{-7}}$	$- 2.3 \times 10^{-4}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	の変更
②PCV 内			1		②PCV内	
→ ②-1-1 CRD レール	-	1.6×10^{-5}	2.7×10^{-6}	-	$\frac{2}{1} \qquad \boxed{2 - 1 - 1 \text{CRD } \nu - \nu} \qquad \qquad \frac{3.9 \times 10^{-5}}{6.6 \times 10^{-6}}$	
」 2 ⑦-1-2 ガイドピン 2 新	4.2×10^{-4}	3.9×10^{-7}	<u>1.4×10⁻⁷</u>	3.9×10^{-4}	$ \begin{array}{c} \dot{\ } \\ \hline \\ \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\$	
$ \begin{array}{c} & \leftarrow \\ \mathbf{I}_{-} \\ \odot \\ \odot \end{array} $ $ \begin{array}{c} & \oplus \\ & & \\ \end{array} \end{array} $ $ \begin{array}{c} & @ \\ & &$		1.3×10^{-5}	2.3×10^{-6}		マートー3 CRD レール上 マートラング 3.2×10 ⁻⁵ 5.6×10 ⁻⁶	
②-2 CRD レール吊り治具	4.4×10^{-5}	1.4×10^{-6}	5.1×10^{-6}	3.8×10^{-5}	②-2 CRD レール吊り治具 <u>1.1×10⁻⁴</u> <u>3.5×10⁻⁶</u> <u>1.2×10⁻⁵</u> <u>9.1×10⁻⁵</u>	
②-3 電線管	1.6×10^{-5}	1.2×10^{-6}	1.8×10^{-6}	1.3×10^{-5}	②-3 電線管 <u>3.9×10⁻⁵</u> <u>2.9×10⁻⁶</u> <u>4.4×10⁻⁶</u> <u>3.2×10⁻⁵</u>	
合計	$\underline{8.0\times10^{-4}}$	4.4×10^{-5}	8.5×10^{-5}	6.7×10^{-4}	合計 <u>1.9×10^{-3}</u> <u>1.1×10^{-4}</u> <u>2.0×10^{-4}</u> <u>1.6×10^{-3}</u>	

変更前

別表(1)-7 異常時の敷地境界での実効線量の内訳(PCV バウンダリ施工箇所開放)

				内訳 (mSv)	
		合計 (mSv)	洗浄または 切断による ダスト浮遊	切断片の落下によるダスト浮遊	AWJ 影響範囲の表面剥離によるダスト浮遊
ノイ	②-1-1 CRD レール		4.9×10^{-3}	8.3×10^{-4}	
	②-1-2 ガイドピン	1.3×10^{-1}	1.2×10^{-4}	4.2×10^{-5}	1.2×10^{-1}
 CK 切断作業 	②-1-3 CRD レール上 グレーチング		4.1×10^{-3}	<u>7.1×10⁻⁴</u>	
	合計	1.3×10^{-1}	9. 1×10^{-3}	1.6×10^{-3}	1.2×10^{-1}

		変更後	爰			変更理由
	別表(1)-7 異常時の敷地境界	での実効線量の	D内訳(PCV バr	7ンダリ施工篭	箭所開放)	
				内訳 (mSv)	4/21/20/02/	
		合計	洗浄または	切断片の	AWJ 影響範囲の	
		(mSv)	切断による	落下による	表面剥離による	
			ダスト浮遊	ダスト浮遊	ダスト浮遊	
4	②-1-1 CRD レール		$1.7 imes 10^{-2}$	2. 9×10^{-3}		気象条件の変更
Î						に伴う実効線量
<u> </u>	②-1-2 ガイドピン	4.5 $\times 10^{-1}$	4.2×10^{-4}	1.5×10^{-4}	4. 1×10^{-1}	の変更
CRI 補料	(2)-1-3 CRD レールト					
)—1]浙1	ガレーチンガ		1.4×10^{-2}	2.4×10^{-3}		
0 H					1	
	合計	4.5×10^{-1}	3.1×10^{-2}	5.5×10^{-3}	4.1×10^{-1}	

以上

福島
第一
原子
力
発言
所
-
特
定
原子
力
施
設
に
係る
実
施
計
画
変
更
比
較 表
(別 冊 2 8 2 号 機 使 用 済 燃料 プール からの 燃料 取り出し 設備 に 係 <u>る 補足 説 明</u>)

変更前	変更後
別冊 2 8	別冊28
2号機 使用済燃料プールからの燃料取り出し設備に係る補足説明 (中略)	2号機 使用済燃料プールからの燃料取り出し設備(中略)
V 2 号機燃料取扱設備破損時の被ばく評価についての計算書 (中略)	V 2 号機燃料取扱設備破損時の被ばく評価につい (中略)
2. 燃料取扱設備クレーンの使用済燃料プールへの落下(シナリオ①,②) (中略)	2. 燃料取扱設備クレーンの使用済燃料プールへの落下(シナリオ①, ② (中略)
 2.2使用済燃料プール内の燃料破損による核分裂生成物の放出(シナリオ②) 2.2.1 核分裂生成物の放出量 (1)評価方法 (1)評価方法 (2.2.1 (1) 設置許可申請書添付書類十の「3.4.3 燃料集合体の落下」と同様の方法で評価する。 	 2.2使用済燃料プール内の燃料破損による核分裂生成物の放出(シナリオ 2.2.1 核分裂生成物の放出量 (1)評価方法 <u>福島第一原子力発電所原子炉設置許可申請書添付書類十</u>の「3.4.3 評価する。
(中略)	(中略)
 (2) 評価条件 核分裂生成物の移行と放出量の評価は、次の仮定に基づいて行う。 a. 燃料ギャップ内の核分裂生成物の量は、原子炉熱出力2483MW(定格出力の約105%)で2000 日運転 を行った9×9燃料集合体について行う。 b. 燃料集合体の冷却期間は365 日とする。 c. 破損した燃料棒のギャップ内核分裂生成物の存在量については、半減期の長い核種の放出が支配的であることを考 えて、破損した燃料棒内の全蓄積量に対して希ガス(Kr-85)及びよう素(I-129)それぞれ30%とす る。 d. 放出された希ガスは、全量が水中から原子炉建屋および燃料取り出し用構台の大気中へ移行するも のとする。 e. 放出されたよう素は、全量が水中から原子炉建屋および燃料取り出し用構台の大気中へ移行するも のとするが、同時に水位低下が起こることを想定するため保守的に水による除去は無いものとす る。 (中略) 	 (2) 評価条件 核分裂生成物の移行と放出量の評価は、次の仮定に基づいて行う。 a. 燃料ギャップ内の核分裂生成物の量は、原子炉熱出力2483MW(を行った9×9燃料集合体について行う。 b. 燃料集合体の冷却期間は365日とする。 c. 破損した燃料棒のギャップ内核分裂生成物の全量が水中に放出さ のギャップ内核分裂生成物の存在量については、半減期の長い えて、破損した燃料棒内の全蓄積量に対して希ガス(Kr-85)及び る。 d. 放出された希ガスは、全量が水中から原子炉建屋<u>及び</u>燃料取りと とする。 e. 放出されたよう素は、全量が水中から原子炉建屋<u>及び</u>燃料取りと とするが、同時に水位低下が起こることを想定するため保守的に (中略)

	変	更	理	由
	記載	戈の道	正化	
に係ろ補足説明				
いての計算書				
)				
2)				
燃料集合体の落下」と同様の方法で				
2枚山もの約105%) べ 2000 日 第5				
と俗田刀の称105%) C 2000 日連転				
それるものとする。破損した燃料棒 を種の放出が支配的であることを考				
、種の放山が交配的であることを考 よう素(I-129)それぞれ 30%とす				
はし用構台の大気中へ移行するもの				
出し用構台の大気中へ移行するもの				
こ水による除去は無いものとする。				

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(別冊28 2号機 使用済燃料プールからの燃料取り出し設備に係る補足説明)

変更前	变 更 後	変更理由
2.2.2 線量 <u>当量</u> の評価	2.2.2 線量の評価	記載の適正化
(1) 評価の前提	(1) 評価の前提	
大気中へ放出される核分裂生成物は、地上放出されるものとし、これによる実効線量の計算は、次の仮定	大気中へ放出される核分裂生成物は、地上放出されるものとし、これによる実効線量の計算は、次の仮	
に基づいて行う。	定に基づいて行う。	
a. 敷地境界外の地表空気中濃度は, <u>設置許可申請書添付書類六の「5.5 安全解析に使用する気象条</u>	a. 敷地境界外の地表空気中濃度は, <u>「Ⅱ2.1 原子炉圧力容器・格納容器注水設備添付資料-5別紙1」</u>	気象条件の変更
<u>件」に記述される</u> 相対濃度に核分裂生成物の全放出量を乗じて求める。 <u>なお,相対濃度(χ/Q)</u>	<u>に記載の</u> 相対濃度 <u>(χ/Q:6.9×10⁻⁵s/m³)</u> に核分裂生成物の全放出量を乗じて求める。	に伴う相対濃度
は保守的な評価となる設置許可申請書記載の2号機の主蒸気管破断(地上放出)の値2.0×10⁻₅s/m³		等の変更
を適用する。		
b. 敷地境界外の希ガス <u>によるγ線</u> 空気吸収線量は, <u>設置許可申請書添付書類六の「5.5 安全解析に使</u>	b. 敷地境界外の希ガス <u>からのγ線による</u> 空気吸収線量は、「 <u>II2.1 原子炉圧力容器・格納容器注水設備</u>	
<u>用する気象条件」に記述される</u> 相対線量に希ガスの全放出量を乗じて求める。 <u>なお,相対線量(D</u>	<u>添付資料-5別紙1」に記載の</u> 相対線量 <u>(D/Q:6.6×10⁻¹⁹Gy/Bq)</u> に希ガスの全放出量を乗じて求	
/Q)は保守的な評価となる設置許可申請書記載の2号機の主蒸気管破断(地上放出)の値2.4×	める。	
<u>10⁻¹⁹Gy/Bq を適用する。</u>		
(2) 評価方法	(2) 評価方法	
設置許可申請書添付書類十の「3.4.3 燃料集合体の落下」ならびに「4.1.1 原子炉冷却材喪失」と同様	福島第一原子力発電所原子炉設置許可申請書添付書類十の「3.4.3 燃料集合体の落下」並びに「4.1.1	記載の適正化
の方法で評価する。	原子炉冷却材喪失」と同様の方法で評価する。	
敷地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばくによる実効	敷地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばくによる実効	
線量の和として計算する。	線量の和として計算する。	
よう素の <u>内部被ばくによる</u> 実効線量H _I (Sv)は, (1)式で計算する。	よう素の <u>吸入摂取による内部被ばく</u> 実効線量H _I (Sv)は,(1)式で計算する。	
$H_{I} = R \cdot H_{\infty} \cdot \chi / Q \cdot Q_{I} \cdots	$H_{I} = R \cdot H_{\infty} \cdot \chi / Q \cdot Q_{I} \cdots	
ここで,	ここで、	
R : 呼吸率 (m ³ /s) 「発電用軽水型原子炉施設の安全評価に関す	R : 呼吸率 (m ³ /s) 「発電用軽水型原子炉施設の安全評価に関する審査指針」の活動中の呼吸	
る審査指針」の活動中の呼吸率を秒当たりに換算して用いる。	率を秒当たりに換算して用いる。(小児:0.31m³/h,成人:1.2m³/h)	
(小児:0.31m³/h, 成人:1.2m³/h)	H _∞ : よう素(I-131)を 1Bq 吸入した場合の実効線量	
H∞ :よう素(Ⅰ-131)を 1Bq 吸入した場合の実効線量	(小児:1.6×10 ⁻⁷ Sv/Bq, 成人:2.0×10 ⁻⁸ Sv/Bq)	
(小児:1.6×10 ⁻⁷ Sv/Bq, 成人:2.0×10 ⁻⁸ Sv/Bq)	χ / Q :相対濃度 (s/m^3)	
χ / Q :相対濃度 (s/m^3)	Q _I :よう素の大気放出量 (Bq) (I-131 等価量)	
Q _I :よう素の大気放出量 (Bq) (I-131 等価量)		
希ガス <u>のγ線外部被ばくによる</u> 実効線量H _γ (Sv)は,(2)式で計算する。	希ガス <u>からのγ線による外部被ばく</u> 実効線量H _γ (Sv)は,(2)式で計算する。	
$H_{\gamma} = K \cdot D \neq Q \cdot Q_{\gamma} \cdots	$\mathbf{H}_{\gamma} = \mathbf{K} \cdot \mathbf{D} \neq \mathbf{Q} \cdot \mathbf{Q}_{\gamma} \cdot \cdots \cdot \cdots \cdot \cdots \cdot \mathbf{Q}$	
ここで、	ここで、	
K :空気吸収線量から実効線量への換算係数(1Sv/Gy)	K :空気吸収線量から実効線量への換算係数(1Sv/Gy)	
D/Q :相対線量(Gy/Bq)	D∕Q ∶相対線量(Gy/Bq)	
Q _γ : 希ガスの大気放出量(Bq)(γ線実効エネルギー0.5MeV 換算	Q _γ : 希ガスの大気放出量(Bq)(γ線実効エネルギー0.5MeV 換算	
值)	值)	
また、希ガスのβ線外部被ばくによる実効線量Hg(Sv)は、(3)式で計算する。	また,希ガス <mark>からのβ線による外部被ばく</mark> 実効線量H ₈ (Sv)は.(3)式で計算する。	
$H_{\beta} = 6.2 \times 10^{-14} \cdot \chi / Q \cdot Q_{\beta} \cdot E_{\beta} \cdot W_{TS} \cdots \cdots \cdots \cdots (3)$	$H_{\beta} = 6.2 \times 10^{-14} \cdot \chi / Q \cdot Q_{\beta} \cdot E_{\beta} \cdot W_{TS} \cdots (3)$	
ここで、	ここで、	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(別冊28 2号機 使用済燃料プールからの燃料取り出し設備に係る補足説明)

変更前	変更後	変更理由
χ / Q :相対濃度 (s/m ³)	$\chi / Q:$ 相対濃度 (s/m^3)	
\mathbf{Q}_{β} :希ガスの大気放出量 (Bq)	Q _β : 希ガスの大気放出量 (Bq)	
Ε _β : β線実効エネルギー「被ばく計算に用いる放射線エネルギー	E _β : β線実効エネルギー「被ばく計算に用いる放射線エネルギー	
等について」を用いる。(0.251MeV Kr-85 実効エネルギー)	等について」を用いる。(0.251MeV Kr-85 実効エネルギー)	
W _{TS} :皮膚の組織荷重係数は ICRP Publ.60 の値を用いる。(0.01)	W _{TS} :皮膚の組織荷重係数は ICRP Publ.60 の値を用いる。(0.01)	
(3) 評価結果	(3) 評価結果	
と記の評価前提及び方法に基づき敷地境界外の実効線量を評価した結果は表5の通りである。	と記の評価前提及び方法に基づき敷地境界外の実効線量を評価した結果は表 5 の通りである。	
表 5 クレーンの使用済燃料プールへの落下時の実効線量	表 5 クレーンの使用済燃料プールへの落下時の実効線量	
実効線量(小児) 実効線量(成人)	実効線量(小児) 実効線量(成人)	気象条件の変更
約 <u>1.1×10⁻¹</u> mSv 約 <u>1.3×10⁻¹</u> mSv	約 <u>3.5×10⁻¹</u> mSv 約 <u>4.0×10⁻¹</u> mSv	に伴う実効線量
		の変更記載の演正化
2.3 燃料取扱設備クレーンの使用済燃料ノールへの落下シテリオにおける公衆への彼はく影響 <u>については,2.1</u> しののに二十該広任用た合策し約1.4×10-1.2。したて	2.3 燃料取扱設備クレーンの使用済燃料ノールへの落下シナリオにおける公案への彼はく影響	記載の過止に
<u>と 2.2 に小 9 計価 </u>	<u>公衆への彼はく影響については、2.1 と 2.2 に小り計価結果を合身し、約4.1×10 mSV となる。</u>	に伴う評価結果
		の変更
3. 構内用輸送容器の落下による核分裂生成物の放出(シナリオ③)	3. 構内用輸送容器の落下による核分裂生成物の放出(シナリオ③)	
<u>3.1</u> 構内用輸送容器が地上に落下することで燃料が破損し、核分裂生成物が放出されたと仮定する。	構内用輸送容器が地上に落下することで燃料が破損し、核分裂生成物が放出されたと仮定する。	記載の適正化
3.1.1 核分裂生成物の放出量	3.1 核分裂生成物の放出量	
(1) 評価方法	(1) 評価方法	
設置許可申請書添付書類十の「3.4.3 燃料集合体の落下」と同様の方法で評価する。	<u>福島第一原子力発電所原子炉設置許可申請書添付書類十</u> の「3.4.3 燃料集合体の落下」と同様の方法で	
	評価する。	
(中略)	(中略)	
3.1.2 線量当量の評価	3.2 線量の評価	
	(1) 評価の前提	
大気中へ放出される核分裂生成物は、地上放出されるものとし、これによる実効線量の計算は、次の仮定	大気中へ放出される核分裂生成物は、地上放出されるものとし、これによる実効線量の計算は、次の仮	
に基づいて行う。	定に基づいて行う。	
a. 敷地境界外の地表空気中濃度は, <u>設置許可申請書添付書類六の「5.5 安全解析に使用する気象条</u>	a. 敷地境界外の地表空気中濃度は, <u>「Ⅱ2.1 原子炉圧力容器・格納容器注水設備 添付資料-5別紙</u>	気象条件の変更
<u>件」に記述される</u> 相対濃度に核分裂生成物の全放出量を乗じて求める。 <u>なお,相対濃度(χ/Q)</u>	<u>1」に記載の</u> 相対濃度 <u>(χ/Q:6.9×10⁻⁵s/m³)</u> に核分裂生成物の全放出量を乗じて求める。	に伴う相対濃度
<u>は設置許可申請書記載の2号機の主蒸気管破断(地上放出)の値2.0×10⁻⁵s/m³を適用する。</u>		等の変更
b. 敷地境界外の希ガス <u>によるγ線</u> 空気吸収線量は, <u>設置許可申請書添付書類六の「5.5 安全解析に使</u>	b. 敷地境界外の希ガス <u>からのγ線による</u> 空気吸収線量は, <u>「Ⅱ2.1 原子炉圧力容器・格納容器注水設備</u>	
<u>用する気象条件」に記述される</u> 相対線量に希ガスの全放出量を乗じて求める。 <u>なお、相対線量(D</u>	<u> 添付資料-5別紙1」に記載の</u> 相対線量 <u>(D/Q:6.6×10⁻¹⁹Gy/Bq)</u> に希ガスの全放出量を乗じて求	
<u> </u>	める。	
$\overline{\mathcal{S}_{\circ}}$		

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(別冊28 2号機 使用済燃料プールからの燃料取り出し設備に係る補足説明)

変更前	変 更 後	変更理由
(2) 評価方法	(2) 評価方法	
設置許可申請書添付書類十の「3.4.3 燃料集合体の落下」ならびに「4.1.1 原子炉冷却材喪失」と同様の方法で評価する。	<u>福島第一原子力発電所原子炉設置許可申請書添付書類十</u> の「3.4.3 燃料集合体の落下」 <u>並びに</u> 「4.1.1 原子炉冷却材喪失」と同様の方法で評価する。	記載の適正化
敷地境界外における実効線量は,次に述べる内部被ばくによる実効線量及び外部被ばくによる実効	敷地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ばくによる実効	
線量の和として計算する。	線量の和として計算する。	
よう素の <mark>内部被ばくによる</mark> 実効線量H _I (Sv)は,(1)式で計算する。	よう素の <u>吸入摂取による内部被ばく</u> 実効線量H _I (Sv)は,(1)式で計算する。	
$H_{I} = R \cdot H_{\infty} \cdot \chi / Q \cdot Q_{I} \cdots	$H_{I} = R \cdot H_{\infty} \cdot \chi / Q \cdot Q_{I} \cdots	
ここで,	ここで、	
R : 呼吸率 (m ³ /s) 「発電用軽水型原子炉施設の安全評価に関す	R : 呼吸率 (m ³ /s) 「発電用軽水型原子炉施設の安全評価に関する審査指針」の活動中の呼	
る審査指針」の活動中の呼吸率を秒当たりに換算して用いる。	吸率を秒当たりに換算して用いる。(小児:0.31m³/h,成人:1.2m³/h)	
(小児:0.31m³/h, 成人:1.2m³/h)	H _∞ :よう素 (I-131)を 1Bq 吸入した場合の実効線量	
H∞ :よう素 (I-131)を 1Bq 吸入した場合の実効線量	(小児:1.6×10 ⁻⁷ Sv/Bq, 成人:2.0×10 ⁻⁸ Sv/Bq)	
(小児:1.6×10 ⁻⁷ Sv/Bq, 成人:2.0×10 ⁻⁸ Sv/Bq)	χ/Q :相対濃度 (s/m^3)	
χ / Q :相対濃度 (s/m^3)	Q _I : よう素の大気放出量 (Bq) (I-131 等価量)	
Q ₁ :よう素の大気放出量 (Bq) (I-131 等価量)		
希ガス <u>のγ線外部被ばくによる</u> 実効線量H _γ (Sv)は,(2)式で計算する。	希ガス <u>からのγ線による外部被ばく</u> 実効線量H _γ (Sv)は,(2)式で計算する。	
$\mathbf{H}_{\gamma} = \mathbf{K} \cdot \mathbf{D} / \mathbf{Q} \cdot \mathbf{Q}_{\gamma} \cdots	$H_{\gamma} = K \cdot D \neq Q \cdot Q_{\gamma} \cdots	
ここで,	ここで,	
K :空気吸収線量から実効線量への換算係数(1Sv/Gy)	K : 空気吸収線量から実効線量への換算係数 (1Sv/Gy)	
D∕Q ∶相対線量 (Gy/Bq)	D∕Q ∶相対線量 (Gy/Bq)	
Q _γ : 希ガスの大気放出量 (Bq) (γ線実効エネルギー0.5MeV 換算	Q _γ : 希ガスの大気放出量 (Bq) (γ線実効エネルギー0.5MeV 換算	
值)	值)	
また,希ガス <u>のβ線外部被ばくによる</u> 実効線量H _β (Sv)は,(3)式で計算する。	また,希ガス <u>からのβ線による外部被ばく</u> 実効線量H _β (Sv)は,(3)式で計算する。	
$H_{\beta} = 6.2 \times 10^{-14} \cdot \chi / Q \cdot Q_{\beta} \cdot E_{\beta} \cdot W_{TS} \cdots (3)$	$H_{\beta} = 6.2 \times 10^{-14} \cdot \chi / Q \cdot Q_{\beta} \cdot E_{\beta} \cdot W_{TS} \cdots (3)$	
ここで,	ここで、	
χ/Q :相対濃度 (s/m^3)	χ/Q :相対濃度 (s/m ³)	
Q _β : 希ガスの大気放出量 (Bq)	Q _β : 希ガスの大気放出量 (Bq)	
Ε _β : β線実効エネルギー「被ばく計算に用いる放射線エネルギ	Ε _β : β線実効エネルギー「被ばく計算に用いる放射線エネルギ	
ー等について」を用いる。(0.251MeV Kr-85 実効エネルギー)	ー等について」を用いる。(0.251MeV Kr-85 実効エネルギー)	
W _T s :皮膚の組織荷重係数は ICRP Publ.60 の値を用いる。	W _{TS} :皮膚の組織荷重係数は ICRP Publ.60 の値を用いる。	
(0.01)	(0.01)	
(3) 評価結果	(3) 評価結果	
上記の評価前提及び方法に基づき敷地境界外の実効線量を評価した結果は表7の通りである。	上記の評価前提及び方法に基づき敷地境界外の実効線量を評価した結果は表7の通りである。	
表7 構内用輸送容器の落下時の実効線量	表7 構内用輸送容器の落下時の実効線量	
実効線量(小児) 実効線量(成人)	実効線量(小児) 実効線量(成人)	気象条件の変更
約 <u>1.7×10⁻³</u> mSv 約 <u>1.9×10⁻³</u> mSv	約 <u>5.5×10⁻³</u> mSv 約 <u>6.2×10⁻³</u> mSv	に伴う実効線量
		シ友文

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(別冊28 2号機 使用済燃料プールからの燃料取り出し設備に係る補足説明)

変更前	変更後	変更理由
4. 2 号機燃料取扱設備の耐震クラスについて	4. 2 号機燃料取扱設備の耐震クラスについて	
2. 燃料取扱設備クレーンの使用済燃料プールへの落下, <u>ならびに</u> 3. 構内用輸送容器のに示すとおり,地震の影響により燃料取扱設備が破損したと想定した場合の公衆への被ばである。 以上より,2号機燃料取扱設備の耐震クラスはBクラスと考えられるが,運転できないこ 減活動への影響を考慮し,耐震クラスはB+クラスと考える。	 を下の被ばく評価 燃料取扱設備クレーンの使用済燃料プールへの落下,並びに3.構内用輸送容器の落下の被ばく評価に 影響は5mSv未満 示すとおり,地震の影響により燃料取扱設備が破損したと想定した場合の公衆への被ばく影響は5mSv未満で ある。 とによるリスク低 以上より,2号機燃料取扱設備の耐震クラスはBクラスと考えられるが,運転できないことによるリスク低 滅活動への影響を考慮し,耐震クラスはB+クラスと考える。 	記載の適正化
(中略)	(中略)	
別添2 「2号機燃料取扱設備破損時の被ばく評価についての計算書」における 燃料破損時の被ばく評価に対する補足説明 (中略)	別添2 「2号機燃料取扱設備破損時の被ばく評価についての計算書」における 燃料破損時の被ばく評価に対する補足説明 (中略)	
		,
V 被ばく評価計算書 設置許可との差異 設置許可との差異	理由 V 被ばく評価計算書 設置許可との差異・理由	
 2.2 使用済燃料ブール内の燃料破損による核分裂生成物の放出(シナリオ(2)) 2.2 1 核分裂生成物の放出量 	2.2 使用済燃料ブール内の燃料破損による核分裂生成物の放出 (シナリオ(2)) 2.2.1 - 核分裂生成物の放出量	
 (1) 評価方法 破損する燃料体数の評価は、次の仮定に基づいて行う。 (1) 評価するシナリオの違いとそれの違い(設置許可は2.3体相当) (1) 評価するシナリオの違いとそれの違い(設置許可は2.3体相当) (2) 評価条件 (2) 評価条件 	.伴い破損する燃料体数 (1) 評価方法 (1) 評価方法 下) (1) 評価方法 (1) 評価方法 (1) 評価方法 (1) 評価方法 (1) 評価するシナリオの違いとそれに伴い破損する燃料体数 下) (1) 評価するシナリオの違いとそれに伴い破損する燃料体数 (1) ご (1) 評価するシナリオの違いとそれに伴い破損する燃料体数 (1) ご (1) ご (2) ご (2) ご (2) ご (2) ご	
 核分裂生成物の移行と放出量の評価は、次の仮定に基づいて行う。 燃料ギャップ内の核分裂生成物の量は、原子炉熱出力 2483MW(定格出力の約 105%)で 2000 日運転を行った 9×9 燃料集合体について行う。 燃料集合体の冷却期間は 365 日とする。 破損した燃料棒のギャップ内核分裂生成物の全量が水中に放出されるものとする。破損した 燃料棒のギャップ内核分裂生成物の存在量については、半減期の長い核種の放出が支配的 であることを考えて、破損した燃料棒内の全蓄積量に対して希ガス(Kr-85)及びよう素(I-129) それぞれ 30%とする。 放出された希ガスは、全量が水中から原子炉建屋<u>および</u>燃料取り出し用構台の大気中へ移行 	* ると被ぼく評価結果は 核分裂生成物の移行と放出量の評価は,次の仮定に基づいて行う。 b. 冷却期間を実際の取り出し時期とすると被ぼく評価結果は くないため,保守的に他 a. 燃料ギャップ内の核分裂生成物の量は,原子炉熱出力2483MW(定格出力の約105%)で 近くなるが,基準5mSvと比べて大きくないため,保守的に他 キ可は1日) 2000 目運転を行った9×9燃料集合体について行う。 の実施計画の評価と合わせた(設置許可は1日) が減衰し長半減期核種 b. 燃料集合体の冷却期間は365 日とする。 c. 砂損した燃料棒のギャップ内核分裂生成物の全量が水中に放出されるものとする。破損した ることから,ギャップ放 c. 砂損した燃料棒のギャップ内核分裂生成物の存在量については、半減期の長い核種の放出が支配的 のギャップへの放出割合が大きくなることから,ギャップ放 8年度高燃焼度9×9型 であることを考えて,破損した燃料棒内の全蓄積量に対して希ガス(Kr~85)及びよう素(I-129) ※ (独)原子力安全基盤機構「平成18年度高燃焼度9×9型 ア価編)」図 3.10.1,図 されぞれ 30%とする。 燃料信頼性実証成果報告書(総合評価編)」図 3.10.1,図 25%程度 d. 放出された希ガスは,全量が水中から原子炉建屋 <u>及び</u> 燃料取り出し用構台の大気中へ移行 3.10.1.2 にて、FP ガス放出率は最大 25%程度	記載の適正化
するものとする。 e. 放出されたよう素は、全量が水中から原子炉建屋 <u>および</u> 燃料取り出し用構台の大気中へ移行 するものとするが、同時に水位低下が起こることを想定するため保守的に水による除去は無い ものとする。 は、e. 評価シナリオで保守的に水がな ため、よう素の水による除染係数(そのまま放出されるとしている(影 常用ガス処理系を考慮)	なったと仮定している するものとする。 e. 放出されたよう素は、全量が水中から原子炉建屋及び燃料取り出し用構台の大気中へ移行す さいのとするが、同時に水位低下が起こることを想定するため保守的に水による除去は無いも のとする。 d, e. 評価シナリオで保守的に水がなくなったと仮定している ため、よう素の水による除染係数は考慮しておらず、大気に そのまま放出されるとしている(設置許可は除染係数500,非	
ものとする。 常用ガス処理系を考慮)	のとする。 常用ガス処理系を考慮)	

変 更 前		変更後		変更理由
 V 被ばく評価計算書 (3) 評価結果 上記の評価条件に基づいて計算した核分裂生成物の大気中への放出量は表4の通りである。 	設置許可との差異・理由	V 被ばく評価計算書 (3) 評価結果 上記の評価条件に基づいて計算した核分裂生成物の大気中への放出量は表4の通りであ る。	設置許可との差異・理由	う歩っ法プル
 2.2.2 線量当量の評価 (1) 評価の前提 大気中へ放出される核分裂生成物は,地上放出されるものとし,これによる実効線量の計 算は,次の仮定に基づいて行う。 a. 敷地境界外の地表空気中濃度は,設置許可申請書添付書類六の「5.5 安全解析に使用 <u>する気象条件」に記述される</u>相対濃度に核分裂生成物の全放出量を乗じて求める。<u>な</u> <u>お、相対濃度(x/Q)は保守的な評価となる設置許可申請書記載の2号機の主蒸気</u> <u>管破断(地上放出)の値2.0×10⁻⁵s/m³を適用する。</u> b. 敷地境界外の希ガス<u>によるy線</u>空気吸収線量は,設置許可申請書添付書類六の「5.5 <u>安全解析に使用する気象条件」に記述される</u>相対線量に希ガスの全放出量を乗じて求 める。<u>なお、相対線量(D/Q)は保守的な評価となる設置許可申請書記載の2号機</u> <u>の主蒸気管破断(地上放出)の値2.4×10⁻¹⁹Gy/Bqを適用する。</u> 	(1)設置許可と同等だが、以下を見直し。 相対濃度(χ/Q),相対線量(D/Q): 燃料集合体の落下ではなく保守的に主蒸気管破断の地上放出 の値を適用(設置許可はχ/Q=5.6×10 ⁻⁶ s/m ³ , D/Q=1.5× 10 ⁻¹⁹ Gy/Bq)	 2.2.2 線量の評価 (1) 評価の前提 大気中へ放出される核分裂生成物は,地上放出されるものとし,これによる実効線量の計算は,次の仮定に基づいて行う。 a. 敷地境界外の地表空気中濃度は,「II2.1 原子炉圧力容器・格納容器注水設備 添付資料 5 別紙1」に記載の相対濃度 (χ/Q:6.9×10⁻⁵s/m³) に核分裂生成物の全放出量を乗じて求める。 b. 敷地境界外の希ガスからのy線による空気吸収線量は,「II2.1 原子炉圧力容器・格納容器注水設備 添付資料 5 別紙1」に記載の相対線量(D/Q:6.6×10⁻¹⁹Gy/Bq) に希ガスの全放出量を乗じて求める。 	 (1) 設置許可と同等だが、以下を見直し。 相対濃度(χ/Q),相対線量(D/Q): 燃料集合体の落下ではなく保守的に主蒸気管破断の地上放出の値を適用(設置許可はχ/Q=5.6×10⁻⁶s/m³, D/Q=1.5×10⁻¹⁹Gy/Bq) 	 記載の適正化 気象条件の変更 に伴う相対濃度 等の変更
V 被ぼく評価計算書	設置許可との差異・理由	∇ 坂/ギノ∋亚瓜計答表	設慶欽可レの芝思・細山	
(2) 評価方法 敷地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ば くによる実効線量の和として計算する。 よう素の内部被ばくによる実効線量H ₁ (Sv)は、(1)式で計算する。 H ₁ =R・H _∞ ・ $\chi/Q \cdot Q_1$ (1) ここで、 R : 呼吸率(m^2)s「発電用軽水型原子炉施設の安全評価に関する審査指針」 の活動中の呼吸率を秒当たりに換算して用いる。 (小児: 0.31 m^2 /h,成人: 1.2 m^2 /h) H _∞ : よう素(1-131)を 1Bq吸入した場合の実効線量 (小児: 1.6×10 ⁻⁷ Sv/Bq,成人: 2.0×10 ⁻⁶ Sv/Bq) χ/Q : 相対濃度 (s/ m^2) Q ₁ : よう素の大気放出量 (Bq) (1-131等価量) 希ガス <u>の</u> y線外部被ばくによる実効線量H ₊ (Sv)は、(2)式で計算する。 H ₇ =K・D/Q · Q ₇ (2) ここで、 K : 空気吸収線量から実効線量への換算係数 (1Sv/Gy) D/Q : 相対線量 (Gy/Bq) Q ₇ : 希ガスの大気放出量 (Bq) ($_{7}$ 線実効エネルギー0.5MeV 換算値)	ixue計りとの定美・理田 (2) 呼吸率: 原子力安全委員会「発電用軽水型原子炉施設の安全評価に関する審査指針」の値とした(設置許可はICRP Publ.23(1974)) よう素(I-131)を1Bq吸入した場合の実効線量: ICRP Publ.71(1995)の値とした(設置許可はICRP Publ.30(1978))	V 被はく評価計算著 (2) 評価方法 繁地境界外における実効線量は、次に述べる内部被ばくによる実効線量及び外部被ば くによる実効線量の和として計算する。 よう素の吸入摂取による内部被ばく実効線量H ₁ (Sv) は、(1)式で計算する。 H ₁ =R・H _∞ ・ $\chi/Q \cdot Q_1$ (1) ここで、 R : 呼吸率 (m ³ /s)「発電用軽水型原子炉施設の安全評価に関する審査指針」 の活動中の呼吸率を秒当たりに換算して用いる。 (小児:0.31m ³ /h,成人:1.2m ³ /h) H _∞ : よう素 (I-131) を 1Bq 吸入した場合の実効線量 (小児:1.6×10 ⁻⁷ Sv/Bq,成人:2.0×10 ⁺⁵ Sv/Bq) χ/Q : 相対濃度 (s/m ³) Q _I : よう素の大気放出量 (Bq) (I-131 等価量) 希ガス <u>からの</u> ,繰による外部被ばく実効線量H ₊ (Sv) は、(2)式で計算する。 H ₂ =K・D/Q・Q ₂ (2) ここで、 K : 空気吸収線量から実効線量への換算係数 (ISv/Gy) D/Q : 相対線量 (Gy/Bq) Q ₂ : 希ガスの大気放出量 (Bq) (γ 線実効エネルギー0.5MeV 換算値)	設置許可との差異・埋由 (2) 呼吸率: 原子力安全委員会「発電用軽水型原子炉施設の安全評価に関す る審査指針」の値とした(設置許可はICRP Publ.23(1974)) よう素(I-131)を1Bq吸入した場合の実効線量: ICRP Publ.71(1995)の値とした(設置許可はICRP Publ.30(1978))	記載の適正化

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(別冊28 2号機 使用済燃料プールからの燃料取り出し設備に係る補足説明)

Numerical Control Numerican Control Numerican Control	変更前		変 更 後		変更理由
A. # # # # # # # # # # # # # # # # # # #	V 被ばく評価計算書	設置許可との差異・理由	V 被ばく評価計算書	設置許可との差異・理由	
0: PREN 2007 2: PREN 2007 0: PREN 2007 <td>また、希ガス<u>の β 線外部被ばくによる</u>実効線量H_g (Sv) は、(3)式で計算する。 H_g=6.2×10⁻¹⁴・$\chi / Q \cdot Q_g \cdot E_g \cdot W_{TS}$(3) ここで、 χ / Q :相対濃度 (s/m³) Q_g : 希ガスの大気放出量 (Bq) E_g : β線実効エネルギー「被ばく計算に用いる放射線エネルギー等について」 を用いる。(0.251MeV) W_{TS} :皮膚の組織荷重係数は ICRP Publ. 60 の値を用いる。(0.01)</td> <td>設置許可 添付書類十 4. 重大事故及び仮想事故 4.1. 1原子炉冷却材喪失におけるβ線による全身に対する線量(4- 3) 式を用いて評価。ただし,β線による外部被ばくによる実効 線量を求めるため,原子力安全委員会「発電用軽水型原子炉施 設の安全審査における一般公衆の線量評価について」より,皮 膚に対する組織荷重係数を乗じて算出した。(設置許可は等価 線量の計算式)</td> <td>また、希ガス<u>からの β 線による外部被ばく</u>実効線量H_g (Sv) は、(3)式で計算する。 H_g=6.2×10⁻¹⁴・χ/Q・Q_g・E_g・W_{TS}・(3) ここで、 χ/Q :相対濃度 (s/m³) Q_g :希ガスの大気放出量 (Bq) E_g : β線実効エネルギー「被ばく計算に用いる放射線エネルギー等について」 を用いる。(0.251MeV) W_{TS} :皮膚の組織荷重係数は ICRP Publ.60 の値を用いる。(0.01)</td> <td>設置許可 添付書類十 4. 重大事故及び仮想事故 4. 1. 1原子炉冷却材喪失におけるβ線による全身に対する線量(4- 3)式を用いて評価。ただし,β線による外部被ばくによる実効 線量を求めるため,原子力安全委員会「発電用軽水型原子炉施 設の安全審査における一般公衆の線量評価について」より,皮 膚に対する組織荷重係数を乗じて算出した。(設置許可は等価 線量の計算式)</td> <td>記載の適正化</td>	また、希ガス <u>の β 線外部被ばくによる</u> 実効線量H _g (Sv) は、(3)式で計算する。 H _g =6.2×10 ⁻¹⁴ ・ $\chi / Q \cdot Q_g \cdot E_g \cdot W_{TS}$ (3) ここで、 χ / Q :相対濃度 (s/m ³) Q_g : 希ガスの大気放出量 (Bq) E_g : β 線実効エネルギー「被ばく計算に用いる放射線エネルギー等について」 を用いる。(0.251MeV) W _{TS} :皮膚の組織荷重係数は ICRP Publ. 60 の値を用いる。(0.01)	設置許可 添付書類十 4. 重大事故及び仮想事故 4.1. 1原子炉冷却材喪失におけるβ線による全身に対する線量(4- 3) 式を用いて評価。ただし,β線による外部被ばくによる実効 線量を求めるため,原子力安全委員会「発電用軽水型原子炉施 設の安全審査における一般公衆の線量評価について」より,皮 膚に対する組織荷重係数を乗じて算出した。(設置許可は等価 線量の計算式)	また、希ガス <u>からの β 線による外部被ばく</u> 実効線量H _g (Sv) は、(3)式で計算する。 H _g =6.2×10 ⁻¹⁴ ・ χ /Q・Q _g ・E _g ・W _{TS} ・(3) ここで、 χ /Q :相対濃度 (s/m ³) Q _g :希ガスの大気放出量 (Bq) E _g : β 線実効エネルギー「被ばく計算に用いる放射線エネルギー等について」 を用いる。(0.251MeV) W _{TS} :皮膚の組織荷重係数は ICRP Publ.60 の値を用いる。(0.01)	設置許可 添付書類十 4. 重大事故及び仮想事故 4. 1. 1原子炉冷却材喪失におけるβ線による全身に対する線量(4- 3)式を用いて評価。ただし,β線による外部被ばくによる実効 線量を求めるため,原子力安全委員会「発電用軽水型原子炉施 設の安全審査における一般公衆の線量評価について」より,皮 膚に対する組織荷重係数を乗じて算出した。(設置許可は等価 線量の計算式)	記載の適正化
	(3)評価結果 上記の評価前提及び方法に基づき敷地境界外の実効線量を評価した結果は表5の通りである。		(3)評価結果 上記の評価前提及び方法に基づき敷地境界外の実効線量を評価した結果は表5の通りであ る。		