

福島第一原子力発電所における地すべりの可能性について

コメント回答

富岡層風化部のボーリング調査・室内試験結果について TEPCO

2024年9月5日 東京電力ホールディングス株式会社

コメントリスト

1

No.	実施日	指摘事項	回答内容
1	2022.9.20 面談	福島第一原子力発電所における地すべりの可能性 ・第94回特定原子力監視・評価検討会資料3-2のDタンクエリアのボーリング柱状図等か ら、段丘堆積物直下にN値が大きく下がる箇所が複数箇所存在すること ・過去の地震時にDタンクエリアのタンクが他のタンクエリアと異なり有意な滑動が生じて いること ・以上のことから、コメントNo.2における調査結果等も考慮した上で、福島第一原子力発電 所における地すべりの可能性について見解を示すこと	【2022.12.7 技術会合】 ・敷地内の既往のボーリング調査結果 を再整理し,段丘堆積物直下の風化部 の分布状況を整理した。
2	2022.9.20 面談	福島第一原子力発電所敷地南側の地すべり地形の可能性 ・8月23日の面談資料のボーリング柱状図14箇所のうち約半数の箇所で段丘堆積物直下にN 値が大きく下がる強風化部が存在すること、また、それらは孔口標高が高い箇所(約30m) に集中していること。 ・国土地理院の地図を見る限りにおいて、福島第一原子力発電所付近に地すべり地形と思わ れる箇所が複数箇所存在すること。また、それら地形は8月23日の面談で東京電力が示した 見解「高さが異なる段丘面」とは形状が異なること。 ・以上のことから、再度、各種調査等を踏まえ、福島第一原子力発電所南側の地形について 見解を示すこと	【2022.12.7 技術会合】 ・既往の空中写真判読図により,指摘 された箇所の地形について,当時の当 社の見解を説明した。 ・「地すべり地形と思われる」と指摘 された複数箇所について,空中写真の 再判読等を実施した結果を報告した。
3	2022.12.7 技術会合	段丘堆積物直下の風化部の分布状況の検討を進め,既往のボーリング調査結果から富岡層風 化部を読み取り,敷地内の分布状況を把握し,これを反映した地質平面図・断面図を作成す る(東電)。	【2023.4.25技術会合】 ・汀線平行方向地質断面図および汀線 直交方向地質断面図を作成し,風化部 の分布状況を示した。
4	2022.12.7 技術会合	富岡層風化部の介在による地盤の地震時応答への影響を検討する(東電)。	【2023.4.25技術会合】 ・地盤の地震応答解析結果から,風化 部の介在が施設の耐震評価,基礎地盤 の安定性評価に影響を与えないことを 確認した。
5	2022.12.7 技術会合	コメントNo.4の検討の結果,風化部の介在による地盤安定性への影響の可能性が認められる 場合は,ボーリング調査と室内試験を行い,風化部の物性を評価し,今後の基礎地盤の安定 性評価への適用の必要性を検討する(東電)。ボーリング調査の計画ができたら,報告する こと(規制庁)。	【2023.4.25技術会合】 ・ボーリング調査および室内試験の計 画を策定し報告した。
6	 2022.12.7 技術会合	大規模な地すべり跡が見られないという東電の見解について,当該検討に資する情報をより 充実しうる観点から,同様の地形を有する南相馬市塚原地区・楢葉町下小塙地区についても 地形判読を実施すること(規制庁)。	【2023.4.25技術会合】 ・追加2地点の地形判読結果から,規模 の大きな地すべり地形は認められない ことを報告した。

コメントリスト

No.	実施日	指摘事項	回答内容
7	2022.12.7 技術会合	重要施設等周辺の斜面安定性に関して, Ss900 を用いた検討を実施すること。なお,現在の1Fの特徴を踏まえて,評価対象とする重要施設等を選定すること(規制庁)。	本件(福島第一原子力発電所における 地すべりの可能性について)とは別途, 各耐震重要施設への周辺斜面による波 及影響として検討する。
8	2023.4.25 技術会合	コメントリストのNo.7について, まずは, どこが弱いか把握し, スケジュールを含めて説明 してほしい(規制庁)。	【2023.6.19技術会合】 運用補助共用施設背後斜面の対応方針 を説明した。
9	2023.4.25 技術会合	東京電力の資料の中に,タンクの滑動に対して要因分析を行い,恒久的な対策を検討すると ある。要因分析の内容を示してほしい。また,3.16地震の時に鉛直が水平より非常に大き かったことに対する見解を教えてほしい(規制庁)。	本件(福島第一原子力発電所における 地すべりの可能性について)とは別途, 技術会合,面談等において報告する。
10	2023.4.25 技術会合	ボーリング調査・室内試験結果について, 結果が揃い次第確認する(規制庁)。	本資料により, ボーリング調査・室内 試験結果を報告する。
11	2023.6.19 技術会合	滞留水を貯留しているプロセス主建屋と高温焼却炉建屋(HTI建屋)については,評価対象の施設に追加して選定すること。評価対象施設の抽出課程をわかるように示すこと(規制 庁)。	【2023.12.26技術会合】 評価対象施設の抽出過程を説明した。
12	2023.6.19 技術会合	共用プールから使用済み燃料がなくなる時期が見通せない中で,何らかの合理的な対策を検 討すべきと考える。対策工事にも軽重様々ある。今後,具体的にどのような対策工事を,ど のような考え方に基づいて行うのか,技術会合で議論していきたい(規制庁)。	【2023.12.26技術会合】 運用補助共用施設の西側斜面に対して 斜面対策工事(セットバック工事)を 実施することを説明した

1. ボーリング調査・室内試験の概要

1.1. ボーリング調査

▶ ボーリング調査位置は、室内試験用試料を確実に採取できるよう、富岡層風化部が比較的厚く分布する箇所を選定した。また、富岡層風化部は敷地全体に広く分布することから、ボーリング調査位置も広く偏りなく配置した。

TEPCO

1. ボーリング調査・室内試験の概要

4

- 1.2. 原位置試験・室内試験
- ボーリング調査1箇所につき、地質観察用試料および室内試験用試料をそれぞれ採取するために、計2本のボーリングを行った。
- ▶ ボーリング孔を利用してPS検層を、採取した試料を用いて室内試験を行い、富岡層風化部の物性値を把握した。

表	室内試験-	-覧
1		ىحر

項目	物性値	必要な試験	試験数量 (供試体数)
物理特性	密度:p _t	物理試験	44
垫的亦取特性	変形特性:E ₀	三軸圧縮試験	44
即则反心付任	静ポアソン比:v	三軸圧縮試験	44
	初期動せん断弾性係数: G ₀	<u>がウンホールPS検層</u> のV _S と 物理試験の湿潤密度	-
動的変形特性	動ポアソン比:v _d	<u>ダウンホールPS検層</u>	10本
	動せん断弾性係数のひず み依存性 : G/G ₀ ~γ 減衰定数のひずみ依存 性 : h~γ	繰返し三軸試験	11
ピーク強度	C _u	三軸圧縮試験	44
残留強度	C _{ur}	三軸圧縮試験	44

※:下線は原位置試験(ボーリング孔を利用した試験)

特定原子力施設の実施計画の審査等に係る技術会合 (2023.4.25 第9回)資料から抜粋,試験数量を更新

図 ボーリング調査の模式図

TEPCO

- 2.1. ボーリング調査結果 (風化部層厚)
- ボーリングコアの色調の違いを目視で確認 し、風化部を判断した。各ボーリング位置 の風化部の層厚は右図のとおり。
- 既往のボーリング調査結果と同様,風化部 は海側(東側)に向かって厚くなる傾向が 認められた。No.8が海岸から遠いにもかか わらず風化部が厚いのは,陸側斜面の近傍 のためと考えられる。

(E

國國

図 ボーリング調査結果 (風化部層厚)

2.2. 原位置試験・室内試験結果

▶ 以下に試験結果のうち、湿潤密度、せん 断弾性波速度、初期動せん断弾性係数、 せん断強度の結果を示す。

(1)湿潤密度

- ▶ 物理試験結果を右表に示す。
- ▶ 富岡層風化部の湿潤密度の平均値は 1.75g/cm³ (n=44) であり、富岡層砂 岩の既往の解析用物性値[※]1.84g/cm³と 比較して約5%小さい値。
- ※「福島第一原子力発電所 原子炉設置変更許可申請書(1号,2号,3 号,4号,5号及び6号原子炉施設の変更)平成5年4月(平成5年7月一 部補正)」における顧問会資料「メモ第2-3号改 福島第一原子力 発電所 岩石・岩盤物性 平成5年11月」及び「メモ第3-2号 福 島第一原子力発電所 原子炉施設基礎地盤の安定性検討 平成5年 11月」に記載された試験結果および解析用物性値。以下,「既往 の〜」は上記を示す。

表 物理試験結果 (湿潤密度)

	土粒子の密度	湿潤密度	含水比	間隙比		土粒子の密度	湿潤密度	含水比	間隙比
試料名	ρ _s	ρ _t	W _n	е	試料名	ρ _s	ρ _t	W _n	е
	g/cm ³	g/cm ³	%			g/cm ³	g/cm ³	%	
No.1-s-T1		1.658	15.9	0.873	No.6-s-T1		1.752	38.8	1.105
No.1-s-T2	2 690	1.803	27.6	0.897	No.6-s-T2	2 656	1.771	37.1	1.056
No.1-s-T3	2.000	1.664	16.0	0.869	No.6-s-T3	2.050	1.753	38.2	1.095
No.1-s-T4		1.665	18.5	0.907	No.6-s-T4		1.811	33.0	0.950
No.1-s-T5		1.754	20.5	0.845	No.7-s-T1		1.795	16.5	0.742
No.1-s-T6	2 687	1.781	21.4	0.832	No.7-s-T2	2 685	1.792	18.9	0.782
No.1-s-T7	2.007	1.771	20.7	0.832	No.7-s-T3	2.005	1.842	21.9	0.777
No.1-s-T8		1.815	29.1	0.911	No.7-s-T4		1.839	18.0	0.723
No.2-s-T1		1.713	28.7	1.014	No.8-s-T1		1.471	17.3	1.112
No.2-s-T2	2.680	1.905	26.0	0.772	No.8-s-T2	2.649	1.528	20.3	1.086
No.2-s-T3		1.958	23.3	0.688	No.8-s-T3		1.583	23.0	1.058
No.2-s-T4		1.697	40.1	1.213	No.8-s-T4		1.510	16.5	1.044
No.3-s-T1		1.768	22.6	0.850	No.9-s-T1		1.639	16.9	0.910
No.3-s-T2	2 669	1.795	26.3	0.878	No.9-s-T2	2 6 7 9	1.633	16.2	0.906
No.3-s-T3	2.000	1.800	28.0	0.898	No.9-s-T3	2.070	1.700	19.2	0.878
No.3-s-T4		1.738	28.4	0.970	No.9-s-T4		1.756	24.3	0.895
No.4-s-T1		1.792	32.0	0.951	No.10-s-T1		1.725	17.8	0.818
No.4-s-T2	2 640	1.786	32.4	0.964	No.10-s-T2	2 661	1.748	19.6	0.820
No.4-s-T3	2.049	1.798	33.7	0.970	No.10-s-T3	2.001	1.779	22.7	0.835
No.4-s-T4		1.831	27.2	0.841	No.10-s-T4		1.829	26.9	0.847
No.5-s-T1		1.835	29.6	0.883					I
No.5-s-T2	2 666	1.854	32.0	0.898					
No.5-s-T3	2.000	1.891	29.4	0.825					
No.5-s-T4		1.865	26.6	0.810	※:試料名 σ	No.OI (t.	ボーリン	ブ孔名	

2.2. 原位置試験・室内試験結果

表 PS検層結果(せん断弾性波速度)

(2)せん断弾性波速度

- ▶ PS検層の結果を右表に示す。
- ▶ 富岡層風化部のせん断弾性波速度の平均 値は308m/sであり、富岡層砂岩の既往 の調査結果340m/sと比較して約9%小 さい値。

ボーリンク孔	深度	層厚	S波速度	重み付き [、]	平均
No.	G.L m	(m)	V _S (m/s)	V _s (m/s	s)
	9.65 \sim 10.00	0.35	340		
No 1	$10.00 \sim 21.00$	11.0	340	350	
N0.1	$21.00 \sim 27.00$	6.00	360	550	
	$27.00 \sim 28.19$	1.19	400		
No 2	9.45 \sim 12.00	2.55	240	303	
110.2	12.00 \sim 16.35	4.35	340	505	
No 3	10.78 \sim 13.98	3.20	320	353	
10.5	16.00 \sim 18.93	2.93	390	555	308
No 4	9.27 \sim 12.00	2.73	280	294	
110.4	12.00 \sim 12.71	0.71	350	234	
No 5	9.79 \sim 10.00	0.21	300	337	
10.5	10.00 \sim 12.35	2.35	340	557	
No 6	$11.11 \sim 12.30$	1.19	400	400	
110.0	$15.18 \sim 17.00$	1.82	400	400	
No 7	$2.86 \sim 6.50$	3.64	220	256	
110.7	$6.50 \sim 10.44$	3.94	290	230	
	5.66 \sim 6.00	0.34	250		
No 8	$6.00 \sim 8.00$	2.00	200	220	
110.0	$8.00 \sim 12.00$	4.00	200	220	
	$12.00 \sim 12.76$	0.76	360		
No 9	4.72 ~ 5.00	0.28	190	256	
110.5	$5.00 \sim 9.68$	4.68	260	230	
No.10	$10.61 \sim 15.35$	4.74	300	300	

2.2. 原位置試験・室内試験結果

(3)初期動せん断弾性係数

- ➢ 初期動せん断弾性係数(G₀)について湿潤密度(ρ_t)とせん断弾性波速度(V_s)から算出した結果を 下表に示す。※G₀= ρ_t ×V_s²
- ▶ 算出した初期動せん断弾性係数の平均値は173N/mm²であり, 富岡層砂岩の既往の解析用物性値 210N/mm²と比較して約18%小さい値。

ボーリング孔	深度上端	深度下端	層厚 h	V _P	Vs	ρ _t	G ₀	M
No.	(m)	(m)	(m)	(m/s)	(m/s)	(g/cm ³)	(N/mm ²)	۷d
No.1	9.65	10.00	0.35	530	340	1.698	196	0.150
No.1	10.00	21.00	11.00	630	340	1.698	196	0.295
No.1	21.00	27.00	6.00	1400	360	1.780	231	0.465
No.1	27.00	28.19	1.19	1400	400	1.780	285	0.456
No.2	9.45	12.00	2.55	1230	240	1.818	105	0.480
No.2	12.00	16.35	4.35	1580	340	1.818	210	0.476
No.3	10.78	13.98	3.20	610	320	1.775	182	0.310
No.3	16.00	18.93	2.93	1570	390	1.775	270	0.467
No.4	9.27	12.00	2.73	1620	280	1.802	141	0.485
No.4	12.00	12.71	0.71	1620	350	1.802	221	0.476
No.5	9.79	10.00	0.21	1620	300	1.861	167	0.482
No.5	10.00	12.35	2.35	1620	340	1.861	215	0.477
No.6	11.11	12.30	1.19	1690	400	1.772	284	0.470
No.6	15.18	17.00	1.82	1690	400	1.772	284	0.470
No.7	2.86	6.50	3.64	460	220	1.817	87.9	0.352
No.7	6.50	10.44	3.94	910	290	1.817	153	0.443
No.8	5.66	6.00	0.34	370	250	1.523	95.2	0.080
No.8	6.00	8.00	2.00	910	200	1.523	60.9	0.475
No.8	8.00	12.00	4.00	1650	200	1.523	60.9	0.493
No.8	12.00	12.76	0.76	1650	360	1.523	197	0.475
No.9	4.72	5.00	0.28	410	190	1.682	60.7	0.363
No.9	5.00	9.68	4.68	600	260	1.682	114	0.384
No.10	10.61	15.35	4.74	770	300	1.770	159	0.411
			64.96					
						平均	173	0.412

表初期動せん断弾性係数算出結果

TEPCO

2.2. 原位置試験・室内試験結果

(4)せん断強度

- > 三軸圧縮試験の結果を下図に示す。右表は富岡層砂岩の既往の解析用物性値。
- ▶ 富岡層風化部のせん断強度はCu=0.145+0.480·P(N/mm²)(P: 圧密圧力)であった。

表 既往の解析用物性値(T3部層砂岩)

3. 富岡層風化部の物性値の評価

3.1. 評価方法

- ▶ 「2.調査・試験結果」より, 富岡層風化部の地震応答解析用物性値を設定する。
- これを既往の富岡層砂岩の解析用物性値と比較して、重要施設の耐震評価および基礎地盤の安定性評価への影響を検討することにより、富岡層風化部の解析用物性値の区分の必要性について評価する。
- 地盤の解析用物性値のうち,施設の耐震評価および基礎地盤の安定性評価へ影響がある以下2つの解析用物性値について検討した。
 - 1) 初期動せん断弾性係数(G₀) 施設の耐震評価に用いる設計用地震動(床応答加速度)に影響がある。
 - 2) せん断強度(T) 施設の基礎地盤の安定性評価に用いるすべり安全率の算定に影響がある。

3. 富岡層風化部の物性値の評価

3.2. 評価結果

(1)初期動せん断弾性係数(G_o)

▶ 富岡層風化部の初期動せん断弾性係数の平均値は173N/mm²であり,既往の解析用物性値 210N/mm²と比較して約18%小さい値。

- 第9回1F技術会合(右図)で示し たとおり,N値が小さい(初期動 せん断弾性係数が小さい)ほうが 地表面の最大加速度が小さくなる 傾向がある。
- ▶ よって、富岡層風化部より既往の 富岡層砂岩の解析用物性値を使用 するほうが設備の設計用地震動は 大きく, 耐震評価は保守的な評価 となる。
- ▶ よって、富岡層風化部の解析用物 性値を富岡層砂岩と区分する必要 はないと判断する。

表最大加速度の比較

項目	地表面最大加速度 (gal)
①風化部考慮なし (富岡層T3部層泥質部)	1151.0
②基本ケース(N値:16)	1156.5
③パラスタケースB-1(N値:5)	819.6

図 ①風化部考慮なしのケースを1としたときの最大加速度の比較 ※①風化部考慮なしのN値は50で表示

特定原子力施設の実施計画の審査等に係る技術会合 (2023.4.25 第9回) 資料から抜粋

TEPCO

0.40

0.35

0.30

0.25

5) (N/mm²)

(2)せん断強度

- ▶ 調査・試験結果より, 富岡層風化部のせん断強度は, Cu=0.145+0.480·Pであった。
- ▶ 既往の富岡層砂岩の解析用物性値(ピーク強度: T=) 0.098+σ·tan38.6°, 残留強度: T=0.069+σ· tan38.7°)と、試験試料採取位置の有効土被り圧にお いて両者を比較した結果, ピーク強度においては富岡層 砂岩のせん断強度が同程度か大きく,残留強度において は同程度の強度となった。なお重要施設の基礎地盤のす べり安全率の算出においては残留強度が用いられる。 ▶ 実際の施設建設においては、重要施設は岩盤に直接ある いはマンメイドロック(コンクリート, 改良地盤等) を介して岩着させるため, 富岡層風化部は取り除かれる 。また, 富岡層風化部の直上の段丘堆積層のせん断強度 が富岡層風化部のせん断強度より小さいため(参考2) 基礎地盤のすべり安全率が最小となるすべり線が富岡 層風化部を通ることはない。
- ▶ 以上のことから、富岡層風化部の解析用物性値を富岡層 砂岩と区分する必要はないと判断する。

3. 富岡層風化部の物性値の評価

0.40

4. まとめ

- ➤ 富岡層風化部を対象としたボーリング調査および室内試験を実施した。調査・試験結果による富岡層 風化部の解析用物性値は以下のとおり。 湿潤密度: p_t=1.75g/cm³ 初期動せん断弾性係数: G₀=173N/mm² せん断強度: Cu=0.145+0.480·P N/mm² (P: 圧密圧力)
- ▶ 富岡層風化部と既往の富岡層砂岩の解析用物性値を比較した結果,既往の富岡層砂岩の解析用物性値 を用いるほうが,施設の耐震評価および基礎地盤の安定性評価において,同等あるいは保守的な評価 結果を与えることがわかった。
- ▶ よって、地盤の地震応答解析における解析用物性値について、富岡層風化部を富岡層砂岩と区分する 必要はないと判断した。

以上

参考1) 地盤の解析用物性値一覧

			中点世界网	富岡層						4.0 .	
			埋戻土	段丘堆積層	T3部層 風化部	T3部層 砂岩	T3部層 泥質部	T3部層 互層部	T2部層	T1部層	兀畠呵唐
物理特性 ρ _t (g/cm ³)		1.80	1.59	1.75	1.84	1.71	1.76	1.75-0.000417Z	1.79	1.88	
	静的変	$E_0 (N/mm^2)$	17.7	23. 5	33.9+216 $\cdot P$	124P+94.4	506	等価変形係数	112–5. 42Z	675	931
	形特性	ν	0. 33	0.21	0.49	0.48	0.47	等価ポアソン比	0. 47	0. 47	0.45
変形		$G_0 (N/mm^2)$	72.6	158	173	210	427	302	249-3. 22Z	667	954
特性	動的変	ν _d	0.35	0.48	0.41	0.48	0.45	0.46	0. 467+0. 000222Z	0.44	0. 42
	形特性	$\begin{array}{c} \text{G/G}_0 \sim \gamma \\ (\gamma : \%) \end{array}$	$\frac{1}{1+10.\ 65\ \gamma^{\ 0.\ 778}}$	$\frac{1}{1+6.872\gamma^{0.614}}$	$\frac{1}{1+8.05\gamma^{0.885}}$	$\frac{1}{1+3.\ 009\ \gamma^{\ 0.\ 604}}$	$\frac{1}{1+3.\ 600\ \gamma^{\ 0.\ 962}}$	$\frac{1}{1+3.257 \gamma^{0.688}}$	$\frac{1}{1+2.845 \gamma^{0.918}}$	$\frac{1}{1+2.586 \gamma^{0.722}}$	$\frac{1}{1+2.714\gamma^{0.920}}$
	114	$\begin{array}{c} h \sim \gamma \\ (h, \gamma : \%) \end{array}$	22. 97 γ ^{0. 289}	<u>14.79</u> 1+0.036/γ	$\frac{20.2}{1+0.0962/\gamma}$	<u>21.80</u> 1+0.122/γ	11. 90 γ ^{1. 086} +1. 617	<u>17.57</u> 1+0.084/γ	10. 54 γ ^{0. 865} +0. 903	15. 04 γ ^{0. 517}	14. 69 γ ^{0. 583}
		$C_u (N/mm^2)$	_	0.039	0. 145+0. 480∙P	0.098	1.50	0.098	0.931-0.00758Z	1.62	1.80
	ピーク 強度	φ _u (°)	_	24.7	0.0	38.6	0	38.6	0	0	0
強度 特性		$\sigma_{\rm t}~({\rm N/mm^2})$	_	0	-	0	0.222	0	0.100-0.00119Z	0	0.104
	残留	$C_{ur} (N/mm^2)$	_	0.034	0. 145+0. 480•P	0.069	1.08	0.069	1.00-0.00365Z	1.44	1.46
	強度	φ _{ur} (°)	_	25. 1	0.0	38.7	0	38.7	0	0	0
備考			強度特性は下図の通りに 設定する。 ビーク強度 て て て て て の の の の の の の の の の の の の	強度特性は下図の通りに 設定する。 ピーク強度 ^{Cu} Cu=0.145+0.480·P 残留強度 ^{Cu} Cu=0.145+0.480·P	強度特性は下図の通りに 設定する。 ビーク強度 $\tau = C_u + \sigma \tan \phi_u$ 飛留強度 $\tau = C_w + \sigma \tan \phi_w$	強度特性は下図の通りに 設定する。 ビーク強度 τ σ_{τ}	強度特性は下図の通りに 設定する。 ビーク強度 て の 、 度留強度 て て= $C_u + \sigma \tan \phi_u$ の 、 の 、 の 、 の 、 の の の の の の の の の の の	強度特性は下図の通りに設定 する。 ビーク強度 τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg} τ_{rg}	強度特性は下図の通りに 設定する。 ビーク強度 τ 、 $(\sigma - C_u)^{2+\tau}\tau^2 = C_u^2$ σ 税留強度 τ 、 $(\sigma - C_w)^{2+\tau}\tau^2 = C_w^2$ σ	強度特性は下図の通りに 設定する。 ビーク強度 τ σ , 0 σ , 0 σ τ $\tau = C_u$ σ τ τ τ τ τ τ τ τ τ τ	

注:Zは,標高(T.P.m)を示す。

注: Pは,地下水位を考慮した圧密圧力(N/mm²)を示す。

注:γは, せん断歪み(%)を示す。

参考2) 富岡層風化部の試験結果と段丘堆積層の解析用物性値

- ▶ 富岡層風化部の上部層である段丘堆積層のせん断強度(残留強度)は, T=0.034+σ·tan25.1°(N/mm²)であり, 富岡層風化部の強度より小さい。
- ▶ よって、基礎地盤の安定性評価において、すべり安全率が最小となるすべり線は富岡層風化部を通る ことはなく、より強度の小さい段丘堆積層を通るため、富岡層風化部のせん断強度は基礎地盤の安定 性評価に影響を与えない。

図 すべり安全率が最小となるすべり線のイメージ

図 富岡層風化部と段丘堆積層のせん断強度(残留強度)の比較

参考3) 富岡層風化部における帯磁率の測定結果

- ▶ 同一孔(No.1孔)において、富岡層砂岩の風化部と新鮮部の 帯磁率を比較した結果(右図),風化部は0.386×10⁻³SI, 新鮮部は0.411×10⁻³SIであり,風化部の帯磁率が約6%小 さい値。
- ▶ 全孔を対象に比較したところ(下表), 富岡層砂岩の風化 部の帯磁率は0.321×10⁻³SI,新鮮部は0.411×10⁻³SIであ り,風化部の帯磁率が約22%小さい値。
- 以上より,風化部と新鮮部の帯磁率平均値に差異は認めら れるが,測定値のばらつきが大きく,帯磁率を風化部区分 の指標とすることは困難と考える。

表带磁率測定結果(含	全孔)
------------	-----

地府		平均	標準偏差	最小	最大
心見	テーク奴	(×10 ⁻³ SI)	(×10 ⁻³ SI)	(×10 ⁻³ SI)	(×10 ⁻³ SI)
中粒砂岩(風化部)	588	0.321	0.228	0.086	2.590
中粒砂岩(新鮮部)	23	0.411	0.062	0.315	0.516
砂質泥岩	231	0.184	0.052	0.094	0.442
泥岩	52	0.164	0.031	0.103	0.286

帯磁率測定結果(No.1孔) 义

0.411

0.062

23