2.4 特定原子力施設の今後のリスク低減対策

現状,特定原子力施設の追加的放出等に起因する,敷地外の実効線量は低く抑えられている(2.2 参照)。また,多くの放射性物質を含有する燃料デブリや使用済燃料等において 異常時に発生する事象を想定したリスク評価においても,敷地外への影響は十分低いものであると評価している(2.3 参照)。

今後、福島第一原子力発電所内に存在している様々なリスクに対し、最新の「東京電力福島第一原子力発電所 中期的リスクの低減目標マップ(以下「リスクマップ」という。)」に沿って、リスク低減対策に取り組んでいく。プラントの安定状態に向けた更なる取組、発電所全体の放射線量低減・汚染拡大防止に向けた取組、ならびに使用済燃料プールからの燃料取り出し等の各項目に対し、代表される様々なリスクが存在している。

各項目に対するリスク低減のために実施を計画している対策については、リスク低減対策の適切性確認の視点を基本とした確認を行い、期待されるリスクの低減ならびに安全性、被ばく及び環境影響等の観点から、その有効性や実施の要否、時期等を十分に検討し、最適化を図るとともに、必要に応じて本実施計画に反映する。

また,「I 2.3.7 放射性廃棄物」にて実施する,ALPS 処理水の海洋放出により,廃炉作業に係る敷地などのリソースを有効に活用していくことで,中長期ロードマップに沿った全体工程の達成及びリスクマップに沿ったリスク低減対策を実現していく。

2.4.1 添付資料

添付資料-1 実施を計画しているリスク低減対策ならびに適切性

実施を計画しているリスク低減対策ならびに適切性(1/8)

Д.	ードマップ関連項目	想定されるリスク	リスク	低減対策	目的	対応状況	個々の対策に対する適切性
プラントの安定状態維持・継続に向けた計画		・中長期的な温度計故障による原子炉冷温停止状態の監視不能リスク	原子炉圧力容器代替温度計の新設		原子炉圧力容器の既設温度計について, 既設温度計の故障に備えて, 追加温度計を設置できるように, 温度監視が可能な箇所を選定し, 各号機の温度監視のバックアップが保たれるようにする。	2号機:平成24年10月設置完了 1,3号機:平成31年4月に作業 の成立性,温度計設置の成立性 の観点から設置が困難である旨 報告(毎月,温度計信頼性評価 を実施)	 ①温度計がメンテナンスできないことにより故障し、使用可能な温度計がなくなった場合は冷却状態の監視ができなくなる。 ②温度が監視できなくなるが、直接的に放射性物質の追加放出リスクに影響はない。 ③新旧の温度計はともに建屋内に設置されているため外部事象に対するリスクは小さい。 ④既設温度計は劣化により故障する可能性が増加する。 ⑤2 号機の温度計の故障が多いことから 2 号機を優先的に設置することが妥当である。1, 2 号機についても順次設置を検討していく予定である。 ⑥対策を実施することにより直接的に増加するリスクはないが、設置環境の線量が高いため被ばく量が増加する。 ①既設の圧力容器温度計等の計器の劣化に備え、設置時期、箇所、方法について検討を実施する
	原子炉の冷却計画		格納容器內監視計器設置		原子炉格納容器内の既設温度計については、故障した場合、メンテナンスや交換ができないことから、原子炉格納容器内部の冷温停止状態の直接監視のために、代替温度計を格納容器貫通部から挿入する。	1 号機: 平成 24 年 10 月設置完了 2 号機: 平成 24 年 9 月設置完了 平成 25 年 8 月追加設置完了 3 号機: 平成 27 年 12 月設置完了	①温度計がメンテナンスできないことにより故障し、使用可能な温度計がなくなった場合は格納容器内の冷却状態の監視ができなくなる。 ②温度が監視できなくなるが、直接的に放射性物質の追加放出リスクに影響はない。 ③新旧の温度計はともに建屋内に設置されているため外部事象に対するリスクは小さい。 ④既設温度計は劣化により故障する可能性が増加する。 ⑤ 3 号機の原子炉建屋内は線量が高いため、1、2 号機の設置を優先させることは妥当である。3 号機については、設置作業ができるよう環境改善後、速やかに設置する計画を立案する。 ⑥対策を実施することにより直接的に増加するリスクはないが、設置環境の線量が高いため被ばく量が増加する。 ⑦既設の格納容器温度計等の計器の劣化に備え、設置時期、箇所、方法について検討を実施する。
		・注水機能停止リスク・放射性物質の系外放出リスク		復水貯蔵タンクへ の運用変更と復水 貯蔵タンク炉注水 ポンプ配管のポリ エチレン管化	原子炉注水設備について、水源を仮設バッファタンクから、既設の復水貯蔵タンクに変更することにより、水源保有水量の増加、水源の耐震性向上を図る。さらに配管距離の短縮、ポリエチレン管の新設配管設置により、注水機能喪失及び漏えいリスクの低減を図る。	平成25年7月復水貯蔵タンクの 運用開始 平成26年2月復水貯蔵タンク炉 注水ポンプ配管のポリエチレン 管化対策完了	①炉注設備は既に多様性、多重性を備えており、一定の信頼性は確保されているが、期待される更なる信頼性向上が図れない。②炉注機能が停止した場合の放射性物質の追加放出リスクは大きい。③水源を復水貯蔵タンクに変更することにより水源の耐震性が高くなるためリスクは低減する。④現行設備でも適切な保全により長期間使用可能と考えており、時間的なリスクの変化は小さい。⑤炉注設備の信頼性を向上させることはリスク低減に寄与するため可能な限り早期に実施することが望ましく、既に実施している。⑥対策を実施することにより直接的に増加するリスクはないが、設置環境の線量が高いため被ばく量が増加する。 ⑦対策を実施できないリスクはない。
プラントの安定状態維	原子炉の冷却計画			漏えい時の敷地外 放出防止対策(堰 や漏えい検出設備 等の設置検討)	原子炉注水設備の配管等に漏えいが発生した場合の敷地外放出防止・早期検知のために堰や漏 えい検知設備を設置する。	平成 25 年 12 月設置完了	①漏えい時における放射性物質の追加放出リスクが低減しない。 ②漏えい時における放射性物質の追加放出リスクは大きい。 ③漏えい拡大防止を目的としており、外部事象に対する設備破損リスクは変化しない。 ④漏えい拡大防止を目的としており、時間的にリスクは変化しない。 ⑤可能な限り早期に実施することが望ましく、既に実施している。 ⑥対策を実施するリスクは小さい。 ⑦対策を実施できないリスクはない。
維持・継続に向けた計画	原子炉の冷却計画			仮設ハウスの恒久 化対策	原子炉注水設備のポンプ等を恒久化したハウス 内等に配置することにより、台風、塩害、凍結 等の外部事象による設備の故障防止を図る。	平成 25 年 2 月設置完了	①凍結等の外部事象リスクが低減しない。 ②炉注機能が停止した場合の放射性物質の追加放出リスクは大きい。 ③仮設ハウスを恒久化することで外部事象に対するリスクは低減する。 ④仮設ハウスを恒久化するものであり、時間的なリスクは変化しない。 ⑤可能な限り早期に実施することが望ましく、既に実施している。 ⑥対策を実施するリスクは小さい。 ⑦対策を実施できないリスクはない。
			建屋内循環ループ構築		水処理設備など建屋外に設置された設備を経由 しない循環ループを形成し、系外への放出リス クを低減する。また、建屋内滞留水をそのまま 冷却水として使用することにより、水処理設備 等の処理量、あるいは原子炉格納容器からの漏 えい水量に依存せずに、原子炉注水量を増加さ せるシステムが構築出来る。	平成28年10月運用開始 (建屋滞留水循環冷却は,燃料 デブリ取り出しに合わせ検討 中)	①大循環ループからの漏えいリスクが低減しない。 ②屋外に敷設されているループ長が縮小する分、漏えいリスクを低減する。 ③建屋内に設置することで、気象等に関わる外部事象に対するリスクが低減する。 ④現行設備でも適切な保全により長期間使用可能と考えており、時間的なリスクの変化は小さい。 ⑤建屋内循環ループを構築する前段階として、滞留水水質、作業環境や格納容器止水作業等との干渉も含めて取水場所等を検討する必要があるため、目標時期までに対策できるよう、実施に向けての調査・検討を行っている。 ⑥作業員の被ばくリスクに加え、建屋内が高線量となるリスクがある。 ⑦滞留水水質の傾向監視、ライン構成の最適化、除染等の環境改善等を考慮し、効果的な対策となるよう検討していく必要がある。

実施を計画しているリスク低減対策ならびに適切性(2/8)

П-	ードマップ関連項目	想定されるリスク	リスク低減対策	目的	対応状況	個々の対策に対する適切性	
プラントの安定状			原子炉圧力容器・格納容器への窒素供給装置の増設	窒素供給装置は常用している2台の内1台の運転で、原子炉格納容器内の水素濃度を可燃濃度(4%)以下に維持するのに十分な性能を保持している。また運転号機が停止しても予備の装置を起動するまでの余裕時間も十分確保(100時間以上)されていることから、常用1台の運転で問題はないが、更なる信頼性向上のため、常用の窒素ガス分離装置を1台増設する。	平成 25 年 3 月設置完了	 ①原子炉格納容器內窒素封入設備は、非常用電源を装備した窒素供給装置の設置により多重保しているものの、常用機器の長期間停止を伴う点検等を行う場合には、常用機器が単一状る。 ②現状の設備設置状況でも機器の多重性を確保していること、運転号機が停止した場合の停時間も十分に確保(100時間以上)されていることから、今回の更なる信頼性向上対策が無く水素爆発の可能性は十分に低く抑えられていると考えている。 ③高台に設置することにより、外部事象に対するリスクは低減する。 ④設備の経年的な劣化により窒素供給設備が故障するリスクが増加するが、装置の増設により適切な保守管理が可能となる。 ⑤窒素供給装置の信頼性を向上させることはリスク低減に寄与するため、早期に実施するこましく既に実施している。 ⑥対策を実施するリスクは小さい。 ⑦実施できないリスクはない。 	
状態維持・継続に向けた計画	原子炉の冷却計画	・原子炉圧力容器・格納容器内不活性雰囲気維持機能喪失リスク	水素の滞留が確認された機器への窒素ガス 封入	サプレッションチェンバ(S/C) 気相部等の高濃度 の水素滞留が確認された機器について、窒素ガ スの封入等により不活性状態にする。	1 号機: 平成 24 年 10 月より 対応中 2 号機: 平成 25 年 5 月より対 応中 3 号機: S/C 内閉空間気相部 の水素残留状況の調査を検討 中	 ①今回確認されたサプレッションチェンバ内の高濃度の水素は、事故初期に発生したものの残留物であると考えられ、酸素濃度が低いことや現在まで閉空間内に安定して存在してきてきたことを鑑みると、水素爆発が発生する緊急性は低いと考えられる。しかしながら、水素パージを行わなければ、この状況が継続する。 ②サプレッションチェンバは格納容器の一部であること、閉空間の容積によっては水素の残留量が大きい可能性があることから、万一水素爆発が発生した際に放射性物質が放出されるリスクがあるが、本対策により低減ができる。 ③水素パージにより外部事象に対する水素爆発のリスクは低減する。 ④事故後現在まで安定した状態を維持していることや水の放射線分解の寄与は小さいと考えられること、格納容器内については窒素封入により不活性状態は維持され、格納容器ガス管理設備により水素濃度を監視していることから、時間的リスクが急激に増加することはないと考えられる。 ⑤サプレッションチェンバ補修工事等の関連工事や現場線量環境を考慮した上で、現場調査等を慎重に行い、高濃度の水素が確認された場合には、早期に対策を実施する必要がある。 ⑥建屋内の高線量作業であるため、作業員の被ばくリスクに加え、水素濃度の挙動を確認しつつ作業を行う必要がある。 ⑦現場の状況を踏まえて安全に水素パージができるように窒素封入方法を検討する必要がある。 	

実施を計画しているリスク低減対策ならびに適切性(3/8)

ロードマ	ップ関連項目	想定されるリスク	IJ	スク低減対策	目的	対応状況	個々の対策に対する適切性
		・放射性物質の 系外放出リスク		滞留水移送・淡水化装置 周りの耐圧ホースのポリ エチレン管化	滞留水移送・処理設備において耐圧ホースを使用している箇所をより信頼性の高いポリエチレン管等に交換することにより、滞留水、処理水の漏えいリスク、漏えい水による他の設備損傷リスク、漏えい時の作業環境悪化リスクの低減を図る。	平成 24 年 8 月対策完了	①滞留水移送ラインからの放射性物質の追加放出リスクが低減しない。 ②漏えい時における放射性物質の追加放出リスクは大きい。 ③ポリエチレン管等へ取替を行うことにより、地震等の外部事象に対するリスクは低減する。 ④ポリエチレン管等へ取替を行うことにより、時間的な設備劣化損傷リスクは低減する。 ⑤可能な限り早期に実施することが望ましく、既に実施している。 ⑥対策を実施するリスクは小さい。 ⑦ポリエチレン管等の敷設が出来ない場合は、堰等により漏えいの拡大防止を図る。
			汚染水処理設 備等の 信頼性向上	中低濃度タンク増設,及びRO濃縮水一時貯槽のリプレース	ALPS 処理水の貯留場所確保のために中低濃度タンクを増設する。	令和 2 年 12 月目標容量の中低濃度タンク設置を完了(合計 137万 m³)	①日々増加し続ける ALPS 処理水の保管場所が無くなり、貯留できなくなるリスクがある。 ②漏えい時における放射性物質の追加放出リスクは大きい。 ③貯蔵量を確保することが目的であり、外部事象に対するリスクは変化しない。 ④中低濃度タンクの経年劣化により漏えいリスクは増加する。 ⑤貯留場所確保のため、計画的に増設していく必要があり、既に実施している。 ⑥滞留水・処理水貯蔵量の増加により、漏えいリスクは増加する。 ⑦中低濃度タンク設置場所には限界があるため、緩和措置として、地下水流入量低減対策を確実に実施する必要がある。
プラントの安定				中低濃度タンクエリアへの堰等の設置	中低濃度タンクエリアに堰等を設置することに より、貯蔵タンクからの漏えいの早期発見と大 規模漏えい時の系外への拡大防止	中低濃度タンク設置に合わせ順 次実施。目標容量 (137万 m³) の中低濃度タンク設置分は,漏 えい拡大防止策を実施済	①漏えい時における放射性物質の追加放出リスクが低減しない。 ②漏えい時における放射性物質の追加放出リスクは大きい。 ③漏えい拡大防止を目的としており、外部事象に対するリスクは変化しない。 ④漏えい拡大防止を目的としており、時間的にリスクは変化しない。 ⑤可能な限り早期に実施することが望ましく、既に実施している。 ⑥対策を実施するリスクは小さい。 ⑦対策を実施できないリスクはない。
足状態維持・継続に向けた計画	滯留水処理計画		,		本設備により、汚染水処理設備の処理済水に含まれる放射性核種(トリチウムを除く)を十分低い濃度まで除去することにより、汚染水貯蔵量の低減ならびに中低濃度タンク貯留水の放射能濃度低減による漏えい時の環境影響の低減を図る。	格運転開始	 ①大量の放射性物質を含んだ汚染水を保有し、漏えいするリスクが低減しない。 ②漏えい時における放射性物質の追加放出リスクは大きい。 ③汚染水の処理により外部事象に対する中低濃度タンク等からの大量の放射性物質を含んだ汚染水が漏えいするリスクは低減できる。 ④多核種除去設備の稼動が遅れることにより、汚染水貯留量が増加し中低濃度タンク等からの大量の放射性物質を含んだ汚染水が漏えいするリスクは増加する。 ⑤可能な限り早期に実施することが必要であり、本格運転を開始した。 ⑥二次廃棄物の長期保管ならびに漏えいリスクが発生する。 ⑦対策を実施できないリスクはないが、実施できない場合中低濃度タンクを増設し汚染水を貯留する。
			可能なトレンチ施	から順次,止水・回収の実	トレンチ内の滞留水を回収し, 系外への漏えい 防止を図る。	可能なトレンチ等から順次、 止水・回収を実施中 海水配管トレンチ内汚染水除去 完了 2 号機: 平成 27 年 6 月 (トレンチ内滞留 水移送完了) 平成 29 年 3 月 (立坑充填完了) 3 号機: 平成 27 年 7 月 (トレンチ内滞留 水移送完了) 平成 27 年 8 月 (立坑充填完了) 4 号機: 平成 27 年 12 月 (トレンチ内滞留 水移送完了, 立坑充填完了) 1 号機:対応中	①津波の浸入等により滞留水が敷地外へ流出するリスクが低減しない。 ②漏えい時における放射性物質の追加放出リスクは大きい。 ③対策を実施することにより津波の浸入等による滞留水が敷地外へ流出するリスクは低減する。 ④現在でも適切な管理を行っているが、高濃度滞留水のコンクリート健全部中の拡散を評価した ところ、トレンチ部は10~13年で外表面に達するリスクがある。 ⑤止水方法の成立性等を検討し、可能なトレンチから順次実施していくことが望ましく、また、

実施を計画しているリスク低減対策ならびに適切性(4/8)

	ロードマップ関連項目	想定されるリスク	リスク低減対策	目的	対応状況	個々の対策に対する適切性
		・放射性物質の 系外放出リスク	建屋の津波対策 (建屋開口部の閉鎖・水 密化)	仮設防潮堤を超える津波が建屋開口部から浸入 し、建屋地下に滞留している高濃度滞留水が系外 へ漏えいしないよう建屋開口部の閉鎖・水密化等 を行う。	令和 4 年 1 月建屋開口部閉止 (合計 127 箇所) 完了	 ①津波の浸入等により滞留水が敷地外へ流出するリスクが低減しない。 ②漏えい時における放射性物質の追加放出リスクは大きい。 ③対策を実施することにより津波の浸入等による滞留水が敷地外へ流出するリスクは低減する。 ④現在でも適切な管理を行っている上、水処理の継続により、滞留水中のインベントリは低減していく方向であるが、時間的なリスクの変化は小さい。 ⑤現場状況を勘案し、対策の必要な箇所については、可能な限り早期に実施することが望ましい。 ⑥対策を実施するリスクは小さい。 ⑦現場の状況を踏まえた止水方法等を検討する必要がある。
フラントの安定状態数			滞留水一時貯留設備の設置	プロセス主建屋(PMB)/高温焼却炉建屋(HTI)の滞留水処理を実施し、床面露出するには、PMB/HTIでの1-4号機建屋内滞留水の一時貯留が不要な処理プロセスへの変更が必要なため、PMB/HTIに代わるバッファ機能などを有する設備として滞留水一時貯留設備を設置する。	今後対策実施	①PMB, HTI からの放射性物質の追加放出リスクが低減しない。 ②PMB, HTI からの漏えい時における放射性物質の追加放出リスクは大きい。 ③対策を実施することにより津波の浸入等による滞留水が敷地外へ流出するリスクは低減する。 ④PMB, HTI の建屋の止水箇所の劣化等により、漏えいに繋がる損傷が発生する可能性が増加する。 ⑤PMB, HTI の滞留水処理のために可能な限り早期に実施することが望ましい。 ⑥対策を実施するリスクは小さいが、滞留水から分離したスラッジについては、継続して PMB には蓄積することになる。 ⑦対策を実施できないリスクはない。
維持・維縁に向けた計画	滯留水処理計画	・滞留水の発生量の増加リスク	サブドレンの復旧	建屋周辺の地下水を汲み上げる設備(サブドレン)を復旧し、地下水位を下げることにより、建屋内への地下水流入量の低減を図る。	平成 27 年 9 月サブドレン稼働開 始	①建屋への地下水流入量が減少しないため、汚染水の増加リスクは低減しない。 ②漏えい時における放射性物質の追加放出リスクは大きい。 ③地下水流入量低減を目的としており、外部事象に対するリスクは変化しない。 ④水処理の継続により、滞留水中のインベントリは低減していく方向であるものの、建屋への地下水の流入量を低減できないため、建屋内滞留水の漏えいリスクが増加する。 ⑤可能な限り早期に実施していく必要があり、復旧計画を検討中。 ⑥対策を実施するリスクは小さいが、サブドレン水の浄化が必要となる。 ⑦他の地下水流入量低減対策として、地下水バイパスを早期に稼働することで地下水流入量抑制を図る。
			地下水バイパスの設置	建屋周辺の地下水は山側から海側に向かって流れていることから、建屋山側の高台で地下水を揚水し、その流路を変更して海にバイパスすることにより、建屋周辺の地下水位を段階的に低下させ、建屋への地下水流入量の低減を図る。	平成 26 年 5 月地下水バイパス稼働開始	①建屋への地下水流入量が減少しないため、汚染水の増加リスクは低減しない。 ②漏えい時における放射性物質の追加放出リスクは大きい。 ③地下水流入量低減を目的としており、外部事象に対するリスクは変化しない。 ④水処理の継続により、滞留水中のインベントリは低減していく方向であるものの、建屋への地下水の流入量を低減できないため、建屋内滞留水の漏えいリスクが増加する。 ⑤干渉する作業などはないことから、可能な限り早期に実施することが望ましい。 ⑥揚水井稼働により建屋の周辺地下水位が下がりすぎ、建屋の汚染水が流出するリスクやバイパスの揚水井に汚染した地下水を引き込み、海域へ放出されるリスクへの対応が必要である。 ⑦揚水井を稼働しても建屋への地下水流入が想定どおり減少しない場合も考慮し、水処理・貯留場所の確保を行う必要がある。

実施を計画しているリスク低減対策ならびに適切性(5/8)

п-	ドマップ関連項目	想定されるリスク	リスク低減対策	目的	対応状況	個々の対策に対する適切性
プラントの安定状態維持・継続に向けた計画		・単一故障による電源停止リスク	タービン建屋内所内高圧母線設置及び重要 負荷の供給元変更	1 系統で供給していた重要負荷に対し、タービン建屋 2 階に設置する 2 系統の所内高圧母線から供給できるようにすることで信頼性を向上させる。	平成 25 年 3 月タービン建屋内所内高圧母線設置完了 平成 25 年 7 月重要負荷の供給元変更完了	 ①1 系統で電源供給している重要負荷については、電源喪失時は一部小型発電機にて機能維持ができるが、機能喪失に繋がるリスクは低減しない。 ②重要度の高い原子炉注水設備の更なる信頼性向上に寄与するとともに、使用済燃料プール設備の一部の動的機器について、電源を2系統から供給できるようになるため、燃料の損傷による放射性物質の追加放出リスクを低減できる。 ③タービン建屋2階に設置されている所内高圧母線から供給できることにより、津波に対する電源喪失リスクは低減する。 ④長期的には、電気設備の経年的な劣化故障による重要負荷の電源喪失のリスクは増加する。 ⑤可能な限り早期に実施することが望ましく、既に実施している。 ⑥対策を実施するリスクは小さい。 ⑦対策を実施できないリスクはない
	電気系統設備の 信頼性向上	・津波浸水による電源喪失リスク	共用プール建屋の防水性向上	所内共通ディーゼル発電機 A. B が設置されている共用プール建屋に対して津波対策として防水性を向上させる。	平成 25 年 9 月対策完了	 ①共用プール建屋内への津波の浸入による所内共通ディーゼル発電機の電源供給機能 喪失のリスクは低減しない。 ②共用プール建屋内への津波の浸入を防止することで、所内共通ディーゼル発電機の 電源供給機能が維持できるため燃料の損傷による放射性物質の追加放出リスクは低 減する。 ③津波による所内共通ディーゼル発電機の電源供給機能喪失のリスクを低減できる。 ④時間的なリスクの変化はない。 ⑤可能な限り早期に実施することが望ましく、実施に向け検討を進めている。 ⑥対策を実施するリスクは小さい。 ⑦現場の状況を踏まえた方法を検討する必要がある。
		・電源喪失時の	小型発電機・電源盤・ケーブル等の資材の 確保	津波・地震による全交流電源喪失を伴う異常時に備えて, 重要設備の復旧作業に必要な屋外照明等の資材を確保す る。	平成 25 年 3 月対策完了	①津波や地震により全交流電源喪失を伴う異常が発生した場合に、屋外照明等が無いことにより重要な設備の緊急復旧作業が遅延するリスクがある。 ②放射性物質の追加放出リスクはないが、全交流電源喪失等の異常が発生した場合に、照明が無いことにより重要な設備の緊急復旧作業が遅延するリスクがある。 ③復旧資材の確保に対して外部事象に対するリスクはない。 ④時間的なリスクの変化はない。 ⑤可能な限り早期に実施することが望ましく、既に実施している。 ⑥対策を実施するリスクはかさい。 ⑦対策を実施できないリスクはない
		復旧遅延リスク	所内高圧母線 M/C (非常用 D/G M/C を含む) の免震重要棟 からの遠方監視・操作装置の新設	免震重要棟からの遠方監視・操作を可能とし, 異常の早期 検知を図る。	平成 25 年 1 月対策完了	 ①電源喪失時に異常の検知等が遅れることで復旧作業が遅延するリスクがある。 ②対策を実施することで原子炉注水設備等の重要負荷の電源供給機能の長期機能喪失を防止することができるため、燃料の損傷等による放射性物質の追加放出リスクは低減する。 ③対策を実施することで外部事象に対する電源供給機能の長期喪失リスクは低減する。 ④時間的なリスクの変化はない。 ⑤可能な限り早期に実施することが望ましく、既に完了している。 ⑥対策を実施するリスクは小さい。 ⑦対策を実施できないリスクはない。

実施を計画しているリスク低減対策ならびに適切性(6/8)

ロードマップ関連項目		プ関連項目	想定されるリスク	リスク低減対策	目的 日前 している ナハノ 医機内 来なり ひて 追	対応状況	個々の対策に対する適切性	
	海洋汚染拡大		・放射性物質が地下水に流出した際の海洋への放出リスク	遮水壁の設置	建屋内の汚染水が地下水に流出した場合, 汚染された地下 水が地下の透水層を経由して海洋に流出することを防止す る	平成 27 年 10 月設置完了	 ①汚染水が地下水に流出した場合の汚染水が海洋等へ流出するリスクが低減しない。 ②汚染水が地下水に流出した場合,放射性物質の追加放出リスクは大きい。 ③敷地内の汚染水保管設備が破損した場合,遮水壁が汚染水流出の歯止めとなるため,外部事象に対するリスクは低減できる。 ④汚染水流出の歯止めが目的であり,リスクの時間的な変化はない。 ⑤干渉する作業などはないことから,早期に設置することが望ましく,既に実施している。 ⑥地下水ドレンでくみ上げた水により構内の保管水量が増加する。 ⑦対策を実施できないリスクはない。 	
	防止計画	<u> </u>	・港湾内の放射性物質の海洋への拡散リスク	港湾内海底土の浚渫・被覆等	港湾内の環境改善のために海底の汚染土の除去と大型船舶の航路・泊地を確保することを目的に、港湾内海底土の浚渫・被覆等を実施する。 浚渫した土は航路・泊地エリア外に一時的に集積させることとし、集積した土については再拡散防止のため、被覆等を実施する。	平成 28 年 12 月対策完了	①港湾内の海底土が波浪等により再拡散し、港湾外に放出するリスクが低減しない。 ②波浪等により海底土が再拡散した場合、放射性物質の追加放出リスクは大きい。 ③対策を実施することで外部事象により海底土が再拡散するリスクは低減する。 ④海底土の拡散防止が目的であり、リスクの時間的な変化はない。 ⑤港湾内の船舶航行及び海上作業の輻輳状況を把握した上で、実施時期を検討する。 ⑥海底土が再拡散しない施工方法を選択することによりリスクは小さくなる。 ⑦対策を実施できないリスクはない。	
		ガレキ等	・敷地内被ばくリスク	瓦礫類の覆土式一時保管施設の増設 または一時保管エリアAの追加遮へい		平成 27 年 6 月設置完了	①「措置を講ずべき事項」に要求されており、対策を実施しない場合、平成25年3月末時点での敷地境界線量1mSv/年未満の目標達成が困難となる。 ②敷地境界線量の目標達成が目的であり、放射性物質の追加放出リスクは小さい。	
発電所全体	放	ガレキ等	放理的数は、ソヘク	覆土式の伐採木一時保管槽の設置	施設内に保管されている発災以降発生した瓦礫や汚染水等による敷地境界線量 1mSv/年未満を達成するため,瓦礫等の	平成 24 年 12 月設置完了	③対策を実施することにより、竜巻等による瓦礫等の飛散するリスクは低減する。 ④敷地境界線量の目標達成が目的であり、時間的なリスクの変化はない。 ⑤平成24年度内に達成することを目標としており、作業としては既に実施している。	
全体の放	放射性廃棄物管理及び敷地境界の放射線量低減に向けた計画	水処理二次	・敷地内被ばくリスク・放射性物質の系外	使用済セシウム吸着塔一時保管施設(第三 施設,第四施設)の設置	保管施設の増設等を実施する。また、これらの作業により、 敷地内全体の雰囲気線量も低減され、作業環境の改善にも なる。	第三施設:平成26年2月設置完了 第四施設:平成25年6月設置完了	⑥対策を実施することで、作業員等への被ばくが発生する。その為、線量管理等を適切に 実施することが必要。 ⑦対策を実施できない場合、施設内に保管されている発災以降発生した瓦礫や汚染水等に	
射線量低		廃棄物	放出リスク	吸着塔保管施設の遮へい設置ならびに吸着 塔の移動		遮へい設置:平成25年3月設置完了 移動:平成26年3月移動完了	よる平成 25 年 3 月末時点での敷地境界線量 1mSv/年未満が達成できなくなる。なお, 代替策は時間的な制約から困難である。また,保管施設設置場所は限界があるため,放 射性廃棄物の減容等を確実に実施する必要がある。	
派 1_6 に向けた		気体廃棄物	物 ・放射性物質の系外放出リスク	2号機ブローアウトパネルの閉止	2号機原子炉建屋ブローアウトパネルを閉止することで、 原子炉建屋から大気への放射性物質の放出を抑制する。	平成 25 年 3 月閉止完了	①対策を実施しない場合、原子炉建屋から放射性物質が放出する状態が継続する。 ②原子炉の状態に変化がなければ、追加放出リスクに変化はない。 ③対策を実施することにより暴風等の外部事象に対するリスクは低減する。 ④時間的なリスクの変化はない。 ⑤早期に実施する必要があるが、ブローアウトパネルを閉止することで、原子炉建屋内作業環境悪化が懸念されることから、空調設備設置完了後に実施する。 ⑥対策を実施することで原子炉建屋内の作業環境悪化が懸念されるため、これらを改善るための空調設備の設置が必要。 ⑦現場の状況を踏まえた方法等を検討する必要がある。	
た 計画				・放射性物質の系外放出リスク	・放射性物質の系外放出リスク	3, 4号機使用済燃料取出用カバーの設置, フィルタ付換気設備の設置・運転	使用済燃料プールから燃料を取り出すにあたって,作業時の放射性物質の舞い上がりによる大気への放射性物質放出を抑制するため,カバー並びに換気設備の設置を行う。	3 号機: 平成30年2月燃料取り出し 用カバー設置完了 4 号機: 平成25年11月燃料取り出 し用カバー設置完了 3 号機: 平成30年6月換気空調設備 設置完了 4 号機: 平成25年10月換気空調設 備設置完了
	敷地内胬	余染計画	十画 ・敷地内被ばくリスク 敷地内の除染計画の策定・実施		敷地内の雰囲気線量を低減させることにより、作業被ばく を低減させるとともに、ノーマスクエリア等を拡大し、作 業員の作業負担軽減を図る。	平成30年5月以降除染や舗装等の対 策により構内全体の96%のエリアで一 般作業服と防塵マスク等の軽装備で 作業が可能	①対策を実施しない場合、敷地内の雰囲気線量が低減しない。 ②被ばく抑制が目的であり、放射性物質の追加放出リスクは小さい。 ③外部事象に対するリスクは小さい。 ④時間的なリスクの変化はない。 ⑤対象範囲が広範囲であること、一部雰囲気線量が非常に高い所もあることから、段階を踏んで、計画的に実施していくことが必要。現在、その認識の基、比較的に効果が見込めるエリアを選定し、作業を実施している。 ⑥対策を実施することで、作業員等の被ばくが増加する。その為、線量管理等を適切に実施することが必要。 ⑦現場の線量に応じた除染方法を検討する必要がある。	

実施を計画しているリスク低減対策ならびに適切性(7/8)

	ロー	ードマップ関連項目	想定されるリスク	リスク値	氐減対策	目的	対応状況	個々の対策に対する適切性	
					予備品の確保	SFP冷却については、震災後設置した冷却設備等により継	平成 25 年 4 月対策完了	①電源停止等により冷却機能が一時的に喪失するリスクが低減しない。 ②冷却機能が長期間喪失した場合の使用済燃料からの放射性物質の追加放出リスク は大きい。	
				1〜4号機使用済燃料プー ル循環冷却設備の信頼性向 上対策	所内電源(M/C)多重化	続してプールの冷却・浄化等を実施している。昨年に設置した設備の故障等により、冷却機能が一時停止する事象が発生したため、これらの再発を防止するため予備品の確保並びに電源の多重化を行う。	1,2号機:平成25年3月 対策完了 3,4号機:平成25年6月 対策完了	③外部事象に対するリスクは継続する。 ④長期的には、電気設備の経年的な劣化故障による重要負荷の電源喪失のリスクは増加する。 ⑤可能な限り早期に実施することが望ましく、既に実施している。 ⑥対策を実施するリスクは小さい。 ⑦対策を実施できないリスクはない。	
-		1~6号機使用済燃料プール	・冷却機能喪失リスク	1 ~ 4 号使用済燃料プールには約3,000 体の燃料集合体保管(1 号機:392 体,2 号機:615 体,3 号機:566 体,号機:1533 体)されており,これらの崩壊熱を除去するため,震災後に使用済燃料プール循環冷却系を設置している。これら冷却設備については,震災直後に設置した設置であるため,信頼性向上対策等を実施することで冷却機能が継続できるよう対策を講じているが,これら機能が長間停止した場合,使用済燃料の崩壊熱により,最悪の場合,使用済燃料が溶融し,大気へ放射性物質を放出する。作性所済燃料が溶融し,大気へ放射性物質を放出する。作性が考えられる。その為,使用済燃料をより信頼性の下い冷却機能を有し、雰囲気線量が低く管理しやすい、共力でルに移送し、保管・管理を実施する。5,6号使用済燃料プールには約3,000 体の燃料集合体保管(5号機:1,542 体,6号機:1,654 体)されており、れらの崩壊熱を除去するため、既存の燃料ブール冷却浄化系で冷却をしている。廃炉の決定を踏まえ、5,6号機の開済燃料プールの使用済燃料においても、1,2号機のイ業に影響を与えない範囲で共用ブールに移送していく。		1 号機:令和9年度~令和10年度燃料取り出し開始 2 号機:令和6年度~令和8年度燃料取り出し開始 3 号機:令和3年2月燃料取り出し完了 4 号機:平成26年12月燃料取り出し完了 5 号機:令和6年度より燃料取り出し開始 6 号機:令和4年度より燃料取り出し開始	②冷却機能が長時間長天した場合の使用済然料が500放射性物質の追加放出リスタは大きい。 ③共用プールへ1~6号機使用済燃料プールの使用済燃料を受け入れることにより、使用済燃料プールでの地震、津波等の外部事象の影響による冷却機能喪失時のリスクが低減する。 ④冷却設備の劣化より、リスクは経時的に増加する。一方、冷却機能を長期間継続す		
	-ルからの燃料取出計画		・貯蔵容量の不足リスク	・貯蔵容量の不足リスク 共用プールから仮保管設備への燃料移動		への燃料移動	共用プールには保管容量6840本に対して、既に6377本保管している。今後、使用済燃料プールから使用済燃料を受け入れるため、十分に冷却が進んだ使用済燃料を乾式キャスクに移し、共用プールの燃料受入容量を確保する。	平成25年6月以降順次実施	①対策を実施しない場合,使用済燃料プールからの燃料移送が困難となり,使用済燃料プールでの冷却機能喪失時におけるリスク等が低減されない。 ②冷却機能が長期間喪失した場合の使用済燃料からの放射性物質の追加放出リスクは大きい。 ③乾式キャスクに移し,高台の仮保管施設に移動することにより津波に対するリスクが低減する。 ④対策を実施しない場合,使用済燃料プールからの燃料移送が困難となり,使用済燃料プールでの冷却機能喪失時におけるリスク等が低減されない。 ⑤使用済燃料取り出しのために空き容量確保のため,計画的に実施する必要がある。 ⑥キャスク移送時の燃料落下防止対策等を講じる。 ⑦従前より実績のある取扱作業であるが,共用プール内の燃料払い出し作業と受け入れ作業の輻輳による遅延が発生しないよう工程管理を検討する必要がある。
		共用プール	・被災したキャスクの腐食等の リスク	キャスク保管建屋から共用フ	プールへのキャスク移動	キャスク保管建屋には、震災前から保管している乾式燃料 キャスクがあり、震災の影響により海水等を被っており、 腐食等の影響が懸念される。また、パトロール時の線量、 温度測定で異常の無いことを確認しているものの、常用の 監視系は使用できない状況である。その為、これらキャス クを共用プールに移送し、キャスク本体の健全性を確認す る。	平成 25 年 5 月完了	①対策を実施しない場合、密封機能の健全性等、懸念材料が払拭されないこととなる。 ②乾式燃料キャスク内には既に使用済燃料(キャスク9基内に合計408本)を保管 しており、キャスクの密封機能等の健全性が確認・維持されなければ、保管した使 用済燃料からの放射性物質放出の抑制機能が確認できない。 ③再度津波等が発生した場合、キャスク保管建屋に海水等が浸水し、キャスクの密封 機能等の健全性に影響を与える可能性がある。 ④腐食等の進展によりキャスクの密封機能等の健全性が損なわれる可能性がある。 ⑤キャスクをキャスク保管建屋から移送するための準備、受入側の共用プールの準備 ができ次第、これら復旧作業を順次実施する計画である。 ⑥キャスクを移送するにあたっては、移送時のキャスク落下防止対策等を講じる。 ⑦監視について検討する必要がある。	
			・冷却機能喪失リスク	共用プール M/C 設置		共用プールの電源設備について、M/C(A)(B)を復旧することで、信頼性を向上させ、冷却機能維持に努める。	平成 25 年 9 月設置完了	 ①電源停止等により冷却機能が一時的に喪失するリスクが低減しない。 ②冷却機能が長期間喪失した場合の使用済燃料からの放射性物質の追加放出リスクは大きい。 ③外部事象に対するリスクは継続する。 ④長期的には、電気設備の経年的な劣化故障による重要負荷の電源喪失のリスクは増加する。 ⑤可能な限り早期に実施することが望ましく、既に実施している。 ⑥対策を実施するリスクは小さい。 ⑦対策を実施できないリスクはない。 	

実施を計画しているリスク低減対策ならびに適切性(8/8)

ロードマップ	プ関連項目	想定されるリスク	リスク低減対策	目的	対応状況	個々の対策に対する適切性
原子炉施設の 解体・放射性廃棄 物処理・処分に向 けた計画		・廃棄物保管容量の 不足リスク	雑固体廃棄物焼却設備の設置	敷地内で発生した放射性固体廃棄物等を焼却、減容するため焼却設備を設置する。	平成 28 年 3 月運用開始	①対策を実施しない場合、保管する放射性固体廃棄物等が増加するとともに、保管・管理に係る業務が継続する。 ②放射性固体廃棄物等が増加するが、放射性物質の追加放出リスクは小さい。 ③保管物が火災等の外部事象によって、飛散する可能性がある。 ④対策を実施しなかった場合、放射性固体廃棄物等の保管リスクは時間的に増加する。 ⑤対策には建屋の建設から必要であり、長期にわたって時間を必要とする。現在既に設計に入っており、H26 年度下期供用開始に向け、作業を進めている。 ⑥放射性固体廃棄物等を焼却することから、大気へ放射性物質を放出する可能性がある。その為、適切な処理設備を設置するとともに、放出管理も併せて実施し、敷地外への影響がないことを確認する。 ⑦対策を実施できない場合は継続的に保管エリアを確保する必要がある。

実施を計画しているリスク低減対策ならびに適切性(9/9)

Γ	ロードマップ関連項目		想定されるリスク	リスク低減対策		対応状況	個々の対策に対する適切性
		火災対策 ・発電所周辺・所内火災の延焼 リスク		防火帯の形成・維持 発電所内火災対策の策定・実施	発電所周辺大規模火災から発電所重要設備の防護のため, 防火帯を形成するともに,発電所内火災から重要設備の防 護・延焼防止のため対策を策定・実施する。	防火帯の形成は実施済 今後も継続的に維持を行 う 火災対策について,今後 も継続的に実施する	 ①発電所敷地内外で大規模火災が発生した場合に、設備の機能喪失ならびに放射性物質の舞い上がりが発生する可能性がある。 ②大規模火災によって放射性物質の追加放出リスクがある。 ③対策を実施することで大規模火災等の外部事象に対し、リスクを低減することができる。 ④リスクは時間的に変化しない。 ⑤計画的に実施していく必要がある。 ⑥防火帯の形成のために新たな森林の伐採が必要となり、保管エリアの確保・伐採木の自然発火に対する対策が必要となる。 ⑦現場の状況に応じた対策(カメラによる監視・火報の設置・巡視等)を検討・実施し、火災の早期検知に努めるとともに迅速な初期消火を行える体制を構築する必要がある。
-2-4-※ 1-9	その他	敷地の確保に 向けた計画	・特定原子力施設の全体工程達成及びリスクマップに沿ったリスク低減のための施設建設用の 敷地の不足リスク	ALPS 処理水希釈放出設備及び関連施設の設置	特定原子力施設の全体工程達成及びリスクマップに沿った リスク低減のため、今後新たな施設(燃料デブリ保管施設 等)を建設する必要がある。施設建設用の敷地を確保する ため、ALPS 処理水等の貯蔵量を低減し中低濃度タンクを解 体できるよう、汚染水発生量以上の量の ALPS 処理水を海洋 へ放出できる設計及び運用とした ALPS 処理水希釈放出設備 及び関連施設を設置する。	令和 5 年 4 月中頃使用前 検査完了予定	①対策を実施しない場合、廃炉作業に必要な施設の設置のための施設が確保出来ず、全体工程の達成及びリスクマップに沿ったリスク低減が実施されない。 ②海洋放出前の ALPS 処理水等の貯蔵が継続するが、溶接タンクでの保管や中低濃度タンクエリアへの堰の設置により、放射性物質の追加放出リスクは海洋放出前とほとんど変わらない。 ③対策を実施することにより、外部事象により、中低濃度タンクに貯留している汚染水、ALPS 処理水の系外漏えいが発生するリスクを低減することができる。 ④ALPS 処理水等の貯蔵量が増加し、中低濃度タンクの保守管理が継続することにより、廃炉作業に必要な施設建設用の敷地の確保に加えて、燃料デブリの取り出し等といった相対的に高いリスクの低減に活用出来るリソースの確保等にも影響を与える。 ⑤「東京電力ホールディングス株式会社福島第一原子力発電所における多核種除去設備等処理水の処分に関する基本方針」に沿った時期となっている。 ⑥ALPS 処理水を海洋放出することから、告示濃度限度比1以上のトリチウムを放出することとなる。測定・確認用設備での濃度確認、100倍以上の希釈、希釈後のトリチウム放出量1,500Bq/L未満、年間トリチウム放出量22兆Bq/年未満とする設計・運用により、環境への影響を抑制する。また、溶接タンクの解体・撤去方法の確立や発生する固体廃棄物の保管管理が必要となる。 ⑦長期にわたって ALPS 処理水の安定的な海洋放出が必要とされることから、その供用期間中に想定される機器の故障等を考慮した設計及び運用とする。
				特定原子力施設の全体工程達成及びリスクマップに沿ったリスク低減のための施設建設用に向けた,実施計画上必要な機能を有しない設備・機器(震災前から設置されている設備・機器を含む)の解体撤去(以降,解体撤去)	解体撤去は、福島第一原子力発電所全体のリスク低減対策を行うにあたり、今後の廃炉作業に必要な施設や設備の設置エリアの確保や廃炉作業に係る作業干渉の未然防止の為、安全確保を最優先に且つ遅滞なく実施する。	継続的に実施する	①対策を実施しない場合、今後の廃炉作業に必要な施設や設備の設置エリアが確保出来ず、全体工程達成及びリスクマップに沿ったリスク低減が実施されない。②対策を実施することにより、追加放出リスクを低減することができる。③対策を実施することにより、外部事象に対するリスクを低減することができる。④対策を実施することにより、廃炉作業に係る作業干渉の未然防止に繋がり、作業干渉による一時的な作業中断や工程遅延が発生するリスクを低減することができる。⑤既に実施している。⑥稼働中の周辺設備に影響を与えないことを図面および現場調査にて確認を行ったうえで実施する。 ⑦現場の状況を踏まえた方法等を検討する必要がある。
		分析	・燃料デブリや廃棄物対策の安 定保管や処理処分に向けた検討 の遅延リスク	放射性物質分析・研究施設第 2 棟の設置	高線量の燃料デブリや廃棄物の各種分析を行い,それらの 長期安定保管や処理処分の検討を進めるために放射性物質 分析・研究施設第2棟を設置する。	第 2 棟 令和 8 年運用開始予定	①対策を実施しない場合、高線量の燃料デブリや廃棄物の長期安定保管や処理処分の検討が計画通りに進まない。 ②高線量の燃料デブリや廃棄物を取扱うため放射性物質の追加放出リスクがあるため、遮蔽や閉じ込め、臨界防止等の安全対策を講じるとともに、設計評価事故の放射線障害の防止、多量の放射性物質等を放出する事故の拡大防止について評価し、影響がないよう設計する。 ③安全上重要な設備を外部事象から防護するよう設計し、リスク低減を図る。 ④廃棄物対策や燃料デブリ取り出し等のリスク低減が遅延する可能性がある。 ⑤燃料デブリの分析を主として、「燃料デブリの段階的な取り出し規模の拡大」時期を考慮して運用開始させる。 ⑥高線量の燃料デブリや廃棄物を取り扱うため、遮蔽や閉じ込め、臨界防止等の安全対策により施設運用に伴う施設外への放射線影響を抑制する。 ⑦対策を実施できない場合は、取扱量に制限がかかるものの、茨城地区の分析施設を活用する。