NPO法人テレメータリング推進協議会の概要

2012年4月20日 NPO法人テレメータリング推進協議会

NPO法人テレメータリング推進協議会の概要

■理事長

薦田 康久(電力中央研究所 特任顧問)

■会員

ガス販売事業者、機器メーカー、システムメーカー、監視センター運営事業者、等約80社・団体(平成23年3月末現在)

■オブザーバ

高圧ガス保安協会 (財)エルピーガス振興センター 日本LPガス協会 (社)LPガス協会

■沿革

平成 6年 4月 LPガスOA化推進協議会 -発足-平成13年 6月 LPガスIT推進協議会 -名称変更-平成15年10月 NPO法人LPガスIT推進協議会 -NPO法人化-

平成22年 2月 NPO法人テレメータリング推進協議会

-LPガス業界以外からも会員を募り発展的に改名-

■活動内容

- ・集中監視システムの普及促進により、ガス燃焼機器等の運転状況、異常使用や漏洩などを 監視して事故を未然に防止し、消費者の安全・安心を確保
- 集中監視システムの普及促進により、企業の業務(検針、配送、保安など)の合理化、 効率化の実現に寄与
- ・エネルギー(ガス、水道、電気)使用量の「見える化」を推進し、低炭素社会の実現に寄与
- ・エネルギー(ガス、水道、電気)の使用量を計測する「見守りサービス」の普及により、高齢化 社会の進展に伴う独居高齢者の安否確認を推進

■特徴的活動

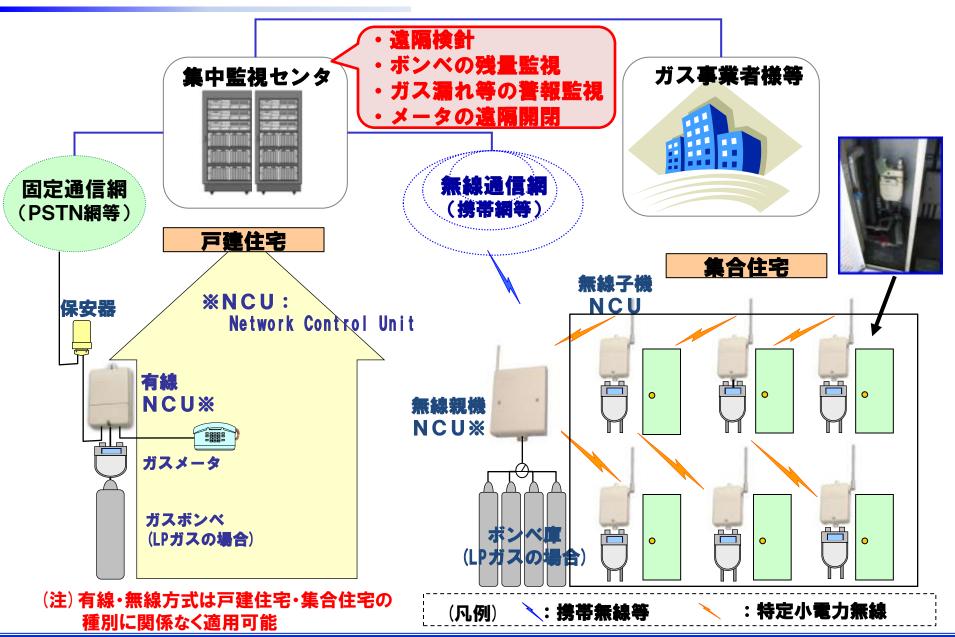
- ・LPガス 安全・安心・ソリューション展の実施(年2回)
- ・業界関連動向に関する定例研究会の実施(年3回)
- 次期集中監視システム等に関する研究部会の実施等

テレメータリング推進協議会の最近の主な成果

- ●総務省平成21年度補正予算事業〈超低消費電力型メータリング通信システム 仕様標準化と検証環境構築〉を2010年6月に受託し、2011年3月に報告完了
 - ・集中監視システム新バージョンの仕様標準化研究部会の開催 (2009年11月~2011年4月)
 - ・標準化仕様の利用環境整備部会の開催 (2010年6月~2011年3月)
 - 海外標準化団体(IEEE802.15.4e/g)への提案(2012年3月規格化完了)
- ●スマートグリッド展(2011年6月15日~17日、東京ビックサイト)にて、 集中監視システム新バージョンのプレゼンならびにモデルシステム展示
- ●IEEE802インターリム会合 (2011年9月19日~23日、沖縄コンベンションセンター) のTutorialにおける集中監視システム新バージョンのプレゼンならびにExhibitionに おける検針デモの実施
- ●第8回GAS KOREA 2012(2012年2月27日~29日、ソウル貿易コンベンションセンター)にて、集中監視システム新バージョンのプレゼンならびにモデルシステム展示
- ●HEMS研究部会の開催により、集中監視システムを活用したHEMSの実現方法の 検討(類型化の実施)(2011年6月~2012年3月)

オブサーバー: 経済産業省資源エネルギー庁 電力・ガス事業部 電力市場整備課 総務省 情報通信国際戦略局 通信規格課

集中監視システムの現状


普及実績

- 25年前からLPガス·都市ガスを中心に普及
- 現在は、LPガス:600万件(24%)、都市ガス:200万件(7%)、
 - 一部電力、等に導入されている

• 集中監視システムの特徴

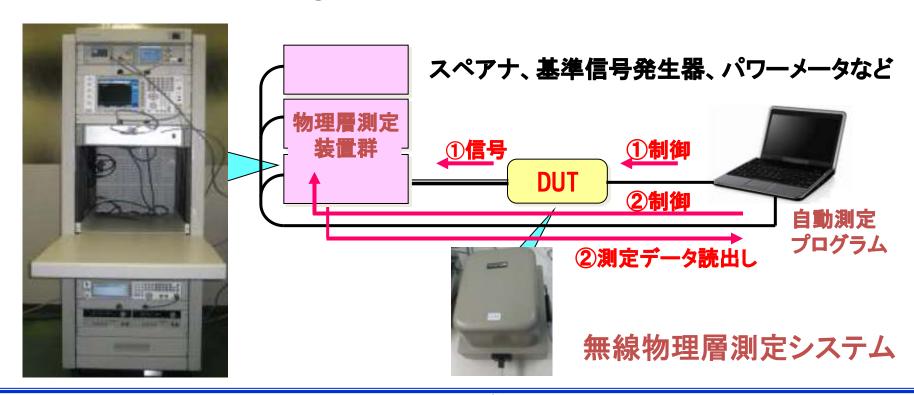
- 通信コスト低減のため、当初はお客様の電話回線を利用
- 携帯電話回線を利用する無線システムも序々に普及
- センター、メータの両方から通信開始可能な双方向通信システム
- LPガス・都市ガスでは、ガスの異常監視やメータの遠隔開閉 も実施し、保安機能向上を実現
- ガス、水道のメータリング端末は電池駆動が必須

現行のガス集中監視システムの構成概要

多段中継無線機(Uバスエア) 相互接続性試験装置(テストベッド)の概要

NPO法人テレメータリング推進協議会 2012年4月20日

テストベッドとは?

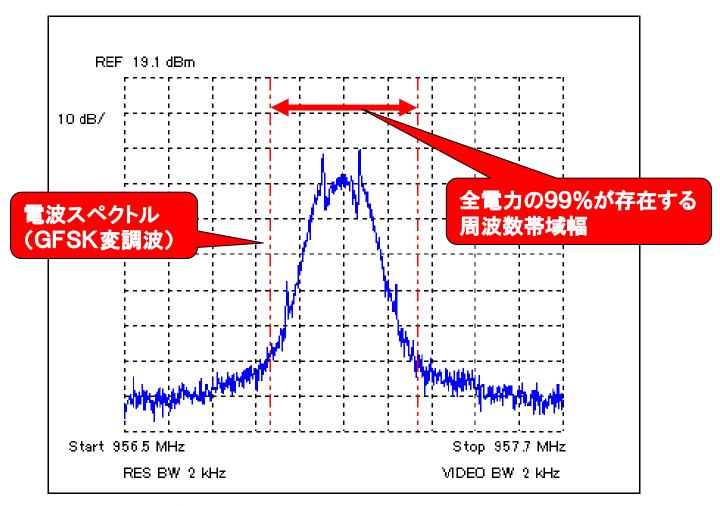

ユーザーがUバスエア搭載機器を安心して採用する ための事前検証環境

- 相互接続性試験システム
 - 異なるメーカーの機器間の接続性を確認
 - 無線物理層測定
 - MAC、NET層測定
- 運用シミュレーター
 - 実運用環境でのパフォーマンスを確認

無線物理層テスト

無線物理層テストはDUTの電波の質を測定

- 対象仕様
 - 国内電波法(ARIB STD-T96)
 - IEEE802.15.4g規格

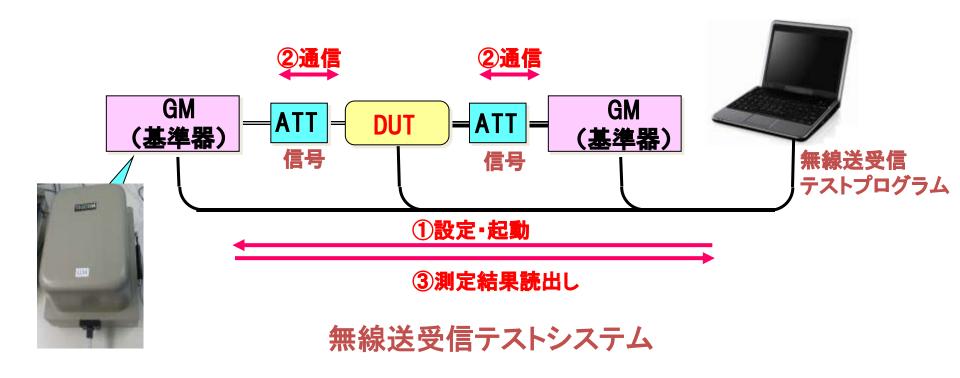


無線物理層テスト項目

電波の質	周波数の測定	950MHz帯
	占有する周波数帯幅の測定	400kHz
	出力の測定	1 OmW
不要電波 の発射	帯域外への電波発射	- 55dBm/100kHz
	隣のチャネルへ漏洩する電波	- 26dBm/100k Hz
	受信状態で発射する電波	- 55dBm/100kHz
無線機機機能	最大連続送信時間/再小休止時間の測定	共に100ms
	他の電波があれば、自分は出さない機能の確認	-75dBm
受信性能	受信感度	-90dBm PER= 1 %以下
送信性能	送信波形観測により変調度などを測定	GFSK(BT=0.5) 100%

無線物理層テスト結果(例)

出力する電波が占有する周波数幅の測定



無線物理層測定(占有周波数帯幅)

MAC層・NET層テスト

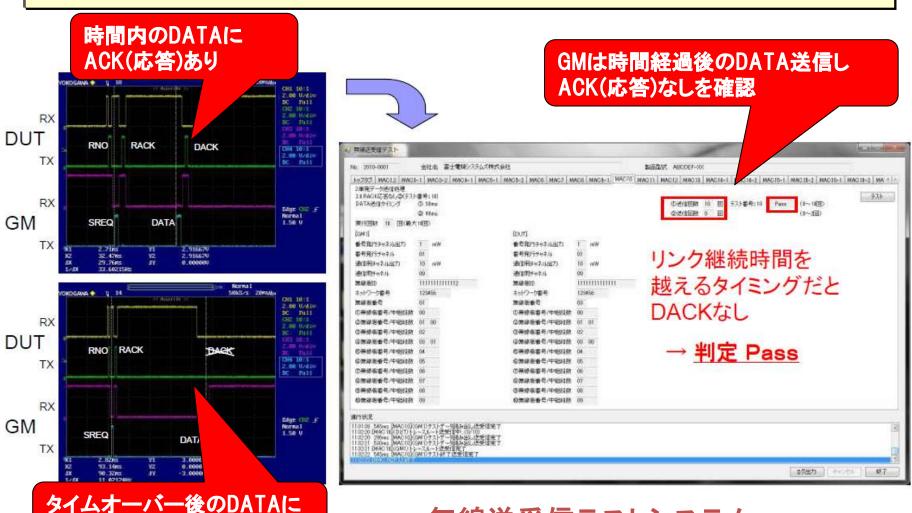
リバスエアの通信手順をテスト

- 対象仕様
 - Uバスエア(多段中継無線)通信仕様

MAC層、NET層テスト項目

■MAC層通信試験項目

	間欠動作周期	3秒(例)
間欠動作	間欠後受信時間計測	2ms
7米 +立 <i>二</i> ゜	正常/異常シーケンス	手順、フレーム構成、タイミング
隣接データ転送 	休止時間	100ms以上
分割データ転送	正常/異常シーケンス	手順、フレーム構成、タイミング
データ交換	正常/異常シーケンス	手順、フレーム構成、タイミング

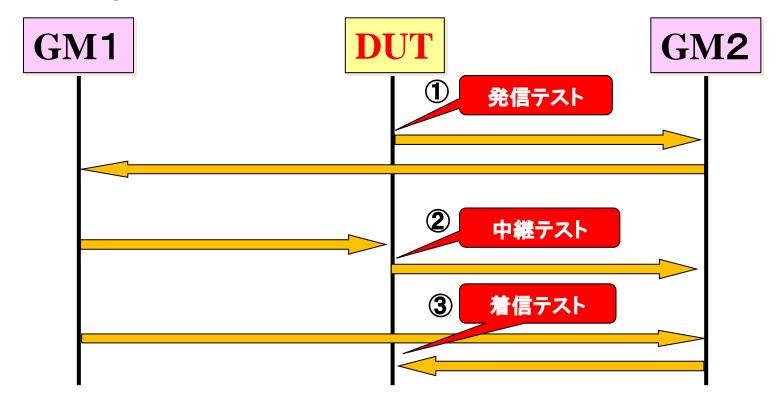

■NET層通信試験項目

さいしロー 万世符	隣接無線機の発見	- 80dBm以上の信号を受信
ネットワーク構築	ネットワーク情報の交換	中継段数テーブル交換と編集
	データ発信/中継/着信	多段中継転送機能
データ転送	異常処理	パケット生存時間オーバーなど

送受信テスト結果(MAC層)の例

ACK(応答)なし

隣接無線機との間(DUT⇔GM)の通信手順を検証


無線送受信テストシステム

送受信テストの例(NET層)

フォーマット修正

GM2台とDUTを使った中継通信の検証

- ① 発信テスト DUT \Rightarrow GM2 \Rightarrow GM1
- ② 中継テスト GM1 ⇒ DUT ⇒ GM2
- ③ 着信テスト GM1 ⇒ GM2 ⇒ DUT

無線送受信テストシステム

運用シミュレーターの概要

Uバスエアネットワークの運用での振る舞い(通信遅延時間、電池寿命等)をシミュレーション

- ネットワークシミュレータ
 - シミュレーションSW(OPNET)にUバスエアの通信手順構築
- シミュレーション内容
 - Uバスエア端末配置、運用条件、障害条件をパラメータ

シミュレーションの方法

- ① シミュレーション条件をパラメータで与える
- ② シミュレーション結果を表示
- ①パラメータ

『端末の配置』

- ●端末間距離
- ●NCUの配置

『運用条件』

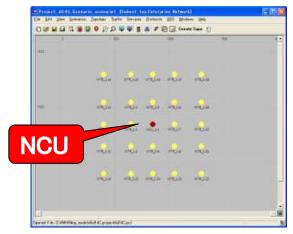
- ●端末性能
- ●データ量
- ●データ発生頻度

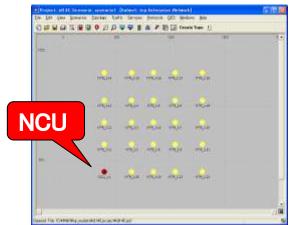
『障害条件』

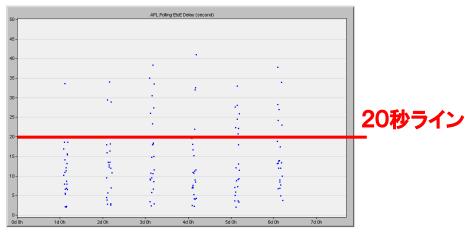
- ●妨害端末
- ●通信障害

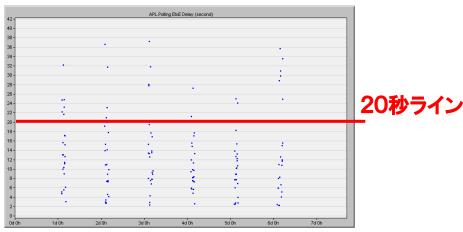
シミュレーション (OPNET)

②結果表示

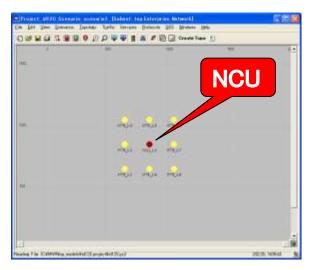

『運用状態』

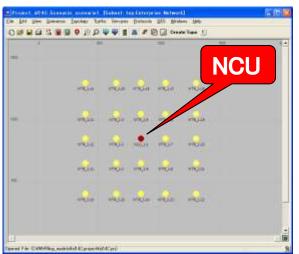

- ●通信性能
- ●電池消耗

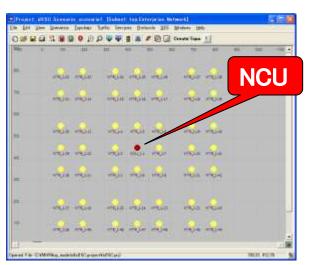

運用シミュレーターの実証結果(1)


NCUの位置に対する通信遅延時間の比較

⇒ 中央に配置した方が平均遅延時間は短い、最大時間は変わらない




NCUの位置による通信遅延時間の比較


運用シミュレーターの実証結果(2)

ネットワーク規模とシステム寿命の関係をシミュレーション

- ⇒ 発呼/ポーリング1回/2週の条件で10年以上のシステム寿命
- ⇒ 9台のネットワークに対して49台の場合は寿命が0.83

9台-12.51年

25台-11.17年

49台-10.41年

郊外,戸建てエリアでのシステム寿命