別冊 5

汚染水処理設備等に係る補足説明

I 汚染水処理設備等の構造強度及び耐震性について

汚染水処理設備等を構成する設備について,構造強度評価の基本方針及び耐震性評価の 基本方針に基づき構造強度及び耐震性等の評価を行う。

- 1. 汚染水処理設備, 貯留設備 (タンク等) 及び関連設備 (移送配管, 移送ポンプ等)
- 1.1. 基本方針
- 1.1.1. 構造強度評価の基本方針
- a. 震災以降緊急対応的に設置又は既に(平成 25 年 8 月 14 日より前に)設計に着手した機器等

汚染水処理設備, 貯留設備及び関連設備を構成する機器は,「発電用原子力設備に関する技術基準を定める省令」において, 廃棄物処理設備に相当するクラス 3 機器に準ずるものと位置付けられる。クラス 3 機器の適用規格は,「JSME S NC-1 発電用原子力設備規格 設計・建設規格」(以下,「JSME 規格」という。)で規定される。

しかしながら、震災以降緊急対応的にこれまで設置してきた機器等は、必ずしも JSME 規格に従って設計・製作・検査をされたものではなく、日本工業規格 (JIS) 等の国内外の民間規格、製品の試験データ等を踏まえ、福島第一原子力発電所構内の作業環境、機器等の設置環境や時間的裕度を勘案した中で安全確保を最優先に設計・製作・検査を行ってきている。

汚染水処理設備, 貯留設備及び関連設備を構成する機器は, 高濃度の汚染水を内包するため, バウンダリ機能の健全性を確認する観点から, 設計された肉厚が十分であることを確認している。また, 溶接部については, 耐圧・漏えい試験等を行い, 有意な変形や漏えい等のないことを確認している。

機器等の経年劣化に対しては、適切な保全を実施することで健全性を維持していく。

b. 今後(平成25年8月14日以降)設計する機器等

汚染水処理設備,貯留設備及び関連設備を構成する機器は,「実用発電用原子炉及びその付属設備の技術基準に関する規則」において,廃棄物処理設備に相当するクラス3機器に準ずるものと位置付けられる。クラス3機器の適用規格は,「JSME S NC-1 発電用原子力設備規格 設計・建設規格」等(以下,「JSME 規格」という。)で規定される。

汚染水処理設備等は、地下水等の流入により増加する汚染水の対応が必要であり、 短期間での機器の設置が求められる。また、汚染水漏えい等のトラブルにより緊急的 な対応が必要となることもある。

従って、今後設計する機器等については、JSME 規格に限定するものではなく、日本工業規格 (JIS) 等の国内外の民間規格に適合した工業用品の採用、或いは American Society of Mechanical Engineers (ASME 規格)、日本工業規格 (JIS)、またはこれら

と同等の技術的妥当性を有する規格での設計・製作・検査を行う。溶接(溶接施工法 および溶接士)は JSME 規格, American Society of Mechanical Engineers (ASME 規格), 日本工業規格 (JIS), および発電用火力設備に関する技術基準を定める省令にて認証 された溶接, または同等の溶接とする。また, JSME 規格で規定される材料の日本工業 規格 (JIS) 年度指定は,技術的妥当性の範囲において材料調達性の観点から考慮しな い場合もある。

さらに、今後も JSME 規格に記載のない非金属材料(耐圧ホース、ポリエチレン管等) については、現場の作業環境等から採用を継続する必要があるが、これらの機器等については、日本工業規格(JIS)や日本水道協会規格、製品の試験データ等を用いて設計を行う

1.1.2. 耐震性評価の基本方針

汚染水処理設備等を構成する機器のうち放射性物質を内包するものは,「発電用原子炉施設に関する耐震設計審査指針」の B クラス相当の設備と位置づけられる。耐震性を評価するにあたっては,「JEAC4601原子力発電所耐震設計技術規程」(以下,「耐震設計技術規程」という。)等に準拠して構造強度評価を行うことを基本とするが,評価手法,評価基準について実態にあわせたものを採用する。B クラス施設に要求される水平震度に対して耐震性を確保できない場合は,その影響について評価を行う。支持部材がない等の理由によって,耐震性に関する評価ができない設備を設置する場合においては,可撓性を有する材料を使用するなどし,耐震性を確保する。

また,各機器は必要な耐震性を確保するために,原則として以下の方針に基づき設計する。

- ・倒れ難い構造 (機器等の重心を低くする,基礎幅や支柱幅を大きくとる)
- ・動き難い構造、外れ難い構造(機器をアンカ、溶接等で固定する)
- ・座屈が起こり難い構造
- ・変位による破壊を防止する構造(定ピッチスパン法による配管サポート間隔の設定,配管等に可撓性のある材料を使用)

なお、汚染水処理設備等のうち高濃度の滞留水を扱う設備等については、参考としてSクラス相当の評価を行う。

1.2. 評価結果

1.2.1. 滞留水移送装置

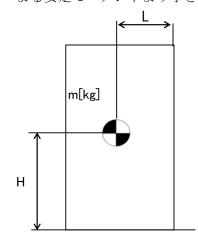
(1) 構造強度評価

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。従って、滞留水移送装置は必要な構造強度を有すると評価した。

(2) 耐震性評価

移送ポンプは、水中ポンプのため地震により有意な応力は発生しない。

1.2.2. 油分分離装置


(1) 構造強度評価

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。従って、油分分離装置は必要な構造強度を有すると評価した。

(2) 耐震性評価

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を実施した。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さいことから、転倒しないことを確認した(表-1)。

m : 機器質量 (kg)

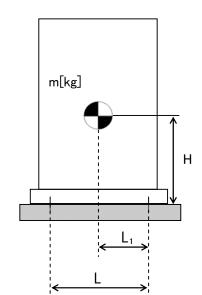
g : 重力加速度 (9.80665 m/s²)

H: 据付面からの重心までの距離 (m)

L: 転倒支点から機器重心までの距離 (

C_H: 水平方向設計震度 (0.36, 0.57)

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H$


C_H=0.36 の場合 M₁ = 49,615 N·m → 50 kN·m

 $C_H=0.57$ の場合 $M_1=78,558$ N·m $\to 79$ kN·m

自重による安定モーメント: M₂[N·m] = m×g×L = 83,942 N·m → 83 kN·m

b. 基礎ボルトの強度評価

耐震設計技術規程の強度評価方法に準拠して評価を実施した。評価の結果,基礎ボルトの強度が確保されることを確認した(表-1)。

m : 機器質量 (kg)

g : 重力加速度 (9.80665 m/s²)

H : 据付面からの重心までの距離 (mm)

 L: 基礎ボルト間の水平方向距離
 mm)

 L1: 重心と基礎ボルト間の水平方向距離
 (

n_f: 引張力の作用する基礎ボルトの評価本数 (本)

n : 基礎ボルトの本数 (本)

A_b : 基礎ボルトの軸断面積 (mm²)

C_H: 水平方向設計震度 (0.36, 0.57)

Cv : 鉛直方向設計震度 (0)

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \Big(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \Big)$

 $C_H=0.36$ の場合 $F_b=-16,481$ N < 0 よって、引張力は発生しない。

 C_H =0.57 の場合 F_b = -2,585 N < 0 よって、引張力は発生しない。

基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$

 C_{H} =0.36 の場合 F_{b} < 0 のため、引張応力は発生しない。

 C_{H} =0.57 の場合 F_{h} < 0 のため、引張応力は発生しない。

基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

 $C_{\rm H}$ =0.36 の場合 $\tau_{\rm b}$ = 23.04 \rightarrow 24 MPa

 $C_{\rm H}$ =0.57 の場合 $\tau_{\rm b}$ = 36.48 \rightarrow 37 MPa

また, 許容応力は, 以下の式で設定した。

基礎ボルトの許容せん断応力: $f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}}$

ここで、F は設計・建設規格 付属図表 part5 表 8 及び表 9 より、SS400 の設計温度 66 C における Sy 値、Su 値を線形補間した値を用い、下記式にて設定した。

$$F = min (Sy, 0.7Su)$$

・Sy: 表 8 より 40℃: 235 MPa, 75℃: 222 MPa Sy = 222 + (235 - 222) × (75-66)/(75-40) = 225 MPa

• Su 40°C : 400 MPa, 75°C : 381 MPa

 $Su = 381 + (400 - 381) \times (75-66)/(75-40) = 385 \text{ MPa}$

従って, F = min (Sy, 0.7Su) = min (225, 0.7 \times 385) = 225 MPa

基礎ボルトの許容せん断応力は以下の通りとなる。

$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}} = 129 \text{ MPa}$$

表-1 油分分離装置耐震評価結果

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
	本体	本二	0.36	50	0.2	kN•m
	* 1*	転倒	0. 57	79	83	
油分分離装置	基礎ボルト	せん断	0.36	24	120	MPa
(四万万佛表里			0. 57	37	129	
		313 E	0.36	<0	_	MD
		引張	0. 57	<0	-	MPa

1.2.3. 処理装置(セシウム吸着装置)

(1) 構造強度評価

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。

また,吸着塔の円筒型容器については,設計・建設規格に準拠し,板厚評価を実施 した。評価の結果,内圧に耐えられることを確認した(表-2)。

t: 胴の計算上必要な厚さ

Di : 胴の内径 (mm)

P : 最高使用圧力 (0.97 MPa)

S: 最高使用温度 (66℃) における

材料 (SUS316L) の許容引張応力 (108 MPa)

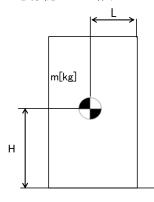
= 6.76 mm $\rightarrow 6.8 \text{ mm}$

η: 長手継手の効率 (0.60)

ただし, tの値は炭素鋼,

低合金鋼の場合は t=3[mm]以上, その他の金属の場合は t=1.5[mm]以上とする。

表-2 セシウム吸着装置構造強度結果


機器名称	評価部位	必要肉厚[mm]	実厚[mm]
セシウム吸着装置 吸着塔	板厚	6.8	9. 5**

※ 最小値

(2) 耐震性評価

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を行った。評価に用いた数値を表-3-1に示す。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さいことから、転倒しないことを確認した(表-3-3)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²)

H : 据付面からの重心までの距離

L: 転倒支点から機器重心までの距離

CH: 水平方向設計震度 (0.36, 0.51, 0.57)

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H$

自重による安定モーメント: $M_2[N \cdot m] = m \times g \times L$

表-3-1 セシウム吸着装置の転倒評価数値根拠

機器名称	m [kg]	H [m]	L [m]	C_{H}	$egin{array}{c} M_1 \ [ext{N} \! \cdot \! m] \end{array}$	$egin{array}{c} \mathtt{M}_2 \ [\mathtt{N} \cdot \mathtt{m}] \end{array}$
セシウム				0.36	89,879 → 90 kN·m	130, 209
吸着塔				0. 51	127, 328 → 128 kN·m	→ 130 kN·m
スキッド				0.36	512,018 → 513 kN·m	881, 804
(本体)				0. 57	810,695 → 811 kN·m	→ 881 kN·m
スキッド				0.36	615,632 → 616 kN·m	958, 825
(基礎)				0.57	974,751 → 975 kN·m	→ 958 kN·m
セシウム吸着				0.36	143, 165 → 144 kN·m	175, 759
処理水タンク				0. 57	226,677 → 227 kN·m	→ 175 kN·m
セシウム吸着 処理水移送				0. 36	2,086 → 2.1 kN·m	7, 293
ポンプ				0. 57	3,303 → 3.4 kN·m	→ 7.2 kN·m

b. 滑動評価

地震時の水平荷重によるすべり力と接地面の摩擦力を比較することにより、滑動評価を実施した。評価の結果、地震時の水平荷重によるすべり力は接地面の摩擦力より小さいことから、滑動しないことを確認した(表-3-3)。なお、Sクラス相当の評価では、セシウム吸着塔において地震時の水平荷重によるすべり力が接地面の摩擦力より大きくなったことから、FEMによるによるトラニオンとピンガイドの強度評価を行った。

地震時の水平荷重によるすべり力 : $F_L = C_H \times m \times g \rightarrow F_L / (m \times g) = C_H$ 接地面の摩擦力 : $F_u = \mu \times m \times g \rightarrow F_u / (m \times g) = \mu$

m : 機器質量 g : 重力加速度

C_H: 水平方向設計震度 (0.36, 0.57)

μ : 摩擦係数 (鉄/鉄:0.52)

c. FEMによるトラニオンとピンガイドの強度評価

セシウム吸着塔は、本体下部に位置決めのためのトラニオンが施工されており、スキッド側ピンガイドと取合構造となっている(図-1参照)。

b. 滑動評価において、地震時の水平荷重によるすべり力が接地面の摩擦力より大きくなったことから、軸方向荷重及び軸直交方向荷重を想定し、トラニオンとピンガイドの強度を FEM により確認する。なお、FEM モデルは、ピンガイドについては各部材の中立面にシェル要素で、トラニオンはソリッド要素で作成した(図-2参照)。FEM による強度評価の結果ピンガイドは破断せず吸着塔を支持することを確認した(表-3-3)。

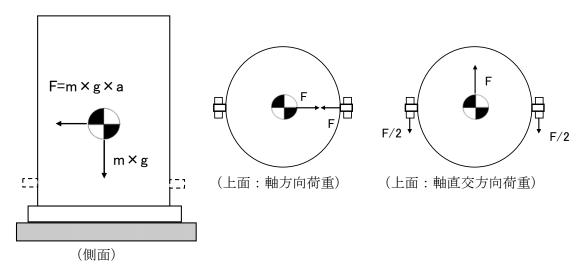


図-1 トラニオン~ピンガイド概要

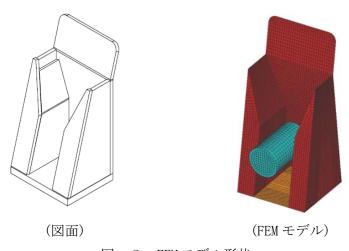
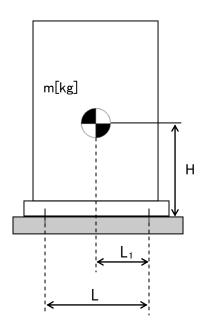



図-2 FEM モデル形状

d. 基礎ボルトの強度評価

耐震設計技術規程の強度評価方法に準拠して評価を実施した。評価に用いた数値を表-3-2に示す。評価の結果、基礎ボルトの強度が確保されることを確認した(表-3-3)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²) H : 据付面からの重心までの距離 L : 基礎ボルト間の水平方向距離

L₁: 重心と基礎ボルト間の水平方向距離

nf: 引張力の作用する基礎ボルトの評価本数

n : 基礎ボルトの本数

A_b : 基礎ボルトの軸断面積

C_H: 水平方向設計震度 (0.36, 0.57)

C_v : 鉛直方向設計震度 (0)

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \Big(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \Big)$

基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$

基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

また, 許容応力は, 以下の式で設定した。

基礎ボルトの許容せん断応力: $f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}}$

基礎ボルトの許容引張応力 : $f_{ts} = \min \left(1.4 f_{to} - 1.6 \tau_b, f_{to}\right)$

ここで、F は設計・建設規格 付属図表 Part 5 表 8 及び表 9 より、SS400 の設計温度 66 % における Sy 値、Su 値を線形補間した値を用い、下記式にて設定した。

F = min (Sy, 0.7Su)

• Sy 40°C : 235 MPa, 75°C : 222 MPa

 $Sy = 222 + (235 - 222) \times (75-66)/(75-40) = 225 \text{ MPa}$

• Su 40°C : 400 MPa, 75°C : 381 MPa Su = 381 + (400 - 381) × (75-66)/(75-40) = 385 MPa

従って, F = min (Sy, 0.7Su) = min (225, 0.7×385) = 225 MPa

基礎ボルトの許容引張応力は以下の通りとなる。

・スキッドの場合 (C_H=0.57)

 $f_{to} = F/2 \times 1.5 = 168 \text{ MPa}$

 $f_{ts} = min(1.4 \times 168 - 1.6 \times 52, 168) = min(152, 168) = 152 \text{ MPa}$

・セシウム吸着設備処理水タンクの場合 $(C_H=0.57)$

 $f_{to} = F/2 \times 1.5 = 168 \text{ MPa}$

 $f_{ts} = min(1.4 \times 168 - 1.6 \times 30, 168) = min(187.2, 168) = 168 \text{ MPa}$

基礎ボルトの許容せん断応力は以下の通りとなる。

・処理装置(セシウム吸着装置) 共通

$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}} = 129 \text{ MPa}$$

表-3-2 セシウム吸着装置の基礎ボルト強度評価数値根拠

		7.7	-	, ,,				四外世代及			
機器名称	m	Н	L	L_1	n _f	n	A_b	C_{H}	F_b	σь	$ au_{ m b}$
1)及有臣/口 7/7	[kg]	[mm]	[mm]	[mm]	[本]	[本]	$[mm^2]$	ŬĦ	[N]	[MPa]	[MPa]
								0.36	-135, 115	<0	32.8
スキッド					23	52	201	0.30	-155, 115	\ 0	$\rightarrow 33$
ハイット					23	32	201	0. 57	6 270	1.4	51. 9
								0.57	6, 270	\rightarrow 2	\rightarrow 52
								0. 36	17 000	<0	18. 45
セシウム吸着					4	10	314	0.36	-17, 909	<0	$\rightarrow 19$
処理水タンク					4	12		07 077	22. 27	29. 22	
								0. 57	27, 977	$\rightarrow 23$	$\rightarrow 30$
セシウム吸着								0. 36	9 641	<0	5. 62
					0	4	001	0.36	-3, 641	<0	\rightarrow 6
処理水移送 ポンプ					2	4	201	0 57	0. 700	/0	8.90
N / /								0. 57	-2, 790	<0	$\rightarrow 9$

表-3-3 セシウム吸着装置耐震評価結果

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
		転倒	0.36	90	130	1-M - m
	++	料料	0.51	128	130	kN•m
セシウム	本体	加利	0.36	0.36	0.50	
吸着塔		滑動	0.57	0. 57	0. 52	_
	1.00 (18 7 19	+0 1/1 = +-	0.57	100	Sy=159	, m
	ピンガイド	相当応力	0. 57	182	Su=459	MPa
	本体	#一位(0.36	513	001	1 M
	4 14	転倒	0.57	811	881	kN•m
スキッド	#* 7#x	#一位(0.36	616	050	1 11
	基礎	転倒	0.57	975	958	kN•m
	基礎ボルト	1上)脉气	0.36	33	100	MD
		せん断	0.57	52	129	MPa
		引張	0.36	<0	_	, m
		り版	0.57	2	152	MPa
	本体	#→ [Zi]	0.36	144	175	1 M
		転倒	0.57	227	175	kN•m
セシウム吸着		1上)脉气	0.36	19	100	MD
処理水タンク	基礎ボルト	せん断	0.57	30	129	MPa
		引張	0.36	<0	-	MPa
		り 次	0.57	23	168	Mra
	本体	転倒	0.36	2. 1	7. 2	kN•m
	4 4	料公田	0.57	3. 4	1.2	KINTIII
セシウム吸着		せん断	0.36	6	129	MDo
処理水移送ポンプ	基礎ボルト		0.57	9	149	MPa
		引張	0.36	<0		MPa
		クルズ	0.57	<0		

1.2.4. 処理装置 (第二セシウム吸着装置)

= 9.53

 $\rightarrow 9.6$

(1) 構造強度評価

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。

また、吸着塔の円筒形容器については、設計・建設規格に準拠し、板厚評価を実施 した。評価の結果、内圧に耐えられることを確認した(表-4)。

t : 胴の計算上必要な厚さ

Di : 胴の内径 (mm)

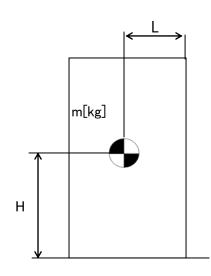
P: 最高使用圧力 (1.37 MPa)

S : 最高使用温度 (66°C) における

材料 (SUS316L) の許容引張応力 (108 MPa)

η: 長手継手の効率 (0.60)

ただし、 t の値は炭素鋼,低合金鋼の場合は t=3[mm]以上,その他の金属の場合は t=1.5[mm]以上とする。


表-4 第二セシウム吸着装置構造強度結果

機器名称	評価部位	必要肉厚[mm]	実厚[mm]	
第二セシウム吸着装置 吸着塔	板厚	9. 6	12	

(2)耐震性評価

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を実施した。評価に用いた数値を表-5-1に示す。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さいことから、転倒しないことを確認した(表-5-3)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²) H : 据付面からの重心までの距離

L: 転倒支点から機器重心までの距離

C_H: 水平方向設計震度 (0.36, 0.42, 0.60)

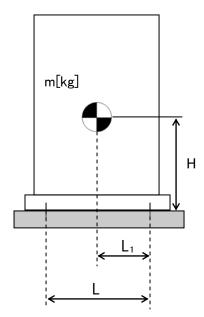

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m] = m \times g \times L$

表-5-1 第二セシウム吸着装置の転倒評価数値根拠

機器名称	m [kg]	H [m]	L [m]	C_{H}	$egin{array}{c} M_1 \ igl[N m{\cdot} m igr] \end{array}$	$egin{array}{c} ext{M}_2 \ ext{[N} \cdot ext{m]} \end{array}$
第二セシウム				0. 36	143,794 → 144 kN·m	169, 194
吸着塔	吸着塔 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	0. 42	167,760 → 168 kN·m	→ 169 kN·m		
ポンプ スキッド				0.36	3,839.7 → 3.9 kN·m	6, 936. 1
スキッド				0.60	6, 399. 5 → 6. 4 kN·m	→ 6.9 kN·m

b. 基礎ボルトの強度評価

耐震設計技術規程の強度評価方法に準拠して評価を実施した。評価に用いた数値を表-5-2に示す。評価の結果、基礎ボルトの強度が確保されることを確認した(表-5-3)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²) H : 据付面からの重心までの距離

L : 基礎ボルト間の水平方向距離

L1: 重心と基礎ボルト間の水平方向距離

nf: 引張力の作用する基礎ボルトの評価本数

n : 基礎ボルトの本数

Ab: 基礎ボルトの軸断面積

C_H: 水平方向設計震度 (0.36, 0.55, 0.60)

Cv: 鉛直方向設計震度 (0)

基礎ボルトに作用する引張力 : $F_b = \frac{1}{L} \Big(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \Big)$

基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$

基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

また, 許容応力は, 以下の式で設定した。

基礎ボルトの許容せん断応力: $f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}}$

基礎ボルトの許容引張応力 : $f_{ts} = \min \left(1.4 f_{to} - 1.6 \tau_b , f_{to} \right)$

ここで、F は設計・建設規格 付属図表 Part 5 表 8 及び表 9 より、SS400 の設計温度 50 C における Sy 値、Su 値を線形補間した値を用い、下記式にて設定した。

F = min (Sy, 0.7Su)

・Sy:表8より 40℃:235 MPa, 75℃:222 MPa

 $Sy = 222 + (235 - 222) \times (75-50)/(75-40) = 231 \text{ MPa}$

・Su:表9より 40℃:400 MPa, 75℃:381 MPa

 $Su = 381 + (400 - 381) \times (75-50)/(75-40) = 394 \text{ MPa}$

従って, $F = min (Sy, 0.7Su) = min (231, 0.7<math>\times$ 394) = 231 MPa

基礎ボルトの許容引張応力は以下の通りとなる。

・第二セシウム吸着塔の場合 (C_H=0.55)

$$f_{to} = F/2 \times 1.5 = 173 \text{ MPa}$$

$$f_{ts} = min(1.4 \times 173 - 1.6 \times 108, 173) = min(69.4, 173) = 69 \text{ MPa}$$

基礎ボルトの許容せん断応力は以下の通りとなる。

・処理装置 (第二セシウム吸着装置) 共通

$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}} = 133 \text{ MPa}$$

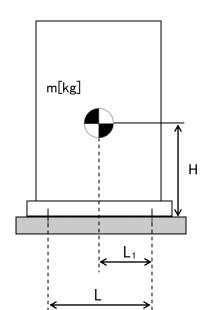
表-5-2 第二セシウム吸着装置の基礎ボルト強度評価数値根拠

			/1								
機器名称	m [kg]	H [mm]	L [mm]	L_1 [mm]	n _f [本]	n [本]	$egin{array}{c} A_b \ [exttt{mm}^2] \end{array}$	C_{H}	$F_{\rm b}$ [N]	σ _b [MPa]	τ _b [MPa]
第二セシウム								0. 36	-14, 519	<0	70. 2 → 71
吸着塔					0. 55	42, 466	67. 6 → 68	107. 3 → 108			
ポンプ								0. 36	-2, 258	<0	$3.76 \\ \rightarrow 4$
ポンプ スキッド								0.60	-391	<0	6. 27 → 7

表-5-3:第二セシウム吸着装置耐震評価結果

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位	
	本体	転倒	0.36	144	169	kN•m	
	本 体	料团	0.42	168	109	KIN¹III	
第二セシウム		せん断	0.36	71	133	MPa	
吸着塔	基礎ボルト	せんを	0. 55	108	155	МГа	
	空焼が//	引張	0.36	<0	69	MPa	
			0. 55	68	09		
	本体	転倒	0.36	3.9	6. 9	kN•m	
	本件	料的	0.60	6.4	0.9	KINTIII	
ポンプスキッド		せん断	0.36	4	133	MDo	
ホンノスヤット	基礎ボルト	せん例	0.60	7	155	MPa	
	茶阪小ルト	引張	0. 36	<0	_	MPa	
		71派	0.60	<0	_	MPa	

1.2.5. 処理装置(除染装置)


(1) 構造強度評価

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。従って、除染装置は必要な構造強度を有すると評価した。

(2) 耐震性評価

a. 基礎ボルトの強度評価

耐震設計技術規程の強度評価方法に準拠して評価を実施した。評価に用いた数値を表-6-1に示す。評価の結果、基礎ボルトの強度が確保されることを確認した(表-6-2)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²) H : 据付面からの重心までの距離 L : 基礎ボルト間の水平方向距離

L1: 重心と基礎ボルト間の水平方向距離

nf: 引張力の作用する基礎ボルトの評価本数

n : 基礎ボルトの本数A_b : 基礎ボルトの軸断面積

C_H: 水平方向設計震度 (0.36, 0.50, 0.60)

Cv: 鉛直方向設計震度 (0)

基礎ボルトに作用する引張力:

・ 反応槽
$$: \ F_b = \frac{4}{nD} \left(m \times g \times C_H \times H \right) - \frac{m \times g \times (1 - C_V)}{n}$$

・凝集沈殿装置 (マルチフロー):
$$F_b = \frac{1}{L} \Big(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \Big)$$

基礎ボルトの引張応力:
$$\sigma_{b} = \frac{F_{b}}{n_{f} \times A_{b}}$$

基礎ボルトのせん断応力:
$$\tau_b = \frac{m \times g \times C_H}{n \times A_b}$$

また, 許容応力は, 以下の式で設定した。

基礎ボルトの許容せん断応力:
$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}}$$

基礎ボルトの許容引張応力 :
$$f_{ts} = \min \left(1.4 f_{to} - 1.6 \tau_b, f_{to} \right)$$

ここで、F は設計・建設規格 付属図表 Part 5 表 8 及び表 9 より、設計温度(常温) における Sy 値、Su 値を用いて設定した。

F = min (Sy, 0.7Su)

・反応槽 (SUS304)

Sy: 表 8 より 40°C: 205 MPa, Su: 表 9 より 40°C: 520 MPa 従って、F = min(Sy, 0.7Su) = min(205, 0.7×520) = 205 MPa

・凝集沈殿装置 (マルチフロー) (SS400)

Sy: 表 8 より 40°C: 235 MPa, Su: 表 9 より 40°C: 400 MPa 従って、F = min(Sy, 0.7Su) = min(235, 0.7×400) = 235 MPa

基礎ボルトの許容引張応力は以下の通りとなる。

• 反応槽

$$\begin{split} &f_{to} = F/2 \times 1.5 = 153 \text{ MPa} \\ &f_{ts} = \min(1.4 \times 153 - 1.6 \times 49, \ 153) = 135 \text{ MPa} \quad (C_{H} = 0.36) \\ &f_{ts} = \min(1.4 \times 153 - 1.6 \times 68, \ 153) = 105 \text{ MPa} \quad (C_{H} = 0.60) \end{split}$$

・凝集沈殿装置 (マルチフロー)

$$f_{to}$$
 = F/2×1.5 = 176 MPa
 f_{ts} = min(1.4×176-1.6×119, 176) = 56 MPa (C_H=0.60)

基礎ボルトの許容せん断応力は以下の通りとなる。

• 反応槽

$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}} = 118 \text{ MPa}$$

・凝集沈殿装置 (マルチフロー)

$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}} = 135 \text{ MPa}$$

表-6-1 除染装置の基礎ボルト強度評価数値根拠

公 0 1 所来教旨の左続が、「協反計画教信依だ											
機器名称	m [kg]	H [mm]	L 又はD [mm]	L_1 [mm]	n _f [本]	n [本]	$A_{\rm b}$ [mm]	C_{H}	F _b [N]	σ _b [MPa]	τ _ь [MPa]
巨片塘								0. 36	3, 260	$16.2 \\ \rightarrow 17$	48.9 $\rightarrow 49$
<i>汉师</i>	反応槽		0. 50	15, 134	75. 3 → 76	67. 8 → 68					
凝集沈殿装置								0. 36	-226, 926	<0	70. 8 → 71
マルチフロー								0.60	13, 075	6.94 $\rightarrow 7$	118. 1 → 119

b. 有限要素法によるフレーム構造解析

主要設備についてはコンクリートにアンカーを打った上で架台にて強固に据え付けられていることから,加圧浮上分離装置(DAF),凝集沈殿装置(アクチフロー),ディスクフィルタについて有限要素法によるフレーム構造解析を用いて基礎ボルトの強度評価を実施した。評価の結果,基礎ボルトの強度に問題がないことを確認した(表-6-2)。

① 加圧浮上分離装置 (DAF) 設計用水平震度: 0.6G

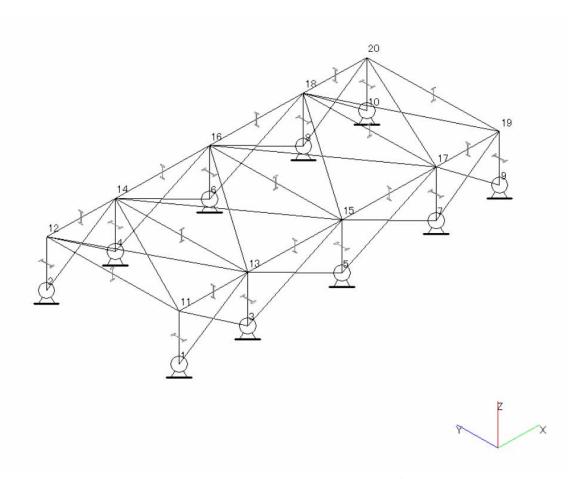


図-3 加圧浮上分離装置 (DAF) 解析モデル

② 凝集沈殿装置 (アクチフロー)設計用水平震度: 0.6G

16

図-4 凝集沈殿装置 (アクチフロー) 解析モデル

③ ディスクフィルタ

設計用水平震度: 0.6G

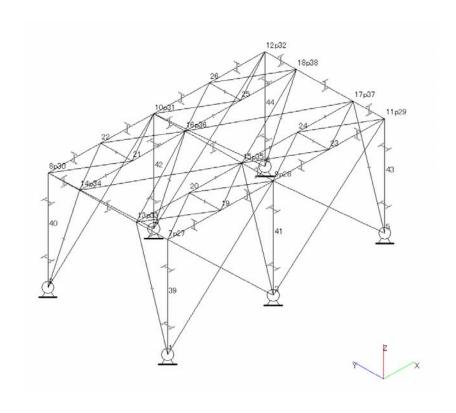


図-5 ディスクフィルタ解析モデル

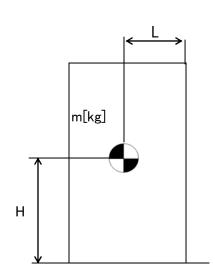
c. 架台強度評価

加圧浮上分離装置 (DAF), 凝集沈殿装置 (マルチフロー), 凝集沈殿装置 (アクチフロー), ディスクフィルタについて有限要素法によるフレーム構造解析を用いて各部材に発生するたわみ量の評価を実施した。評価の結果, 架台強度に問題がないことを確認した (表-6-2)。

表 6 - 2 除染装置耐震評価結果

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位	
加圧浮上分離装置	架台(柱脚)	変位	0.60	1/290	1/120	変位量	
加工行工力能表直 (DAF)	基礎	せん断	0.60	27	118	MPa	
(DAI*)	ボルト	引張	0.60	6	153	MPa	
		せん断	0.36	49	118	MPa	
 反応槽	基礎	せん例	0.50	68	110	WII a	
X /心作	ボルト	引張	0.36	17	135	MPa	
		りが	0.50	76	105	MPa	
	本体(壁パネル)	変位	0.60	1/515	1/120	変位量	
炸炸 沖 鼠州 罕		せん断	0.36	71	125	MPa	
凝集沈殿装置 (マルチフロー)	基礎		0.60	119	135	MPa	
	ボルト	313E	0.36	<0	-	MPa	
		引張	0.60	7	56	MPa	
松佳沙型壮果	架台 (柱脚)	変位	0.6	1/936	1/120	変位量	
凝集沈殿装置(アクチフロー)	基礎	せん断	0.60	38	118	MPa	
(//////-/	ボルト	引張	0.60	51	153	MPa	
ディスク	架台 (柱脚)	変位	0.6	1/527	1/120	変位量	
フィヘク	基礎	せん断	0.60	44	118	MPa	
7 1 12 9	ボルト	引張	0.60	19	143	MPa	

1.2.6. 淡水化装置


(1) 構造強度評価

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。従って、淡水化装置は必要な構造強度を有すると評価した。

(2) 耐震性評価

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を実施した。評価に用いた数値を表-7-1, 2に示す。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さいことから、転倒しないことを確認した(表-7-6)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²) H : 据付面から重心までの距離

L: 転倒支点から機器重心までの距離

CH: 水平方向設計震度 (0.36)

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m] = m \times g \times L$

(a) ポンプ,配管・弁モジュール

転倒モーメント及び安定モーメントの評価式を以下の様に変更し、評価を実施した。 地震による転倒モーメント: $M_1[N\cdot m]=m\times g\times C_H\times H$ \to $M_1/(m\times g)=C_H\times H$ 自重による安定モーメント: $M_2[N\cdot m]=m\times g\times L$ \to $M_2/(m\times g)=L$

表-7-1 淡水化装置(ポンプ,配管・弁モジュール)の転倒評価数値根拠

+0½ 円口 <i>長</i> 7 壬4-	水平	Н	算出値	許容値
機器名称	震度	[m]	$C_H \times H$ [m]	L [m]
SPT 受入水移送ポンプ	0.36		$0.202 \rightarrow 0.21$	\rightarrow 0.77
廃液 RO 供給ポンプ	0.36		$0.200 \rightarrow 0.21$	\rightarrow 0.92
RO 処理水供給ポンプ	0.36		$0.202 \rightarrow 0.21$	\rightarrow 0.77
RO 処理水移送ポンプ	0.36		$\begin{array}{ccc} 0.467 & \rightarrow & 0.47 \end{array}$	\rightarrow 0.77
RO 濃縮水供給ポンプ	0.36		$0.202 \rightarrow 0.21$	\rightarrow 0.77
RO 濃縮水貯槽移送ポンプ	0. 36		$0.350 \rightarrow 0.36$	\rightarrow 0.77
RO 濃縮水移送ポンプ	0.36		$0.347 \rightarrow 0.35$	\rightarrow 0.71
濃縮水供給ポンプ	0.36		$0.194 \rightarrow 0.20$	→ 0.78
蒸留水移送ポンプ	0.36		$0.202 \rightarrow 0.21$	→ 0.86
濃縮処理水供給ポンプ	0.36		$0.194 \rightarrow 0.20$	\rightarrow 0.78
濃縮処理水移送ポンプ	0.36		$0.347 \rightarrow 0.35$	\rightarrow 0.71
濃縮水移送ポンプ	0. 36		$0.194 \rightarrow 0.20$	\rightarrow 0.77
配管・弁モジュール	0.36		$0.185 \rightarrow 0.19$	→ 0.28

(b) 逆浸透膜装置 (RO-2, RO-3)

表-7-2 淡水化装置 (RO-2, RO-3) の転倒評価数値根拠

機器名称	m [kg]	H [m]	L [m]	M ₁ [kN⋅m]	M ₂ [kN⋅m]
逆浸透膜装置 RO-2				19. 06 → 19. 1	20. 83 → 20. 8
逆浸透膜装置 RO-3				1. 691 → 1. 70	1.801 → 1.80

b. 基礎ボルトの強度評価

耐震設計技術規程の強度評価方法に準拠して評価を実施した。評価に用いた数値を表-7-3, 4, 5に示す。評価の結果、基礎ボルトの強度が確保されることを確認した(表-7-6)。

m[kg]

m : 機器質量

g : 重力加速度 (9.80665 m/s²) H : 据付面からの重心までの距離 L : 基礎ボルト間の水平方向距離

L₁: 重心と基礎ボルト間の水平方向距離

n_f: 引張力の作用する基礎ボルトの評価本数

n : 基礎ボルトの本数

A_b: 基礎ボルトの軸断面積

C_H: 水平方向設計震度 (0.36)

C_V: 鉛直方向設計震度 (0)

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \Big(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \Big)$

基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$

基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

アンカーに作用するせん断荷重 : $Q = \frac{m \times g \times C_H}{n}$

(a) 淡水化装置 (逆浸透膜装置 RO-1A, 1B)

表-7-3 淡水化装置(逆浸透膜装置 RO-1A, 1B)の基礎ボルト強度評価数値根拠

	m	h	L	L_1	n _f	n	<u> </u>	F _b	Q
	[kg]	[mm]	[mm]	[mm]	[本]	[本]	Сн	[N]	[N]
逆浸透膜装置							0. 36	-7, 700	1, 147. 4
(RO-1A)							0.30	\rightarrow <0	→1, 148
逆浸透膜装置							0.26	-7, 781	1, 059. 1
(RO-1B)							0.36	→ <0	→1, 060

アンカーの許容せん断荷重は以下の式で設定した。

= 23,419.7 sca : 定着部の断面積 (157 mm)

→ 23,419 N Fc : コンクリートの圧縮強度

 (21 N/mm^2)

Ec : コンクリートのヤング率

 $(21,500 \text{ N/mm}^2)$

(b) 淡水化装置(蒸発濃縮装置-1A, 1B, 1C)

表-7-4 淡水化装置 (蒸発濃縮装置-1A, 1B, 1C) の基礎ボルト強度評価数値根拠

	m	h	L	L_1	n _f	n	A _b	C	F _b	τ
	[kg]	[mm]	[mm]	[mm]	[本]	[本]	[mm]	Сн	[N]	[MPa]
蒸発濃縮装置								0. 36	-9, 373	29. 3
(蒸発濃縮-1A)								0. 50	→ <0	\rightarrow 30
蒸発濃縮装置								0.26	-9, 567	38. 1
(蒸発濃縮-1B)								0. 36	→ <0	\rightarrow 39
蒸発濃縮装置								0. 36	-4, 000	35. 1
(蒸発濃縮-1C)								0. 50	→ <0	\rightarrow 36

また、基礎ボルトの許容せん断応力は以下の式で設定した。

基礎ボルトの許容せん断応力:
$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}}$$

ここで、F は設計・建設規格 付属図表 Part 5 表 8 及び表 9 より、SS400 の設計温度 60 C における Sy 値、Su 値を線形補間した値を用い、下記式にて設定した。

F = min (Sy, 0.7Su)

• Sy 40°C : 235 MPa, 75°C : 222 MPa

 $Sy = 222 + (235 - 222) \times (75-60)/(75-40) = 227 \text{ MPa}$

• Su 40°C : 400Pa, 75°C : 381 MPa

 $Su = 381 + (400 - 381) \times (75-60)/(75-40) = 389 \text{ MPa}$

従って, F = min (Sy, 0.7Su) = min (227, 0.7×389) = 227 MPa 基礎ボルトの許容せん断応力は以下の通りとなる。

$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}} = 131 \text{ MPa}$$

(c) 淡水化装置 (蒸発濃縮装置-2A, 2B, 3A, 3B, 3C)

表-7-5 淡水化装置 (蒸発濃縮装置-2A, 2B, 3A, 3B, 3C) の 基礎ボルト強度評価数値根拠

	m	h	L	L_1	$n_{\rm f}$	n	A _b	(F _b	τ
	[kg]	[mm]	[mm]	[mm]	[本]	[本]	[mm]	Сн	[N]	[MPa]
蒸発濃縮装置									FF 700	07.0
(蒸発濃縮-2A, B)								0.36	-55, 702	87.8
(濃縮装置)									\rightarrow <0	→ 88
蒸発濃縮装置									100 470	07. 5
(蒸発濃縮-3A, B, C)								0.36	-106, 472	97. 5
(濃縮装置)									→ <0	→ 98

また、基礎ボルトの許容せん断応力は以下の式で設定した。

基礎ボルトの許容せん断応力:
$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}}$$

ここで、F は設計・建設規格 付属図表 Part 5 表 8 及び表 9 より、SUS304 の設計温度 66 % における Sy 値、Su 値を線形補間した値を用い、下記式にて設定した。

F = min (Sy, 0.7Su)

• Sy 40°C : 205 MPa, 75°C : 183 MPa

 $Sy = 183 + (205 - 183) \times (75-66)/(75-40) = 188 \text{ MPa}$

• Su 40°C : 520Pa, 75°C : 466 MPa

 $Su = 466 + (520 - 466) \times (75-66)/(75-40) = 479 \text{ MPa}$

従って、F = min (Sy, 0.7Su) = min (188, 0.7×479) = 188 MPa

基礎ボルトの許容せん断応力は以下の通りとなる。

$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}} = 108 \text{ MPa}$$

c. 滑動評価

地震時の水平荷重によるすべり力と接地面の摩擦力を比較することにより、滑動評価を実施した。評価の結果、地震時の水平荷重によるすべり力は接地面の摩擦力より小さいことから、滑動しないことを確認した(表-7-6)。

地震時の水平荷重によるすべり力 : $F_L = C_H \times m \times g \rightarrow F_L / (m \times g) = C_H$ 接地面の摩擦力 : $F_\mu = \mu \times m \times g \rightarrow F_\mu / (m \times g) = \mu$

表 7 - 6 淡水化装置耐震評価結果 (1/2)

13	7 0 次	小儿教 电闸 辰	.н пшли / С (т/			
機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
SPT 受入水移送ポンプ	本体	転倒	0.36	0. 21	0.77	m
廃液 RO 供給ポンプ	本体	転倒	0.36	0. 21	0.92	m
RO 処理水供給ポンプ	本体	転倒	0.36	0. 21	0.77	m
RO 処理水移送ポンプ	本体	転倒	0.36	0. 47	0.77	m
RO 濃縮水供給ポンプ	本体	転倒	0.36	0. 21	0.77	m
RO 濃縮水貯槽移送ポンプ	本体	転倒	0.36	0.36	0.77	m
RO 濃縮水移送ポンプ	本体	転倒	0.36	0.35	0.71	m
濃縮水供給ポンプ	本体	転倒	0.36	0. 20	0.78	m
蒸留水移送ポンプ	本体	転倒	0.36	0. 21	0.86	m
濃縮処理水供給ポンプ	本体	転倒	0.36	0.20	0.78	m
濃縮処理水移送ポンプ	本体	転倒	0.36	0.35	0.71	m
濃縮水移送ポンプ	本体	転倒	0.36	0. 20	0.77	m
配管・弁モジュール	本体	転倒	0.36	0. 19	0. 28	m
逆浸透膜装置	基礎	せん断	0.36	1, 148	23, 419	N
(RO-1A)	ボルト	引張	0.36	<0	-	N
逆浸透膜装置	基礎	せん断	0.36	1,060	23, 419	N
(RO-1B)	ボルト	引張	0.36	<0	-	N
逆浸透膜装置	++	転倒	0.36	19. 1	20.8	kN • m
(RO-2)	本体	滑動	0.36	0.36	0.40	_
逆浸透膜装置	++	市工石川	0.26	1 70	1 00	1-N
(RO-3)	本体	転倒	0.36	1.70	1.80	kN • m

表 7 - 6 淡水化装置耐震評価結果 (2/2)

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
蒸発濃縮装置	基礎	せん断	0.36	30	131	MPa
(蒸発濃縮-1A)	ボルト	引張	0.36	<0	_	MPa
蒸発濃縮装置	基礎	せん断	0.36	39	131	MPa
(蒸発濃縮-1B)	ボルト	引張	0.36	<0	_	MPa
蒸発濃縮装置	基礎	せん断	0.36	36	131	MPa
(蒸発濃縮-1C)	ボルト	引張	0.36	<0	-	MPa
蒸発濃縮装置	本体	転倒	0.36	<0	_	kN
(蒸発濃縮-2A, B)	基礎	せん断	0.36	88	108	MPa
(濃縮装置)	ボルト	引張	0.36	<0	-	MPa
蒸発濃縮装置	本体	転倒	0.36	<0	-	kN
(蒸発濃縮-3A, B, C)	基礎	せん断	0.36	98	108	MPa
(濃縮装置)	ボルト	引張	0.36	<0	_	MPa

1.2.7. 高濃度滞留水受タンク

= 5.34 mm

(1) 構造強度評価

材料証明書がなく,設計・建設規格におけるクラス 3 機器の要求を満足するものではないが,気密試験等を行い,漏えいがないことを確認した。

また、設計・建設規格に準拠し、板厚評価を実施し、内圧に耐えられることを確認 した(表-8)。

t: 胴の計算上必要な厚さ

Di : 胴の内径 (mm

材料 (SS400) の許容引張応力 (100 MPa)

 $t = \frac{PDi}{}$ P: 最高使用圧力 (0.2 MPa)

 $2S \eta - 1.2P$ S: 最高使用温度(66°C)における

 $\rightarrow 5.4 \text{ mm}$ η : 長手継手の効率 (0.6)

ただし、tの値は炭素鋼、低合金鋼の場合はt=3[mm]以上、その他の金属の場合はt=1.5[mm]以上とする。

表-8 円筒型タンク(横置き)板厚評価結果

機器名称		評価部位	必要肉厚[mm]	実厚[mm]
高濃度滞留水受タンク	100m³容量 円筒型(横置き)	タンク板厚	5. 4	9

(2) 耐震性評価

当該タンクは地中に埋設され、タンク内部に高濃度滞留水を保管するものであり、設備全体としては耐震クラス B に相当することから、地中構造物の耐震 B クラスに要求される水平地震力 Kh=0.3 に対する静的解析により、その耐震安全性を評価した。その結果、B クラスに要求される強度を有するものと評価した(表-9)。詳細は別添-1に示す。

表-9 円筒型タンク(横置き)耐震評価結果

機器名称		評価項目	作用震度	算出值	許容値	単位
	100m ³ 容量	曲げ	Bクラス	21. 9	210	$\mathrm{N/mm^2}$
高濃度滞留水	円筒型	ш()	Sクラス	60.0	245	11/ 111111
受タンク	(横置き)	せん断	Bクラス	0.019	120	$\mathrm{N/mm^2}$
		せん例	Sクラス	0. 311	141	IN/ IIIIII

1.2.8. 中低濃度タンク

(1) 構造強度評価

震災以降緊急対応的に設置したものについては材料証明書がなく,設計・建設規格 におけるクラス 3 機器の要求を満足するものではないが,水頭圧による漏えい試験を 行い,有意な変形や漏えいがないことを確認した。また,タンクは全て大気開放のた め,水頭圧以上の内圧が作用することは無い。

以上のことから、中低濃度タンクは必要な構造強度を有していると評価できる。

また,円筒型タンクについては,主要仕様から必要肉厚を評価し,十分な肉厚を有していることを確認した。

なお, サプレッションプール水サージタンクは, 工事計画認可申請書 (57 資庁第 2974 号 昭和 57 年 4 月 20 日認可) において確認を実施している。

実施計画の初回認可日(平成25年8月14日)以降に実施する検査の対象となる円筒型タンクのうち、震災以降緊急対応的に設置又は既に(平成25年8月14日より前に)設計に着手したタンク及び平成25年8月14日以降に設計するタンクについては、設計・建設規格に基づき、主要仕様から必要肉厚評価、胴の穴の補強評価をし、十分な強度を有していることを確認した。

J2, J3 エリアのタンクについては、日本工業規格(JIS B 8501)を適用し構造強度評価を行った。構造強度評価のうち、「円筒型タンクの胴の厚さ評価」については、日本工業規格(JIS B 8501)内に裏当て金を使用した評価の規定がないことから、設計・建設規格(JSME 規格)により構造強度評価を行い十分な強度を有していることを確認した。その他の構造強度評価については、日本工業規格(JIS B 8501)の要求仕様を満足する設計とするが、同規格内に各評価対象部位の必要最小値を算出する方法の規定がないことから、設計・建設規格により算出した値を参考値として記載する。

- ① 震災以降緊急対応的に設置又は既に (平成 25 年 8 月 14 日より前に) 設計に着手した タンク
- a. 円筒型タンクの胴の厚さ評価

設計・建設規格に準拠し、板厚評価を実施した。評価の結果、水頭圧に耐えられることを確認した(表-10-1, 2)。

t: 胴の計算上必要な厚さ

Di : 胴の内径

H : 水頭

ρ : 液体の比重

S : 最高使用温度における

材料の許容引張応力

η: 長手継手の効率

 $t = \frac{DiH \,\rho}{0.204S \,\eta}$

ただし、 t の値は炭素鋼、低合金鋼の場合は t=3[mm]以上、その他の金属の場合は t=1.5[mm]以上とする。また、内径の区分に応じた必要厚さを考慮する。

表-10-1 円筒型タンクの胴の板厚評価の数値根拠

機器名称		Di	Н		材料	温度	S	n	t
7及40~17	`	[m]	[m]	ρ	1/1/17	[°C]	[MPa]	η	[mm]
	300m³容量			1	SS400	常温	100	1.0	3. 07 →4. 5 ^{**3}
RO 処理水貯槽	450m³容量			1	SS400	常温	100	1.0	3. 49 →4. 5 ^{**3}
RO 濃縮水貯槽	500m³容量			1	SS400	常温	100	1.0	4. 03 →4. 5 ^{**3}
RO 処理水貯槽 RO 濃縮水貯槽 蒸発濃縮処理水貯槽 多核種処理水貯槽	1000m ³ 容量 (フランジ)			1	SS400	常温	100	1.0	6. 24 →6. 3
RO 濃縮水貯槽	1000m ³ 容量			1	SS400	常温	100	0.65	9. 53 →9. 6
多核種処理水貯槽	(溶接)			1	SS400	常温	100	0.65	9. 77 →9. 8
濃縮廃液貯槽	100m³ 容量 円筒型 (横置き)			1	SS400	常温	100	0.60	0.84 →3.0 ^{**2}

※1 : 満水での水頭。

※2 : 炭素鋼の必要厚さにより3[mm]となる。

※3 : 内径 5[m]を超え,16[m]以下のため 4.5[mm]となる。

表-10-2 円筒型タンクの胴の板厚評価結果

機器名	· 称	評価部位	必要肉厚	実厚
1双位计	145	바다 [[패 타입고]	[mm]	[mm]
DO 60 700 1.00444	300m³容量	タンク板厚	4. 5	9. 0
RO 処理水貯槽	450m³容量	タンク板厚	4.5	9.0*
RO 濃縮水貯槽	500m³容量	タンク板厚	4.5	9.0**
RO 処理水貯槽 RO 濃縮水貯槽 蒸発濃縮処理水貯槽 多核種処理水貯槽	1000m³ 容量 (フランジ)	タンク板厚	6.3	12. 0
RO 濃縮水貯槽	1000m³容量	タンク板厚	9. 6	12.0
多核種処理水貯槽	(溶接)	タンク板厚	9.8	12.0
濃縮廃液貯槽	100m³容量 (円筒型 (横置き)	タンク板厚	3. 0	9.0

※ 最小値

b. 円筒型タンクの底板の厚さ評価

設計・建設規格に準拠し、底板の厚さについて評価を実施した。評価の結果、必要板厚確保していることを確認した(表-10-3)。

表-10-3 円筒型タンクの底板の板厚評価結果

機器	名称	評価部位	必要肉厚[mm]	実厚[mm]
RO 濃縮水貯槽	1000m³ 容量 (フランジ)	タンク板厚 (底板)	3. 0*1	16. 0
多核種処理水貯槽	1000m³ 容量 (溶接)	タンク板厚 (底板)	3. 0*1	12. 0

※ 地面,基礎等に直接接触するものについては,3mm

%2 地面,基礎等に直接接触するものについては,アニュラ板:12mm 底板:6mm

c. 円筒型タンクの管台の厚さ評価

設計・建設規格に準拠し、管台の板厚評価を実施した。評価の結果、水頭圧に耐えられることを確認した(表-10-4, 5)。

t : 管台の計算上必要な厚さ

 $t = \frac{DiH \rho}{0.204S \eta}$ Di : 管台の内径

H : 水頭

ρ : 液体の比重

S: 最高使用温度における

材料の許容引張応力

η: 長手継手の効率

ただし、管台の外径の区分に応じた必要厚さを考慮する。

表-10-4 円筒型タンクの管台の板厚評価の数値根拠

機器名利	T	管台 口径	Di [m]	H [m]	ρ	材料	温度	S [MPa]	η	t [mm]
		100A			1	SGP	常温	74	0.6	0. 12 →3. 5 [*] ²
	1000m ³ 容量 (フランジ)	200A			1	SGP	常温	74	0.6	0. 24 →3. 5 [*] ²
		600A			1	STPY400	常温	100	0.6	0. 51 →3. 5 [*] ²
		100A			1	STPG370	常温	93	1. 0	0. 05 →3. 5 [*] ²
RO 濃縮水貯槽 多核種処理水貯槽	1000m³容量 (溶接)	200A			1	STPG370	常温	93	1. 0	0. 11 →3. 5 [*] ²
		600A			1	STPY400	常温	100	0.6	0. 51 →3. 5 [*] ²
		100A			1	SGP	常温	74	0.6	0. 13 →3. 5 [*] ²
		200A			1	SGP	常温	74	0.6	0. 24 →3. 5 [*] ²
		600A			1	STPY400	常温	100	0.6	0. 52 →3. 5 ^{**} ²

※1 : 満水での水頭。

※2 : 管台の外径:82mm以上のものについては3.5mm

表-10-5 円筒型タンクの管台の板厚評価結果

機器名利	機器名称		評価部位	必要肉厚[mm]	実厚[mm]
	1000m ³ 容量	100A	管台板厚	3. 5 [*]	4. 5
	(フランジ)	200A	管台板厚	3. 5 [*]	5.8
		600A	管台板厚	3. 5 [*]	12.7
RO 濃縮水貯槽		100A	管台板厚	3.5**	8.6
多核種処理水貯槽	1000m³容量	200A	管台板厚	3. 5 [*]	12.7
多核性处理外則情		600A	管台板厚	3. 5 [*]	9. 5
	(溶接)	100A	管台板厚	3.5**	4. 5
		200A	管台板厚	3. 5 [*]	5.8
		600A	管台板厚	3. 5**	9. 5

※管台の外径:82mm 以上のものについては3.5mm

d. 円筒型タンクの胴の穴の補強評価

設計・建設規格に準拠し、胴の穴の補強について評価を実施した。評価の結果、補 強に有効な面積が補強に必要な面積より大きいため補強が不要であることを確認した (表-10-6, 7)。

$$A_0 = A_1 + A_2 + A_3$$

$$A_1 = (\eta t_s - F t_{sr})(X - d)$$
$$-2(1 - \frac{Sn}{Ss})(\eta t_s - F t_{sr})t_n$$

$$X = X_1 + X_2$$

$$X_1 = X_2 = 2(Max(d, \frac{d}{2} + t_s + t_n))$$

$$A_2 = 2((t_{n1} - t_{nr})Y_1 + t_{n2}Y_2)S_n / S_s$$
$$t_{nr} = \frac{PDi}{2S_n - 1.2P}$$

$$Y_1 = Min(2.5t_s, 2.5t_{n1} + Te)$$

$$Y_2 = Min(2.5t_s, 2.5t_{n2}, h)$$

$$A_3 = L_1 L_1 + L_2 L_2 + L_3 L_3$$

$$Ar = dt_{sr}F + 2(1 - \frac{S_n}{S_n})t_{sr}Ft_n$$

A₀: 補強に有効な総面積

A₁: 胴,鏡板又は平板部分の補強に有効な面積

A2: 管台部分の補強に有効な面積 A: すみ肉溶接部の補強に有効な面積 η : PVC-3161.2 に規定する効率

ts : 胴の最小厚さ

t_{sr} : 継ぎ目のない胴の計算上必要な厚さ

(PVC-3122(1)において

t_n : 管台最小厚さ $X_1 = X_2 = 2(Max(d, \frac{d}{2} + t_s + t_n))$ t_{n2} : 胴板より外側の管台最小厚さ

tm: 管台の計算上必要な厚さ

P : 最高使用圧力(水頭)=9.80665×10³H ρ S。: 胴板材料の最高使用温度における

許容引張応力

S_n: 管台材料の最高使用温度における

許容引張応力 Di : 管台の内径

X: 胴面に沿った補強に有効な範囲

X1: 補強に有効な範囲 X₂ : 補強に有効な範囲

Y₁: 胴面に垂直な補強の有効な範囲

(胴より外側)

Y₂: 胴面に垂直な補強の有効な範囲

(胴より内側)

h : 管台突出し高さ(胴より内側)

L1: 溶接の脚長 L2 : 溶接の脚長 L3: 溶接の脚長 A_r : 補強が必要な面積

d: 胴の断面に現れる穴の径

F : 係数 (図 PVC-3161.2-1 から求めた値)

表-10-6 円筒型タンクの穴の補強評価結果の数値根拠(1/4)

			1 1 161 77 7				ди пшин		,, ,, ,,	. (1/	,			
機器名	*************************************	管台口径	管台	温度	F	200	S_n	S_s	t_s	$t_{\rm sr}$	t_n	X	d	A1
1)双位十二	ην) ,		材料	1皿/文	1	η	[MPa]	[MPa]	[mm]	[mm]	[mm]	[mm]	[mm]	$[\mathrm{mm}^2]$
1000m³ 容量	10003 宏县	100A	SGP	常温	1	1	74	100	12		4. 5			
		200A	SGP	常温	1	1	74	100	12		5.8			
(フランジ)		600A	STPY400	常温	1	1	100	100	12		12.7			
	100A	STPG370	常温	1	1	93	100	12		8.6				
RO 濃縮水貯槽 多核種処理水貯槽		200A	STPG370	常温	1	1	93	100	12		12.7			
多核性处理小灯帽	1000m³容量	600A	STPY400	常温	1	1	100	100	12		9. 5			
(溶接)	100A	SGP	常温	1	1	74	100	12		4. 5				
		200A	SGP	常温	1	1	74	100	12		5.8			
		600A	STPY400	常温	1	1	100	100	12		9.5			

表-10-6 円筒型タンクの穴の補強評価結果の数値根拠(2/4)

		管台	Н	d	S _n	S_s	t_{n1}	t_{n2}	h	t_{nr}	t_{s}	Y ₁	Y_2	A2
機器名	6 称	口径	[mm]	[mm]	[MPa]	[MPa]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	$[\mathrm{mm}^2]$
	1000 3 広見	100A			74	100				0.07	12			
	1000m ³ 容量	200A			74	100				0.14	12			
	(フランジ)	600A			100	100				0.30	12			
RO 濃縮水貯槽		100A			93	100				0.05	12			
多核種処理水		200A			93	100				0. 11	12			
貯槽	1000m³容量	600A			100	100				0.30	12			
	(溶接)	100A			74	100				0.08	12			
		200A			74	100				0. 15	12			
		600A			100	100				0.31	12			

表-10-6 円筒型タンクの穴の補強評価結果の数値根拠(3/4)

+ 6 4 4 万 千	<i>\</i>	管台	L_1	L_2	А3
機器名利	口径	[mm]	[mm]	$[\mathrm{mm}^2]$	
	1000m³容量	100A	5	0	25. 00
	(フランジ)	200A	5	0	25. 00
		600A	6	0	36. 00
RO 濃縮水貯槽	1000m ³ 容量 (溶接)	100A	6	6	72. 00
多核種処理水貯槽		200A	6	6	72. 00
多核性处理不則情		600A	6	6	72. 00
		100A	6	8	100.00
		200A	6	8	100.00
		600A	10	10	200.00

表-10-6 円筒型タンクの穴の補強評価結果の数値根拠(4/4)

機器名称		管台 口径	d [mm]	t _{sr}	F	S _n	S _s [MP a]	$A_{ m r} [{ m mm}^2]$	${ m A_0}$ [mm 2]
		100A			1	74	100	671. 77 →672	691. 65 →691
	1000m ³ 容量 (フランジ)	200A			1	74	100	1296. 34 →1297	1307. 89 →1307
		600A			1	100	100	3642. 30 →3643	4147.87 →4147
	1000m³容量	100A			1	93	100	609. 16 →610	1274. 19 →1274
RO 濃縮水貯槽 多核種処理水貯槽		200A			1	93	100	1193. 97 →1194	2321. 09 →2321
		600A			1	100	100	3656. 13 →3657	4376. 83 →4376
(溶	(溶接)	100A			1	74	100	684. 46 →685	821. 09 →821
		200A			1	74	100	1320. 81 →1321	1444. 91 →1444
		600A			1	100	100	3751.72 →3752	4256. 86 →4256

表-10-7 円筒型タンクの穴の補強評価結果

機器名	称	管台口径	評価部位	Ar[mm ²]	$A_0[mm^2]$
	1000m ³ 容量	100A	管台	672	691
	(フランジ)	200A	管台	1297	1307
		600A	管台	3643	4147
RO 濃縮水貯槽		100A	管台	610	1274
多核種処理水貯槽		200A	管台	1194	2321
多物性处理小則情	1000m³容量	600A	管台	3657	4376
	(溶接)	100A	管台	685	821
		200A	管台	1321	1444
		600A	管台	3752	4256

② 平成25年8月14日以降に設計するタンク

a. 円筒型タンクの胴の厚さ評価

設計・建設規格に準拠し、板厚評価を実施した。評価の結果、水頭圧に耐えられる ことを確認した (表-11-1, 2)。

t : 管台の計算上必要な厚さ

Di : 管台の内径

H : 水頭

 $t = \frac{DiH \,\rho}{0.204S \,\eta}$ ρ : 液体の比重

S: 最高使用温度における

材料の許容引張応力

η: 長手継手の効率

ただし、tの値は炭素鋼、低合金鋼の場合はt=3[mm]以上、その他の金属の場合は t=1.5[mm]以上とする。また、内径の区分に応じた必要厚さを考慮する。

表-11-1 円筒型タンクの胴の板厚評価の数値根拠

機器名称		Di	Н	ρ	材料	温度	S	η	t
177 117 117		[m]	[m]	ρ	451 451	[°C]	[MPa]	11	[mm]
RO 濃縮水貯槽	700m³容量			1	SS400	常温	100	0.70	8. 335 →8. 4
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量			1	SS400	常温	100	0.7	10. 199 →10. 2
	1200m³容量			1	SM400A	50. 0	100	0.65	10. 860 →10. 9
夕拉毛如珊心贮槽	1220m³容量			1	SM400C	常温	100	0.7	9. 76 →9. 8
多核種処理水貯槽	1235m³容量			1	SM400C	66.0	100	0.6	11. 68 →11. 7
	2900m³容量			1	SM490C	66. 0	123	0.6	14. 498 →14. 5
	1000m³容量			1	SS400	常温	100	0.7	10. 199 →10. 2
Sr 処理水貯槽	1160m ³ 容量			1	SM400C	66.0	100	0.6	11. 68 →11. 7
	1200m³容量			1	SM400A	50. 0	100	0.65	10. 860 →10. 9

※1 : 満水での水頭。

表-11-2 円筒型タンクの胴の板厚評価結果

機器	名称	評価部位	必要肉厚[mm]	実厚[mm]
RO 濃縮水貯槽	700m³容量	タンク板厚	8. 4	16. 0
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量	タンク板厚	10. 2	15. 0
	1200m³容量	タンク板厚	9. 6	12.0
夕按纸加珊水贮槽	1220m³容量	タンク板厚	9.8	12.0
多核種処理水貯槽	1235m³容量	タンク板厚	11. 7	12.0
	2900m³容量	タンク板厚	14. 5	15. 0
	1000m³容量	タンク板厚	10. 2	15. 0
Sr 処理水貯槽	1160m³容量	タンク板厚	11. 7	12.0
	1200m³容量	タンク板厚	9. 6	12.0

b. 円筒型タンクの底板の厚さ評価

設計・建設規格に準拠し、底板の厚さについて評価を実施した。評価の結果、必要板厚確保していることを確認した(表-11-3)。

表-11-3 円筒型タンクの底板の板厚評価結果

機器	名称	評価部位	必要肉厚[mm]	実厚[mm]
RO 濃縮水貯槽	700m³容量	タンク板厚(底板)	3.0*	25. 0
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量	タンク板厚(底板)	3.0*	25. 0
	1200m³容量	タンク板厚(底板)	3.0**	12.0
夕松廷如田小贮槽	1220m³容量	タンク板厚(底板)	3.0**	12.0
多核種処理水貯槽	1235m³容量	タンク板厚(底板)	3. 0**	12.0
	2900m³容量	タンク板厚(底板)	3.0**	12.0
	1000m³容量	タンク板厚(底板)	3.0**	25.0
Sr 処理水貯槽	1160m³容量	タンク板厚(底板)	3.0**	12.0
	1200m³容量	タンク板厚(底板)	3.0**	12.0

[※] 地面,基礎等に直接接触するものについては,3mm

c. 円筒型タンクの管台の厚さ評価

設計・建設規格に準拠し、管台の板厚評価を実施した。評価の結果、水頭圧に耐えられることを確認した(表-11-4, 5)。

t : 管台の計算上必要な厚さ

 $t = \frac{DiH\rho}{0.204S \eta}$ Di : 管台の内径

H : 水頭

ρ : 液体の比重

S: 最高使用温度における

材料の許容引張応力

η : 長手継手の効率

ただし, 管台の外径の区分に応じた必要厚さを考慮する。

表-11-4 円筒型タンクの管台の板厚評価の数値根拠(1/2)

	<u>x-11-4</u>	管台	Di	H		材料	温度	S		t
機器名称	5	口径	[m]	[m]	ρ	171 177	価度	[MPa]	η	[mm]
		100A			1	STPT410	常温	103	1.0	0. 07 →3. 5 ^{**} ²
RO 濃縮水貯槽	700m³容量	200A			1	STPT410	常温	103	1.0	0. 13 →3. 5 ^{※ 2}
		500A			1	SS400	常温	100	0.7	0. 49 →3. 5 ^{** 2}
		100A			1	STPT410	常温	103	1.0	0.07 $\rightarrow 3.5^{*2}$
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量	200A			1	STPT410	常温	103	1.0	0.13 →3.5 ^{**2}
		600A			1	SS400	常温	100	0.7	0. 59 →3. 5 ^{** 2}
		100A			1	STPG370	50.0	93	1.0	0. 065 →3. 5 [*] ²
	1200m³容量	200A			1	STPG370	50.0	93	1.0	0. 126 →3. 5 ^{** 2}
		600A			1	STPY400	50.0	100	1.0	0. 579 →3. 5 [*] ²
		100A			1	STPT410	常温	103	1.0	0.06 $\rightarrow 3.5^{*2}$
	1220m³容量	200A			1	STPT410	常温	103	1.0	0. 11 \rightarrow 3. 5** 2
多核種処理水貯槽		600A			1	SM400C	常温	100	0.7	0. 48 →3. 5 ^{** 2}
多似性风光和		100A			1	STPG370	66. 0	93	1.0	0.07 $\rightarrow 3.5^{\frac{2}{3}}$
	1235m³容量	200A			1	STPG370	66. 0	93	1.0	0. 14 \rightarrow 3. 5** 2
		650A			1	SM400C	66. 0	100	0.6	0. 68 →3. 5 ^{** 2}
		100A			1	STPG370	66. 0	93	1.0	0. 07 →3. 5 ^{** 2}
	-	200A			1	STPG370	66. 0	93	1.0	0. 14 →3. 5 ^{** 2}
※1 : 満オ		650A			1	SM400C	66. 0	100	0.6	0. 68 →3. 5 ^{**} ²

※1 : 満水での水頭。※2 : 管台の外径:82mm以上のものについては3.5mm

表-11-4 円筒型タンクの管台の板厚評価の数値根拠(2/2)

機器名称	i	管台 口径	Di [m]	H [m]	ρ	材料	温度	S [MPa]	η	t [mm]
		100A	0. 0971	14. 233 ^{**} 1	1	STPT410	常温	103	1.0	0. 07 →3. 5 ^{** 2}
	1000m³容量	200A	0. 1909	14. 190 ^{**} 1	1	STPT410	常温	103	1.0	0. 13 →3. 5 [*] ²
		600A	0. 5776	13. 940 ^{**} 1	1	SS400	常温	100	0.7	0. 59 →3. 5 [*] ²
		100A	0. 1023	13. 0 [*] 1	1	STPG370	66. 0	93	1.0	0. 07 →3. 5 [*] ²
Sr 処理水貯槽	1160m³容量	200A	0. 1999	13. 0 [*] 1	1	STPG370	66. 0	93	1.0	0. 14 →3. 5 [*] ²
		650A	0. 6364	13. 0 [*] 1	1	SM400C	66. 0	100	0.6	0. 68 →3. 5 [*] ²
		100A	0. 1023	12. 000 [*] 1	1	STPG370	50.0	93	1.0	0. 065 →3. 5 ^{* 2}
	1200m³容量	200A	0. 1999	12 . 000 ^{**1}	1	STPG370	50.0	93	1.0	0. 126 →3. 5 ^{** 2}
		600A	0. 5906	12 . 000 ^{**1}	1	STPY400	50.0	100	1.0	0. 579 →3. 5 [*] ²

※1 : 満水での水頭。

※2 : 管台の外径:82mm以上のものについては3.5mm

表-11-5 円筒型タンクの管台の板厚評価結果

機器名利		管台口径	評価部位	必要肉厚[mm]	実厚[mm]
		100A	管台板厚	3. 5*	8. 6
RO 濃縮水貯槽	700m³容量	200A	管台板厚	3. 5 [*]	12. 7
		500A	管台板厚	3. 5 [*]	16. 0
DO 海炎之人 P立h		100A	管台板厚	3. 5**	8. 6
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量	200A	管台板厚	3. 5**	12. 7
(辰州()) (11) (11) (11)		600A	管台板厚	3.5**	16. 0
		100A	管台板厚	3. 5 [*]	6. 0
	1200m³容量	200A	管台板厚	3. 5 [*]	8. 2
		600A	管台板厚	3. 5**	9. 5
		100A	管台板厚	3.5**	6. 0
	1220m³容量	200A	管台板厚	3.5**	8. 2
多 核種処理水貯構		600A	管台板厚	3. 5*	12. 0
多核種処理水貯槽		100A	管台板厚	3.5*	6. 0
	1235m³容量	200A	管台板厚	3.5**	8. 2
		650A	管台板厚	3. 5*	12. 0
		100A	管台板厚	3.5*	6. 0
	2900m³容量	200A	管台板厚	3.5*	8. 2
		650A	管台板厚	3. 5*	12. 0
		100A	管台板厚	3.5**	8.6
	1000m³容量	200A	管台板厚	3. 5*	12. 7
		600A	管台板厚	3. 5*	16. 0
		100A	管台板厚	3. 5*	6. 0
Sr 処理水貯槽	1160m³容量	200A	管台板厚	3.5*	8. 2
		650A	管台板厚	3. 5*	12. 0
		100A	管台板厚	3. 5*	6. 0
	1200m³容量	200A	管台板厚	3.5**	8. 2
		600A	管台板厚	3.5**	9. 5

※管台の外径:82mm以上のものについては3.5mm

d. 円筒型タンクの胴の穴の補強評価

設計・建設規格に準拠し、胴の穴の補強について評価を実施した。評価の結果、補 強に有効な面積が補強に必要な面積より大きいため補強が不要であることを確認した (表-11-6, 7)。

$$A_0 = A_1 + A_2 + A_3$$

$$A_1 = (\eta t_s - F t_{sr})(X - d)$$
$$-2(1 - \frac{Sn}{Ss})(\eta t_s - F t_{sr})t_n$$

$$X = X_1 + X_2$$

$$X_1 = X_2 = 2(Max(d, \frac{d}{2} + t_s + t_n))$$

$$A_{2} = 2((t_{n1} - t_{nr})Y_{1} + t_{n2}Y_{2})S_{n} / S_{s}$$

$$t_{nr} = \frac{PDi}{2S_{n} - 1.2P}$$

$$Y_1 = Min(2.5t_s, 2.5t_{n1} + Te)$$

$$Y_2 = Min(2.5t_s, 2.5t_{n2}, h)$$

$$A_3 = L_1 L_1 + L_2 L_2 + L_3 L_3$$

$$Ar = dt_{sr}F + 2(1 - \frac{S_n}{S_n})t_{sr}Ft_n$$

A₀: 補強に有効な総面積

A₁: 胴,鏡板又は平板部分の補強に有効な面積

A2: 管台部分の補強に有効な面積 A: すみ肉溶接部の補強に有効な面積 η : PVC-3161.2 に規定する効率

ts : 胴の最小厚さ

t_{sr} : 継ぎ目のない胴の計算上必要な厚さ

(PVC-3122(1)において

t_n : 管台最小厚さ $X_1 = X_2 = 2(Max(d, \frac{d}{2} + t_s + t_n))$ t_{n2} : 胴板より外側の管台最小厚さ tm: 管台の計算上必要な厚さ

P : 最高使用圧力(水頭)=9.80665×10³H ρ S。: 胴板材料の最高使用温度における

許容引張応力

S_n: 管台材料の最高使用温度における

許容引張応力 Di : 管台の内径

X: 胴面に沿った補強に有効な範囲

X1: 補強に有効な範囲 X₂ : 補強に有効な範囲

Y₁: 胴面に垂直な補強の有効な範囲

(胴より外側)

Y₂: 胴面に垂直な補強の有効な範囲

(胴より内側)

h : 管台突出し高さ(胴より内側)

L1: 溶接の脚長 L2 : 溶接の脚長 L3: 溶接の脚長 A_r : 補強が必要な面積

d: 胴の断面に現れる穴の径

F: 係数(図 PVC-3161.2-1 から求めた値)

表-11-6 円筒型タンクの穴の補強評価結果の数値根拠(1/8)

機器名利	 尔	管台口径	管台	温度	F	η	S_n	S_s	t_s	$t_{\rm sr}$	t_n	X	d	A1
1/A HI - H 1	1		材料		•		[MPa]	[MPa]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm ²]
		100A	STPT410	常温	1	1	103→100**	100	16		8.6			
RO 濃縮水貯槽	700m ³ 容量	200A	STPT410	常温	1	1	103→100**	100	16		12.7			
		500A	SS400	常温	1	1	100	100	16		16.0			
RO 濃縮水貯槽		100A	STPT410	常温	1	1	103→100**	100	15		8.6			
濃縮廃液貯槽	1000m³容量	200A	STPT410	常温	1	1	103→100**	100	15		12.7			
(成州日)光刊(X共17首		600A	SS400	常温	1	1	100	100	15		16.0			
		100A	STPG370	50.0	1	1	93	100	12		6.0			
	1200m³容量	200A	STPG370	50.0	1	1	93	100	12		8. 2			
		600A	STPY400	50.0	1	1	100	100	12		9. 5			
		100A	STPT410	常温	1	1	103→100**	100	10. 18		4. 25			
	1220m³容量	200A	STPT410	常温	1	1	103→100**	100	10.18		5. 67			
多核種処理水貯槽		600A	SM400C	常温	1	1	100	100	10.18		9. 96			
多核性处理小則價		100A	STPG370	66.0	1	1	93	100	12		6.0			
	1235m³容量	200A	STPG370	66.0	1	1	93	100	12		8. 2			
		650A	SM400C	66.0	1	1	100	100	12		12. 0			
		100A	STPG370	66.0	1	1	93	123	15		5. 25			
	2900m³容量	200A	STPG370	66.0	1	1	93	123	15		7. 18			
		650A	SM400C	66.0	1	1	100	123	15		11.2			

表-11-6 円筒型タンクの穴の補強評価結果の数値根拠(2/8)

機器名称	Ś	管台口径	管台 材料	温度	F	η	S _n [MPa]	S _s [MPa]	$t_{\rm s}$ [mm]	t _{sr}	t _n	X [mm]	d [mm]	A1 [mm ²]
		100A	STPT410	常温	1	1	103→100**	100	15		8.6			
	1000m³容量	200A	STPT410	常温	1	1	103→100**	100	15		12.7			
		600A	SS400	常温	1	1	100	100	15		16.0			
		100A	STPG370	66.0	1	1	93	100	12		6.0			
Sr 処理水貯槽	1160m³容量	200A	STPG370	66.0	1	1	93	100	12		8.2			
		650A	SM400C	66.0	1	1	100	100	12		12. 0			
		100A	STPG370	50.0	1	1	93	100	12		6.0			
	1200m³容量	200A	STPG370	50.0	1	1	93	100	12		8.2			
		600A	STPY400	50.0	1	1	100	100	12		9.5			

表-11-6 円筒型タンクの穴の補強評価結果の数値根拠(3/8)

機器名和		管台 口径	H [mm]	d [mm]	S _n [MPa]	S _s [MPa]	t _{n1}	t _{n2}	h [mm]	t _{nr}	t _s	Y ₁ [mm]	Y ₂ [mm]	A2 [mm ²]
		100A			103→100**	100				0.07	16			
RO 濃縮水貯槽	700m ³ 容量	200A			103→100**	100				0. 13	16			
		500A			100	100				0.49	16			
		100A			103→100**	100				0.07	15			
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量	200A			103→100**	100				0. 13	15			
		600A			100	100				0. 59	15			
		100A			93	100				0.06	12			
	1200m³容量	200A			93	100				0. 13	12			
		600A			100	100				0.35	12			
		100A			103→100**	100				0.06	10.18			
	1220m³容量	200A			103→100**	100				0.12	10. 18			
 多核種処理水貯槽		600A			100	100				0.34	10. 18			
多似性处理小兒相		100A			93	100				0.07	12			
	1235m³容量	200A			93	100				0.14	12			
		650A			100	100				0.68	12			
		100A			93	123				0.07	15			
	2900m³容量	200A			93	123				0. 14	15			
		650A			100	123				0.68	15			

表-11-6 円筒型タンクの穴の補強評価結果の数値根拠(4/8)

機器名称	\$	管台 口径	H [mm]	d [mm]	S _n [MPa]	S _s [MPa]	t_{n1} [mm]	t_{n2} [mm]	h [mm]	$t_{\rm nr}$ [mm]	t _s	Y ₁ [mm]	Y ₂ [mm]	A2 [mm ²]
		100A			103→100**	100				0.07	15			
	1000m³容量	200A			103→100**	100				0. 13	15			
		600A			100	100				0. 59	15			
		100A			93	100				0.07	12			
Sr 処理水貯槽	1160m³容量	200A			93	100				0.14	12			
		650A			100	100				0.68	12			
		100A			93	100				0.06	12			
	1200m³容量	200A			93	100				0. 13	12			
		600A			100	100				0.35	12			

表-11-6 円筒型タンクの穴の補強評価結果の数値根拠 (5/8)

機器名利		管台	L_1	L_2	L_3	А3
/戏码/4/	孙	口径	[mm]	[mm]	[mm]	$[\mathrm{mm}^2]$
		100A				211. 00
RO 濃縮水貯槽	700m ³ 容量	200A				211.00
		500A				211.00
DO /曲 /空 J、Pウナ曲		100A				211. 00
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量	200A				211. 00
(辰州H/托代)(八首		600A				211. 00
		100A				306.00
	1200m ³ 容量	200A				306. 00
		600A				306.00
		100A				72. 00
	1220m ³ 容量	200A				162. 00
多核種処理水貯槽		600A				325. 00
		100A				97. 00
	1235m ³ 容量	200A				198. 00
		650A				306.00
		100A				97. 00
	2900m³容量	200A				198. 00
		650A				350.00
		100A				211. 00
	1000m³容量	200A				211.00
		600A				211. 00
		100A				97. 00
Sr 処理水貯槽	1160m³容量	200A				198. 00
		650A				306.00
		100A				306.00
	1200m³容量	200A				306.00
		600A				306.00

表-11-6 円筒型タンクの穴の補強評価結果の数値根拠(6/8)

₩ PE 夕 む	<u> </u>	管台	W	Wi	X	De	Те	A4
大发 行发 行发 行为 行发 行为	機器名称		[mm]	[mm]	[mm]	[mm]	[mm]	$[\mathrm{mm}^2]$
		100A	194. 2	120. 3	194. 2			665. 1
RO 濃縮水貯槽	700m ³ 容量	200A	381.8	222. 3	381.8			1435. 5
		500A	800.0	514. 0	952. 0			2574. 0
RO 濃縮水貯槽		100A	194. 2	120. 3	194. 2			665. 1
濃縮廃液貯槽	1000m³容量	200A	381.8	222. 3	381.8			1431.0
(長州()) (11年)		600A	900.0	615. 6	1155. 2			2559.6
		100A	232.6	132. 3	232.6			1203.6
	1200m³容量	200A	436.6	234. 3	436.6			2427.6
		600A	1223. 2	627. 6	1223. 2			7147. 2
		100A	211.6	114. 3	211.6			991. 3
	1220m³容量	200A	409.9	216. 3	409.9			1972. 4
多 核種処理水貯槽		600A	790	609. 6	1179. 4			1837. 9
多核種処理水貯槽		100A	170.0	124. 3	204. 6			548. 4
	1235m³容量	200A	330.0	226. 3	399.8			1244. 4
		650A	1170.0	674. 4	1272.8			5947. 2
		100A	180.0	126. 3	204.6			805. 5
	2900m³容量	200A	350.0	234. 3	399.8			1735. 5
		650A	1170.0	678. 4	1272.8			7374. 0
		100A	194. 2	120. 3	194. 2			665. 1
	1000m³容量	200A	381.8	222. 3	381.8			1431.0
		600A	900.0	615. 6	1155. 2			2559.6
		100A	170.0	124. 3	204.6			548. 4
Sr 処理水貯槽 1	1160m³容量	200A	330.0	226. 3	399.8			1244. 4
		650A	1170.0	674. 4	1272.8			5947. 2
		100A	232.6	132. 3	232.6			1203.6
	1200m³容量	200A	436.6	234. 3	436.6			2427.6
		600A	1223.2	627. 6	1223. 2			7147. 2

表-11-6 円筒型タンクの穴の補強評価結果の数値根拠 (7/8)

機器名利	尔	管台 口径	d [mm]	t _{sr}	F	S _n [MPa]	S _s [MPa]	$egin{aligned} A_{ m r} \ [ext{mm}^2] \end{aligned}$	$egin{array}{c} A_0 \ [ext{mm}^2] \end{array}$	
		100A			1	103	100	568. 52	2751. 43	
		100A			1	→100**	100	→569	→2751	
RO 濃縮水貯槽	700m ³ 容量	2004			1	103	100	1117.72	5394. 91	
NU (辰州日/八只) 7官	700㎞谷里	200A			1	→100**	100	→1118	→5394	
		500A			1	100	100	2786. 98	9826. 50	
		500A			1	100	100	→2787	→9826	
		100A			1	103	100	694. 07	2528. 84	
		1001			1	→100**	100	→694	→2529	
RO 濃縮水貯槽	1000m ³ 容量	200A			1	103	100	1364. 55	4890.00	
濃縮廃液貯槽	1000m 11 =				_	→100**		→1365	→4890	
		600A			1	100	100	4128.68	9434. 94	
								→4129	→9435	
		100A			1	93	100	827. 69 →828	2544. 77 →2545	
	1200m³容量	1000 3 中日							1550. 57	4530. 11
		200A			1	93	100	$\rightarrow 1551$	$\rightarrow 4530$	
		6004	4321.43	11400.11						
		600A			1	100	100	→4321	→11400	
		1004			1	103	100	723. 25	1677. 42	
		100A			1	→100**	100	→ 723	→1677	
	1990㎞3 ※ 長 9000		103	100	1401.03	3240.10				
	1220111 谷里	200A			1	→100**	100	→1401	→3240	
		600A			1	100	100	4030.99	5028. 51	
多核種処理水貯槽		OOOM			1	100	100	→4031	→5029	
) () () () () () () () () () () () () ()		100A			1	93	100	723. 73	1616. 18	
								→724	→1616	
	1235m³容量	200A			1	93	100	1410. 75	3195. 36	
								\rightarrow 1411 4465. 62	→3195 10840.02	
		650A			1	100	100	$\rightarrow 4466$	$\rightarrow 10840.02$ $\rightarrow 10840$	
0000 3 存 見								1520. 5	1854. 1	
		100A			1	93	123	$\rightarrow 1520.3$	→1854	
							2949. 4	3713. 5		
	2900m ³ 容量	200A			1	93	123	→2950	→3713	
		GEOA			1	100	199	9288. 6	12857.1	
		650A			1	100	123	→9289	→12857	

表-11-6 円筒型タンクの穴の補強評価結果の数値根拠(8/8)

機器名利	六	管台 口径	d [mm]	t _{sr}	F	S _n [MPa]	S _s [MPa]	$A_{ m r}$ $[m mm^2]$	$egin{array}{c} A_0 \ [ext{mm}^2] \end{array}$
		100A			1	103 →100**	100	694. 07 →694	2528. 84 →2529
	1000m³容量	200A			1	103 →100**	100	1364. 55 →1365	4890. 00 →4890
		600A			1	100	100	4128. 68 →4129	9434. 94 →9435
		100A			1	93	100	723. 73 →724	1616. 18 →1616
Sr 処理水貯槽	1160m³容量	200A			1	93	100	1410. 75 →1411	3195. 36 →3195
		650A			1	100	100	4465. 62 →4466	10840. 02 →10840
		100A			1	93	100	827. 69 →828	2544. 77 →2545
	1200m³容量	200A			1	93	100	1550. 57 →1551	4530. 11 →4530
					1	100	100	4321. 43 →4321	11400. 11 →11400

表-11-7 円筒型タンクの穴の補強評価結果

機器名	称	管台口径	評価部位	Ar[mm ²]	$A_0 [mm^2]$
		100A	管台	569	2751
RO 濃縮水貯槽	700m³容量	200A	管台	1118	5394
		500A	管台	2787	9826
DO X# X空 JV Bウナ#		100A	管台	694	2529
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量	200A	管台	1365	4890
(辰州日)充 ([义只] (1官		600A	管台	4129	9435
		100A	管台	828	2545
	1200m³容量	200A	管台	1551	4530
		600A	管台	4321	11400
		100A	管台	723	1677
	1220m³容量	200A	管台	1401	3240
多核種処理水貯槽		600A	管台	4031	5029
		100A	管台	724	1616
	1235m³容量	200A	管台	1411	3195
		650A	管台	4466	10840
		100A	管台	1521	1854
	2900m³容量	200A	管台	2950	3713
		650A	管台	9289	12857
		100A	管台	694	2529
	1000m³容量	200A	管台	1365	4890
		600A	管台	4129	9435
		100A	管台	724	1616
Sr 処理水貯槽 _	1160m³容量	200A	管台	1411	3195
		650A	管台	4466	10840
		100A	管台	828	2545
	1200m³容量	200A	管台	1551	4530
		600A	管台	4321	11400

e. 強め材の取付け強さ

設計・建設規格に準拠し、強め材の取り付け強さについて評価を実施した。評価の結果、溶接部の強度が十分であることを確認した(表-11-8、9)。

$F_1 = \frac{\pi}{2} d_o L_1 S \eta_1$	F_1	:	断面(管台外側のすみ肉溶接部)におけるせん断強。
2	F_2	:	断面(管台内側の管台壁)におけるせん断強さ
	F_3	:	断面(突合せ溶接部)におけるせん断強さ

×

$$F_2 = \frac{\pi}{2} dt_n S_n \eta_3$$
 F_4 : 断面(管台内側のすみ肉溶接部)におけるせん断強さ

$$F_5$$
 : 断面(強め材のすみ肉溶接部)におけるせん断強さ F_6 : 断面(突合せ溶接部)におけるせん断強さ

$$F_3 = rac{\pi}{2} \, d_o' t_s \, S \, \eta_2$$
 do : 管台外径 do : 管台内径 do' : 胴の穴の径

$$S_{\rm n}$$
 : 管台材料の最高使用温度における許容引張応力 $F_{\rm 5}=rac{\pi}{2}W_oL_3S\eta_1$ $L_{\rm l}$: すみ肉溶接部の脚長(管台取付部(胴より外側))

$$F_6 = \frac{\pi}{2} d_o t_s S \eta_2$$
 η_1 : 強め材の取付け強さ(表 PVC-3169-1 の値) η_2 : 強め材の取付け強さ(表 PVC-3169-1 の値)

$$\eta_3$$
 : 強め材の取付け強さ(表 PVC-3169-1 の値) $W=d_o't_{sr}S-(t_s-Ft_{sr})(X-d_o')S$ w : 溶接部の負うべき荷重

$$\mathcal{N} = d_o' t_{sr} S - (t_s - F t_{sr}) (X - d_o') S$$
 W : 溶接部の負うべき荷重 t_{sr} : 継目のない胴の計算上必要な厚さ

$$W_1 = F_1 + F_2 \tag{PVC-3122(1)において $\eta = 1$ としたもの)}$$

W₁: 予想される破断箇所の強さ

$$W_3 = F_5 + F_2$$
 X : 胴面に沿った補強に有効な範囲

$$W_4=F_5+F_3$$
 W_2 : 予想される破断箇所の強さ W_3 : 予想される破断箇所の強さ

$$W_5=F_1+F_3$$
 W_4 : 予想される破断箇所の強さ W_5 : 予想される破断箇所の強さ

$$W_6=F_5+F_6+F_4$$
 W_6 : 予想される破断箇所の強さ

表-11-8 円筒型タンクの強め材の取付け強さの数値根拠 (1/7)

W. nn + ri	·.	管台	do'	$t_{\rm sr}$	S	t_s	X	_	W
機器名利	<u>F</u>	口径	[mm]	[mm]	[MPa]	[mm]	[mm]	F	[N]
	700m³容量	100A			100	16.0	194. 2	1.0	1864. 1
RO 濃縮水貯槽		200A			100	16. 0	381.8	1.0	-25256. 1 ^{**}
		500A			100	16.0	952. 0	1.0	-137004**
DO X曲 V宏山、Pウ+井		100A			100	15	194. 2	1.0	33964. 16
RO 濃縮水貯槽	1000m³容量	200A			100	15	381.8	1.0	39660.64
濃縮廃液貯槽		600A			100	15	1155. 2	1.0	22336. 96
		100A			100	12	116.3	1.0	82174. 99
	1200m³容量	200A			100	12	218.3	1.0	154245. 91
		600A			100	12	611.6	1.0	432142. 92
		100A			100	10. 18	211.6	1.0	55708
	1220m³容量	200A			100	10. 18	409. 9	1.0	93155
 多核種処理水貯槽		600A			100	10. 18	1179. 4	1.0	235930
多核性处理不見情	1235m³容量	100A			100	12	204.6	1.0	37367.82
		200A			100	12	399.8	1.0	63939. 66
		650A			100	12	1272.8	1.0	167003. 76
	2900m³容量	100A			100	15	204. 6	1.0	55660
		200A			100	15	399.8	1.0	94803
		650A			100	15	1276.0	1.0	243134
		100A			100	15	194. 2	1.0	33964. 16
	1000m³容量	200A			100	15	381.8	1.0	39660.64
		600A			100	15	1155. 2	1.0	22336. 96
		100A			100	12	204.6	1.0	37367.82
Sr 処理水貯槽	1160m ³ 容量	200A			100	12	399.8	1.0	63939. 66
		650A			100	12	1272.8	1.0	167003.76
		100A			100	12	116.3	1.0	82174. 99
	1200m³容量	200A			100	12	218.3	1.0	154245. 91
		600A			100	12	611.6	1.0	432142.92

※溶接部の負うべき荷重が負であるため、以降の溶接部の取付け強さの確認は不要である。

表-11-8 円筒型タンクの強め材の取付け強さの数値根拠(2/7)

機器名利	*	管台	d o	L_1	S	n	F ₁
1及40~17		口径	[mm]	[mm]	[MPa]	η_{1}	[N]
		100A			100	0.46	74331
RO 濃縮水貯槽	700m³容量	200A			_	_	_
		500A			_	_	_
RO 濃縮水貯槽		100A			100	0.46	74331
濃縮廃液貯槽	1000m³容量	200A			100	0.46	140662
7成71日/光71人共17日		600A			100	0.46	396429
		100A			100	0.46	74330
	1200m³容量	200A			100	0.46	140662
		600A			100	0.46	396429
	1220m³容量	100A			100	0.46	49554
		200A			100	0.46	140662
多核種処理水貯槽		600A			100	0.46	396429
多似性处理///		100A			100	0.46	92170
	1235m³容量	200A			100	0.46	174421
		650A			100	0.46	572620
	2900m³容量	100A			100	0.46	50792
		200A			100	0.46	115342
		650A			100	0.46	586934
		100A			100	0.46	74331
	1000m³容量	200A			100	0.46	140662
		600A			100	0.46	396429
		100A			100	0.46	92170
Sr 処理水貯槽	1160m³容量	200A			100	0.46	174421
		650A			100	0.46	572620
		100A			100	0.46	74330
	1200m³容量	200A			100	0.46	140662
		600A			100	0.46	396429

表-11-8 円筒型タンクの強め材の取付け強さの数値根拠 (3/7)

₩ RP 夕 毛	4-	管台	d	t n	S _n		F_2
機器名称	}	口径	[mm]	[mm]	[MPa]	η_3	[N]
		100A			103→100**	0.70	91820
RO 濃縮水貯槽	700m ³ 容量	200A			_	_	_
		500A			_	_	_
RO 濃縮水貯槽		100A			103→100**	0.70	91820
濃縮廃液貯槽	1000m³容量	200A			103→100**	0.70	266581
(成剂日/元代文共) 7百		600A			100	0.70	1016167
		100A			93. 0	0.46	41247
	1200m³容量	200A			93. 0	0.46	110151
		600A			100	0.46	405410
		100A			103	0.70	52971
	1220m³容量	200A			103	0.70	135373
多核種処理水貯槽		600A			100	0.70	656941
多似性处土小川恒	1235m³容量	100A			93. 0	0.70	62767
		200A			93. 0	0.70	167621
		650A			100	0.70	839711
		100A			93. 0	0.70	55725
	2900m³容量	200A			93. 0	0.70	148238
		650A			100	0.70	785699
		100A			103→100**	0.70	91820
	1000m³容量	200A			103→100**	0.70	266581
		600A			100	0.70	1016167
		100A			93. 0	0.70	62767
Sr 処理水貯槽	1160m ³ 容量	200A			93. 0	0.70	167621
		650A			100	0.70	839711
		100A			93. 0	0.46	41247
	1200m³容量	200A			93. 0	0.46	110151
		600A			100	0.46	405410

表-11-8 円筒型タンクの強め材の取付け強さの数値根拠 (4/7)

WU HI by	1.	管台	do'	$t_{\rm s}$	S		F_3
機器名利	尔	口径	[mm]	[mm]	[MPa]	η_{2}	[N]
		100A			100	0.70	218680
RO 濃縮水貯槽	700m³容量	200A			_	_	_
		500A			_	_	_
DO /曲 /空 J · P宁 / 本		100A			100	0.70	205013
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量	200A			100	0.70	373245
(長稲)発(牧) 打帽		600A			100	0.70	1021929
		100A			100	0.46	100841
	1200m³容量	200A			100	0.46	189284
		600A			100	0.46	530306
	1220m³容量	100A			100	0.70	139246
		200A			100	0.70	253510
多核種処理水貯槽		600A			100	0.70	694101
多個性及近天	1235m ³ 容量	100A			100	0.70	142468
		200A			100	0.70	269105
		650A			100	0.70	881010
	2900m³容量	100A			100	0.70	235530
		200A			100	0.70	444890
		650A			100	0.70	1354551
		100A			100	0.70	205013
	1000m³容量	200A			100	0.70	373245
		600A			100	0.70	1021929
		100A			100	0.70	142468
Sr 処理水貯槽	1160m ³ 容量	200A			100	0.70	269105
		650A			100	0.70	881010
		100A			100	0.46	100841
	1200m³容量	200A			100	0.46	189284
		600A			100	0.46	530306

表-11-8 円筒型タンクの強め材の取付け強さの数値根拠 (5/7)

	一川向生アンフィ	管台	d o	L_2	S		F_4
機器名称		口径	[mm]	[mm]	[MPa]	η_{1}	[N]
		100A			100	0.46	74331
RO 濃縮水貯槽	700m³容量	200A			_	_	_
		500A			_	_	_
DO 油丝元·尼宁·市		100A			100	0.46	74331
RO 濃縮水貯槽 濃縮廃液貯槽	1000m³容量	200A			100	0.46	140662
辰和的光代以 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		600A			100	0.46	396429
		100A			100	0.46	99107
	1200m³容量	200A			100	0.46	187549
		600A			100	0.46	528572
	1220m³容量	100A			100	0.46	49554
		200A			100	0.46	140662
多核種処理水貯槽		600A			100	0.46	528572
多核性及生//共1省		100A			100	0.46	46085
	1235m³容量	200A			100	0.46	130816
		650A			100	0.46	572620
		100A			100	0.46	60950
	2900m³容量	200A			100	0.46	173014
		650A			100	0.46	528241
		100A			100	0.46	74331
	1000m³容量	200A			100	0.46	140662
		600A			100	0.46	396429
		100A			100	0.46	46085
Sr 処理水貯槽	1160m³容量	200A			100	0.46	130816
		650A			100	0.46	572620
		100A			100	0.46	99107
	1200m³容量	200A			100	0.46	187549
		600A			100	0.46	528572

表-11-8 円筒型タンクの強め材の取付け強さの数値根拠 (6/7)

	「一川生グマン	管台	Wo	L ₃	S	, _ ,	F 5
機器名称	機器名称		[mm]	[mm]	[MPa]	η_{1}	[N]
		口径 100A			100	0.46	222551
RO 濃縮水貯槽	700m ³ 容量	200A			_	_	_
		500A			_	_	_
		100A			100	0.46	232667
RO 濃縮水貯槽	1000m³容量	200A			100	0.46	288304
濃縮廃液貯槽		600A			100	0.46	455217
		100A			100	0.46	198345
	1200m³容量	200A			100	0.46	312149
		600A			100	0.46	890924
		100A			100	0.46	108385
	1220m³容量	200A			100	0.46	186422
多核種処理水貯槽		600A			100	0.46	570827
多核性处理小則情	1235m³容量	100A			100	0.46	57119
		200A			100	0.46	133054
		650A			100	0.46	760863
		100A			100	0.46	95985
	2900m³容量	200A			100	0.46	279958
		650A			100	0.46	1351798
		100A			100	0.46	232667
	1000m³容量	200A			100	0.46	288304
		600A			100	0.46	455217
		100A			100	0.46	57119
Sr 処理水貯槽	1160m ³ 容量	200A			100	0.46	133054
		650A			100	0.46	760863
		100A			100	0.46	198345
	1200m³容量	200A			100	0.46	312149
		600A			100	0.46	890924

表-11-8 円筒型タンクの強め材の取付け強さの数値根拠 (7/7)

+他 PL 夕 毛	4	管台	d o	t_{s}	S		F 6
機器名利	1 >	口径	[mm]	[mm]	[MPa]	η_{2}	[N]
		100A			100	0.70	201088
RO 濃縮水貯槽	700m ³ 容量	200A			_	_	_
		500A			_	1	_
RO 濃縮水貯槽		100A			100	0.70	188520
濃縮廃液貯槽	1000m³容量	200A			100	0.70	356752
(成州日/光7区共) 7百		600A			100	0.70	1005436
		100A			100	0.46	99107
	1200m³容量	200A			100	0.46	187549
		600A			100	0.46	528572
	1220m³容量	100A			100	0.70	128043
		200A			100	0.70	242308
多核種処理水貯槽		600A			100	0.70	682898
多似星处土水料		100A			100	0.70	140259
	1235m³容量	200A			100	0.70	265424
		650A			100	0.70	871378
	2900m³容量	100A			100	0.70	231878
		200A			100	0.70	438804
		650A			100	0.70	1339742
		100A			100	0.70	188520
	1000m³容量	200A			100	0.70	356752
		600A			100	0.70	1005436
		100A			100	0.70	140259
Sr 処理水貯槽	1160m³容量	200A			100	0.70	265424
		650A			100	0.70	871378
		100A			100	0.46	99107
	1200m³容量	200A			100	0.46	187549
		600A			100	0.46	528572

表-11-9 円筒型タンクの強め材の取付け強さ

		管台	溶接部の						
		口径	負うべき		予	想される破	断箇所の強	さ	
機器名称	尔		荷重						
			W	W_1	\mathbf{W}_2	W_3	\mathbf{W}_4	W_5	W_6
			[N]	[N]	[N]	[N]	[N]	[N]	[N]
		100A	1864. 1	166151	349750	314371	441231	293011	467970
RO 濃縮水貯槽	槽 700m³容量		-25256. 1	_	_	_		_	
		500A	-137004	_	_	_	_	_	_
RO 濃縮水貯槽		100A	33964. 16	166151	337182	324487	437680	279344	495518
濃縮廃液貯槽	1000m³容量	200A	39660. 64	407243	638076	554885	661549	513907	785718
(辰州日)羌 ([汉只] 7官		600A	22336. 96	1412596	1798294	1471383	1477146	1418358	1857082
		100A	82174. 99	115577	272545	239591	299186	175172	396559
	1200m³容量	200A	154245. 91	250813	515761	422299	501432	329946	687247
		600A	432142. 92	801839	1453572	1296335	1421230	926735	1948068
	1220m ³ 容量	100A	55708	102524	227151	211627	208210	239071	_
		200A	93155	276035	523632	416928	422218	489306	_
分补充 40 mm 1.054数		600A	235930	1053369	1607899	1495884	1367515	1490789	_
多核種処理水貯槽	1235m³ 容量	100A	37367.82	154937	278514	119886	199587	234638	243463
		200A	63939. 66	342042	570661	300675	402159	443526	529294
		650A	167003. 76	1412331	2016618	1600574	1641873	1453630	2204861
		100A	55660	106517	343620	151710	331515	286322	388813
	2900m³容量	200A	94803	263580	727160	428196	724848	560232	891776
		650A	243134	1372633	2454917	2137497	2706349	1941485	3219781
		100A	33964. 16	166151	337182	324487	437680	279344	495518
	1000m³容量	200A	39660.64	407243	638076	554885	661549	513907	785718
		600A	22336. 96	1412596	1798294	1471384	1477146	1418358	1857082
		100A	37367. 82	154937	278514	119886	199587	234638	243463
Sr 処理水貯槽	1160m ³ 容量	200A	63939. 66	342042	570661	300675	402159	443526	529294
		650A	167003. 76	1412331	2016618	1600574	1641873	1453630	2204861
		100A	82174. 99	115577	272545	239591	299186	175172	396559
	1200m³容量	200A	154245. 91	250813	515761	422299	501432	329946	687247
		600A	432142. 92	801839	1453572	1296335	1421230	926735	1948068

- ③ 平成25年8月14日以降に設計するタンクのうちJ2・J3エリアのタンク
- a. 円筒型タンクの胴の厚さ評価

設計・建設規格に準拠し、板厚評価を実施した。評価の結果、水頭圧に耐えられることを確認した(表-12-1, 2)。

$$t = \frac{DiH \,\rho}{0.204S \,\eta}$$

ただし、 t の値は炭素鋼、低合金鋼の場合は t=3[mm]以上、その他の金属の場合は t=1.5[mm]以上とする。また、内径の区分に応じた必要厚さを考慮する。

表-12-1 円筒型タンクの胴の板厚評価の数値根拠

	機器名称	÷	Di [m]	H [m]	ρ	材料	温度 [℃]	S [MPa]	η	t [mm]
多	核種処理水貯槽	2400m³容量			1	SM400C	常温	100	0.65	16. 2

※1 : 満水での水頭。

表-12-2 円筒型タンクの胴の板厚評価結果

機器	名称	評価部位	必要肉厚[mm]	実厚[mm]
多核種処理水貯槽	2400m³ 容量	タンク板厚	14. 3	18.8

b. 円筒型タンクの底板の厚さ評価【日本工業規格】

JIS8501 鋼製石油貯槽の構造 (2013) 5.4.2 底板の大きさ a),b) に基づき最小呼び厚さとして選定した。(表-12-3)

アニュラ板: 側板最下段の厚さ (18.8mm) 15 < ts ≤ 20 の場合, アニュラ板の最小厚さは 12mm とする。

底板:底板に使用する板の厚さは,6mm 未満となってはならない。

表-12-3 円筒型タンクの底板の板厚評価結果

機器名	3称	評価部位	最小呼び厚さ [mm]	実厚[mm]
多核種処理水貯槽 2400m ³ 容量	タンク板厚 (アニュラ板)	12. 0	16. 0	
多核性处理小灯帽	2400㎡ 谷里	タンク板厚 (底板)	6. 0	12.0

c-1. 円筒型タンクの管台の厚さの評価【日本工業規格】

JIS B 8501 鋼製石油貯槽の構造 (2013) 5.10.3 側ノズル 表 13 に基づき, ノズルの呼び径からネックの最小呼び径厚さを選定した。(表-12-4)

表-12-4 円筒型タンクの管台の板厚評価結果

機器名称		管台口径	評価部位	ネックの最小呼び径厚さ [mm]	実厚 [mm]
多核種処理水貯槽	2400m³ 容量	100A	管台板厚	8. 6	8. 6
	2400 谷里	200A	管台板厚	12. 7	12. 7

c-2. 円筒型タンクのマンホール管台の厚さ,補強評価【日本工業規格】

JIS B 8501 鋼製石油貯槽の構造 (2013) 5.10.3 側ノズル 表 11,よりに基づき、 測板よりネック部最小厚さを選定した。(表-12-5)

表-12-5 円筒型タンクの管台の板厚評価結果(マンホール)

機器名称		管台口径	評価部位	ネック部最小厚さ[mm]	実厚 [mm]
多核種処理水貯槽	2400m³容量	600A	管台板厚	12. 0	12.0

c-3. 円筒型タンクの管台の厚さ評価 (参考)

参考として、設計・建設規格に準拠し、管台の板厚評価を実施した。評価の結果、水 頭圧に耐えられることを確認した(表-12-6, 7)。

t: 管台の計算上必要な厚さ

Di : 管台の内径

 $t = \frac{DiH \,\rho}{0.204S \,\eta}$ H : 水頭

ρ : 液体の比重

S: 最高使用温度における

材料の許容引張応力

η : 長手継手の効率

ただし、管台の外径の区分に応じた必要厚さを考慮する。

表-12-6 円筒型タンクの管台の板厚評価の数値根拠

機器名称		管台 口径	Di [m]	H [m]	ρ	材料	温度	S [MPa]	η	t [mm]
多核種処理水貯槽	2400㎡ ³ 容量	100A			1	STPG370	常温	93	1.0	0.06 →3.5 ^{**2}
		200A			1	STPG370	常温	93	1.0	0. 12 →3. 5 [*] ²
		600A			1	SM400C	常温	100	0.7	0. 48 →3. 5 ^{**2}

※1 : 満水での水頭。

※2 : 管台の外径:82mm以上のものについては3.5mm

表-12-7 円筒型タンクの管台の板厚評価結果

機器名称		管台口径	評価部位	必要肉厚[mm]	実厚[mm]
多核種処理水貯槽		100A	管台板厚	3. 5	8.6
	2400m³容量	200A	管台板厚	3. 5	
		600A	管台板厚	3. 5	12.0

d-1. 円筒型タンクの管台の側ノズルの評価【日本工業規格】

JIS B 8501 鋼製石油貯槽の構造(2013) 5.10.3 側ノズル 表 13 に基づき,ノズルの呼び径から強め材を選定した。(表-12-8)

尚,強め材の形状の選定として,5.10.3 側ノズル 図12 2) 丸型を採用する

表-12-8 円筒型タンクの穴の補強評価結果(強め材)

機器名利	尔	管台口径	評価部位	強め材材料	強め材の幅 [mm]	強め材の穴 の直径 [mm]	強め材板厚 [mm]
多核種処理水貯槽	2400m ³ 容量	100A	管台	SM400C	305	118	18.8
夕1久1里火。生八只竹曾	2400 谷里	200A	管台	SM400C	480	220	18.8

d-2. 円筒型タンクのマンホール管台の厚さ,補強評価【日本工業規格】

JIS B 8501 鋼製石油貯槽の構造 (2013) 5.10.3 側ノズル 表 11,よりに基づき 強め材を選定した。(表-12-9)

表-12-9 円筒型タンクの穴の補強評価結果(強め材)

機器名	称	管台口径	評価部位	強め材材料	強め材の幅 [mm]	強め材の穴 の直径 [mm]	強め材板厚 [mm]
多核種処理水 貯槽	2400m³容量	600A	管台	SM400C	1370	613	18.8

d-3. 円筒型タンクの胴の穴の補強評価 (参考)

参考として、設計・建設規格に準拠し、胴の穴の補強について評価を実施した。評価の結果、補強に有効な面積が補強に必要な面積より大きいため、補強は十分であることを確認した(表-12-10, 11)。

De : 強め材外径

表-12-10 円筒型タンクの穴の補強評価結果の数値根拠(1/5)

機器名利	रं	管台口径	管台 材料	温度	F	η	S _n [MPa]	S _s [MPa]	$t_{\rm s}$ [mm]	$t_{\rm sr}$ [mm]	t_n [mm]	X [mm]	d [mm]	A1 [mm ²]
		100A	STPG370	常温	1	1	93	100	18.8		8.6			
多核種処理水貯槽	2400m³容量	200A	STPG370	常温	1	1	93	100	18.8		12. 7			
		600A	SM400C	常温	1	1	100	100	18.8		12.0			

表-12-10 円筒型タンクの穴の補強評価結果の数値根拠(2/5)

機器名利	7	管台 口径	H [mm]	d [mm]	S _n [MPa]	S _s [MPa]	t_{n1} [mm]	t _{n2} [mm]	h [mm]	t _{nr}	t _s	Y ₁ [mm]	Y_2 [mm]	A2 [mm ²]
	100A			93	100				0.06	18.8				
多核種処理水貯槽	多核種処理水貯槽 2400m³容量	200A			93	100				0. 117	18.8			
		600A			100	100				0. 478	18.8			

表-12-10 円筒型タンクの穴の補強評価結果の数値根拠(3/5)

₩ PL 友 垂	管台	L_1	L_2	L_3	А3	
機器名利	口径	[mm]	[mm]	[mm]	$[\mathrm{mm}^2]$	
多核種処理水貯槽	2400m³容量	100A				358. 00
		200A				446. 00
		600A				421.00

表-12-10 円筒型タンクの穴の補強評価結果の数値根拠 (4/5)

機器名称		管台	W	Wi	X	De	Те	A4
		口径	[mm]	[mm]	[mm]	[mm]	[mm]	$[\mathrm{mm}^2]$
		100A	194. 2	118	194. 2			1432. 56
多核種処理水貯槽	2400m³容量	200A	381.8	220	381.8			3041.84
		600A	1171.2	613	1171.2			10494. 16

表-12-10 円筒型タンクの穴の補強評価結果の数値根拠(5/5)

機器名称		管台 口径	d [mm]	t _{sr}	F	S _n [MPa]	S _s [MPa]	$A_r [mm^2]$	$A_0 [mm^2]$
多核種処理水貯槽 2400m³容量		100A			1	93	100	910. 30 →911	3665. 47 →3665
	2400m³容量	200A			1	93	100	1784. 2 →1785	6864. 51 →6864
		600A			1	100	100	5422. 66 →5423	18198. 29 →18198

表-表-12-11 円筒型タンクの穴の補強評価結果

機器名	称	管台口径	評価部位	Ar[mm ²]	$A_0[mm^2]$
		100A	管台	911	3665
多核種処理水貯槽	2400m3 容量	200A	管台	1785	6864
		600A	管台	5423	18198

d-4. 強め材の取付け強さ(参考)

参考として、設計・建設規格に準拠し、強め材の取り付け強さについて評価を実施した。評価の結果、溶接部の強度が十分であることを確認した(表-12-12, 13)。

$$F_{\rm l}=rac{\pi}{2}d_oL_{
m l}S\eta_{
m l}$$
 $F_{
m l}$: 断面(管台外側のすみ肉溶接部)におけるせん断強さ

F: 断面(突合せ溶接部)におけるせん断強さ

$$F_2 = \frac{\pi}{2} dt_n S_n \eta_3$$
 F_4 : 断面(管台内側のすみ肉溶接部)におけるせん断強さ

$$F_5$$
: 断面(強め材のすみ肉溶接部)におけるせん断強さ

$$F_3=rac{\pi}{2}d_o't_sS\eta_2$$
 do : 管台外径 do : 管台内径 do' : 胴の穴の径

$$F_4 = \frac{\pi}{2} d_o L_2 S \eta_1$$
 wo : 強め材の外径

$$S_{\mathrm{n}}$$
 : 管台材料の最高使用温度における許容引張応力 $F_{5}=rac{\pi}{2}W_{o}L_{3}S\eta_{1}$ L_{l} : すみ肉溶接部の脚長(管台取付部(胴より外側))

S: 胴板材料の最高使用温度における許容引張応力

$$E_{a}$$
 : 溶接部の脚長(強め材) E_{a} : 溶接部の脚長(強め材) π_{1} : 強め材の取付け強さ(表

$$\eta_1$$
: 強め材の取付け強さ (表 PVC-3169-1 の値) η_2 : 強め材の取付け強さ (表 PVC-3169-1 の値)

tsr : 継目のない胴の計算上必要な厚さ

$$\eta_3$$
: 強め材の取付け強さ(表 PVC-3169-1 の値)

$$W=d_o't_{sr}S-ig(t_s-Ft_{sr}ig)ig(X-d_o'ig)S$$
 w : 溶接部の負うべき荷重

$$W_1 = F_1 + F_2$$
 (PVC-3122(1)において $\eta = 1$ としたもの)

$$W_2 = F_1 + F_6 + F_4$$
 (図 PVC-3161.2-1 から求めた値)

$$W_3 = F_5 + F_2$$
 W_1 : 予想される破断箇所の強さ W_2 : 予想される破断箇所の強さ W_3 : 予想される破断箇所の強さ W_3 : 予想される破断箇所の強さ W_4 : 予想される破断箇所の強さ

$$\mathbf{W}_5$$
: 予想される破断箇所の強さ \mathbf{W}_5 : 予想される破断箇所の強さ

$$W_6=F_5+F_6+F_4$$
 W_6 : 予想される破断箇所の強さ

表 -12-12 円筒型タンクの強め材の取付け強さの数値根拠 (1/7)

機器名称		管台	do'	$t_{\rm sr}$	S	ts	X	F	W
		口径	[mm]	[mm]	[MPa]	[mm]	[mm]	Γ	[N]
		100A			100	18.8	194. 2	1	63457. 2
多核種処理水貯槽	2400m³容量	200A			100	18.8	381.8	1	76246.8
		600A			100	18.8	1171.2	1	62563. 2

表-12-12 円筒型タンクの強め材の取付け強さの数値根拠 (2/7)

機器名称		管台 口径	d o	L ₁	S [MPa]	η_{1}	F ₁ [N]
	100A			100	0.46	74331	
多核種処理水貯槽	2400m³容量	200A			100	0.46	203179
		600A			100	0.46	528572

表-12-12 円筒型タンクの強め材の取付け強さの数値根拠 (3/7)

機器名称		管台	d	t n	S _n		F_2
		口径	[mm]	[mm]	[MPa]	η_3	[N]
	2400m³容量	100A			93	0.70	85393
多核種処理水貯槽		200A			93	0.70	247920
		600A			100	0.70	772681

※ : PVC-3166 による。

表-12-12 円筒型タンクの強め材の取付け強さの数値根拠 (4/7)

松兕夕孙		管台	do'	t_{s}	S		F_3
	機器名称		[mm]	[mm]	[MPa]	η_{2}	[N]
	2400m³容量	100A			100	0.70	273487
多核種処理水貯槽		200A			100	0.70	484338
		600A			100	0.70	1297355

表-12-12 円筒型タンクの強め材の取付け強さの数値根拠 (5/7)

機器名利	管台	d o	L_2	S		F_4	
7次46~17	口径	[mm]	[mm]	[MPa]	η_{1}	[N]	
	2400m³容量	100A			100	0.46	74331
多核種処理水貯槽		200A			100	0.46	140662
		600A			100	0.46	396429

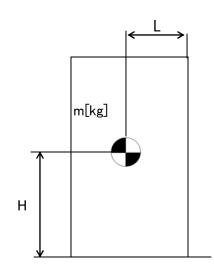
表-12-12 円筒型タンクの強め材の取付け強さの数値根拠 (6/7)

機器名和	管台 口径	Wo [mm]	L ₃	S [MPa]	η_{1}	F ₅	
	2400m³容量	100A			100	0.46	308536
多核種処理水貯槽		200A			100	0.46	485565
		600A			100	0.46	1385883

表-12-12 円筒型タンクの強め材の取付け強さの数値根拠 (7/7)

機器名称		管台 口径	d o [mm]	$\mathrm{t_{s}}$ [mm]	S [MPa]	$\eta_{\ 2}$	F ₆ [N]
		100A			100	0.70	236278
多核種処理水貯槽	2400m³容量	200A			100	0.70	447129
		600A			100	0.70	1260146

表-12-13 円筒型タンクの強め材の取付け強さ


LGC BB Fo TL.		管台 口径	溶接部の負 うべき荷重		予想される破断箇所の強さ								
機器名利	小		W	W_1	\mathbf{W}_2	W_3	W_4	W_5	W_6				
			[N]	[N]	[N]	[N]	[N]	[N]	[N]				
		100A	63457. 2	159724	384940	393929	582023	347818	619145				
多核種処理水貯槽	多核種処理水貯槽 2400m³容量		76246. 8	451099	790970	733485	969903	687517	1073356				
		600A	62563. 2	1301253	2185147	2158564	2683238	1825927	3042458				

(2) 耐震性評価

サプレッションプール水サージタンクは,工事計画認可申請書(57 資庁第2974号 昭和57年4月20日認可)において確認を実施している。その他の中低濃度タンクに関する耐震性評価を以下に示す。

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を実施した。評価に用いた数値を表-15-1, 2に示す。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さいことから、転倒しないことを確認した(表-15-3)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²)

H: 据付面からの重心までの距離

L: 転倒支点から機器重心までの距離

C_H: 水平方向設計震度 (0.36)

各記号の下付文字は、下記を意味する。

t : タンク, w : 保有水,

h:ベース

地震による転倒モーメント:

 $M_1[N \cdot m] = m \times g \times C_H \times H$

= $g \times C_H \times (m_t \times H_t + m_w \times H_w + m_b \times H_b)$

自重による安定モーメント:

 $M_2[N \cdot m] = m \times g \times L$

 $= (m_t \times L_t + m_w \times L_w + m_b \times L_b) \times g$

 $\frac{8}{2}$

表-15-1 タンク・槽類の転倒評価計算根拠(1/2)

機器	器名称	m _t [t]	m _w [t]	$H_{t}[m]$	H _w [m]	$L_{t}[m]$	$L_{w}[m]$	$M_1[kN \cdot m]$	$M_2[kN \cdot m]$
SPT 受力	人水タンク							$574 \rightarrow 5.8 \times 10^2$	$2,927 \rightarrow 2.9 \times 10^3$
成冰 DO	35m³容量							$170.3 \rightarrow 1.8 \times 10^2$	$425 \rightarrow 4.2 \times 10^2$
廃液 RO 供給	40m³容量							$223 \rightarrow 2.3 \times 10^2$	$544 \rightarrow 5.4 \times 10^2$
タンク	42m³容量							$194 \rightarrow 2.0 \times 10^2$	$557 \rightarrow 5.5 \times 10^2$
222	110m³容量							$574 \rightarrow 5.8 \times 10^{2}$	$2,927 \rightarrow 2.9 \times 10^3$
RO 処理z	水受タンク							$574 \rightarrow 5.8 \times 10^{2}$	$2,927 \rightarrow 2.9 \times 10^{3}$
DO bu t⊞ do	300m³容量							$5,885 \rightarrow 5.9 \times 10^3$	$12,237 \rightarrow 1.2 \times 10^4$
RO 処理水 貯槽	450m³容量							$7,663 \rightarrow 7.7 \times 10^3$	$23,664 \rightarrow 2.3 \times 10^4$
只 1 作	1000m³容量							$24,948 \rightarrow 2.5 \times 10^4$	$77,979 \rightarrow 7.7 \times 10^4$
RO 濃縮z	水受タンク							$574 \rightarrow 5.8 \times 10^{2}$	$2,927 \rightarrow 2.9 \times 10^3$
	500m³容量							$10,027 \rightarrow 1.1 \times 10^4$	$26,841 \rightarrow 2.6 \times 10^4$
	700m³容量							$21,865 \rightarrow 2.2 \times 10^4$	$35,170 \rightarrow 3.5 \times 10^4$
RO 濃縮水 貯槽	1000m ³ 容量 (フランジ)							$23,976 \rightarrow 2.4 \times 10^4$	$76,488 \rightarrow 7.6 \times 10^4$
X11E	1000m ³ 容量 (溶接)							$23,292 \rightarrow 2.4 \times 10^4$	$74,620 \rightarrow 7.4 \times 10^4$
RO 濃縮水 貯槽 濃縮廃液 貯槽	1000m³容量							$31,880 \rightarrow 3.2 \times 10^4$	$63,323 \rightarrow 6.3 \times 10^4$

※ : 満水時における据付面から重心までの距離。

表-15-1 タンク・槽類の転倒評価計算根拠(2/2)

	公 10 1 / √ / 旧為√科内川川川开区区(1/1)								
機器	名称	$m_{t}[t]$	$m_w[t]$	$H_{t}[m]$	$H_w[m]$	$L_{t}[m]$	$L_{w}[m]$	$M_1[kN \cdot m]$	$M_2[kN \cdot m]$
	1000m ³ 容量 (フランジ)							$23,976 \rightarrow 2.4 \times 10^4$	$76,488 \rightarrow 7.6 \times 10^4$
	1000m ³ 容量 (溶接)							$23,292 \rightarrow 2.4 \times 10^4$	$74,620 \rightarrow 7.4 \times 10^4$
多核種処理	1200m³容量							$30, 120 \rightarrow 3.1 \times 10^4$	$83,658 \rightarrow 8.3 \times 10^4$
水貯槽	1220m³容量							$26,602 \rightarrow 2.7 \times 10^4$	$78,767 \rightarrow 7.8 \times 10^4$
	1235m ³ 容量							$30, 134 \rightarrow 3.1 \times 10^4$	$71,051 \rightarrow 7.1 \times 10^4$
	2400m³容量							$67,704 \rightarrow 6.8 \times 10^4$	$232, 326 \rightarrow 23.2 \times 10^4$
	2900m³容量							$70,891 \rightarrow 7.1 \times 10^4$	$257, 154 \rightarrow 2.5 \times 10^5$
C ATTITULA	1000m³容量							$31,880 \rightarrow 3.2 \times 10^4$	$63,323 \rightarrow 6.3 \times 10^4$
Sr 処理水	1160m³容量							$30, 134 \rightarrow 3.1 \times 10^4$	$71,051 \rightarrow 7.1 \times 10^4$
貯槽	1200m³容量							$30, 120 \rightarrow 3.1 \times 10^4$	$83,658 \rightarrow 8.3 \times 10^4$
濃縮水気	受タンク							$205 \rightarrow 2.1 \times 10^2$	$544 \rightarrow 5.4 \times 10^2$
蒸留水	タンク							$205 \rightarrow 2.1 \times 10^2$	$544 \rightarrow 5.4 \times 10^2$
濃縮処理	水タンク							$205 \rightarrow 2.1 \times 10^2$	$544 \rightarrow 5.4 \times 10^2$
蒸発濃縮如	0.理水貯槽							$23,976 \rightarrow 2.4 \times 10^4$	$76,448 \rightarrow 7.6 \times 10^4$
	タンク							$205 \rightarrow 2.1 \times 10^2$	$544 \rightarrow 5.4 \times 10^{2}$

※ : 満水時における据付面から重心までの距離。

表-15-2 円筒横置きタンクの転倒評価計算根拠

機器名称	1	m[t]		H[m]	L[m]		L[m]		L[m]		L[m]		$M_1[kN \cdot m]$	M ₂ [kN·m]
	m_{t}		H_{t}		L_{t}									
進经改改法的推	m _w	$H_{\rm w}$ $L_{\rm w}$		$1,023 \to 1.1 \times 10^3$	$9.220 \rightarrow 9.2 \times 10^{3}$									
濃縮廃液貯槽	m_{b1}		$H_{\rm b1}$		$L_{\rm b1}$		$1,023 \rightarrow 1.1 \land 10$	$2,330 \rightarrow 2.3 \times 10^3$						
	m_{b2}		H_{b2}		L_{b2}									

表-15-3 タンク・槽類の転倒評価結果(1/2)

	<u></u>				₹ (1 <i>/ 2)</i>		
名利	名称		評価 項目	水平地震動	算出値	許容値	単位
SPT 受入力	SPT 受入水タンク		転倒	0. 36	5. 8×10^2	2.9×10^{3}	kN·m
	35m³容量	本体	転倒	0.36	1.8×10^{2}	4. 2×10^2	kN•m
廃液 RO	40m³容量	本体	転倒	0.36	2. 3×10^2	5.4×10^{2}	kN•m
供給タンク	42m³容量	本体	転倒	0.36	2.0×10^{2}	5.5×10^{2}	kN•m
	110m ³ 容量	本体	転倒	0.36	5. 8×10^2	2.9×10^3	kN•m
RO 処理水	受タンク	本体	転倒	0.36	5. 8×10^2	2.9×10^3	kN•m
DO 40 TH -14	300m³容量	本体	転倒	0.36	5. 9×10^3	1.2×10^4	kN•m
RO 処理水 貯槽	450m³容量	本体	転倒	0.36	7. 7×10^3	2.3×10^4	kN•m
只丁个管	1000m³容量	本体	転倒	0.36	2.5×10^4	7.7×10^4	kN•m
RO 濃縮水	受タンク	本体	転倒	0.36	5. 8×10^2	2.9×10^3	kN•m
	500m ³ 容量	本体	転倒	0.36	1. 1×10^4	2.6×10^4	kN•m
	700m ³ 容量	本体	転倒	0.36	2.2×10^4	3.5×10^4	kN•m
RO 濃縮水 貯槽	1000m ³ 容量 (フランジ)	本体	転倒	0.36	2.4×10^4	7. 6×10^4	kN•m
	1000m ³ 容量	本体	転倒	0.36	2. 4×10^4	7. 4×10^4	kN•m
	(溶接)	本体	転倒	0.36	2.5×10^4	7. 6×10^4	kN•m
RO 濃縮水 貯槽 濃縮廃液 貯槽	1000m³容量	本体	転倒	0. 36	3.2×10^4	6. 3×10 ⁴	kN•m
	1000m ³ 容量 (フランジ)	本体	転倒	0.36	2. 4×10^4	7. 6×10^4	kN•m
	1000m³容量	本体	転倒	0.36	2.4×10^4	7. 4×10^4	kN•m
	(溶接)	本体	転倒	0.36	2. 5×10^4	7. 6×10^4	kN•m
多核種処理水	1200m³容量	本体	転倒	0.36	3. 1×10^4	8. 3×10^4	kN•m
	1220m³容量	本体	転倒	0.36	2.7×10^4	7.8 \times 10 ⁴	kN•m
	1235m³容量	本体	転倒	0.36	3. 1×10^4	7. 1×10^4	kN•m
	2400m³容量	本体	転倒	0.36	6.8×10	23. 2×10	kN•m
	2900m³容量	本体	転倒	0.36	7. 1×10^4	2. 5×10^5	kN•m

表-15-3 タンク・槽類の転倒評価結果 (2/2)

名称		評価部位	評価 項目	水平地震動	算出値	許容値	単位
Sr 処理水	1000m³容量	本体	転倒	0. 36	3.2×10^4	6. 3×10^4	kN•m
貯槽	1160m³容量	本体	転倒	0.36	3. 1×10^4	7. 1×10^4	kN•m
₩1.1月	1200m³容量	本体	転倒	0. 36	3. 1×10^4	8. 3×10^4	kN•m
濃縮水受	タンク	本体	転倒	0. 36	2. 1×10^2	5. 4×10^2	kN•m
蒸留水	タンク	本体	転倒	0.36	2. 1×10^2	5. 4×10^2	kN•m
濃縮処理	水タンク	本体	転倒	0. 36	2. 1×10^2	5. 4×10^2	kN•m
蒸発濃縮処理水貯槽		本体	転倒	0. 36	2. 4×10^4	7. 6×10^4	kN•m
濃縮水タンク		本体	転倒	0.36	2. 1×10^2	5. 4×10^2	kN•m
濃縮廃	夜貯槽	本体	転倒	0.36	1. 1×103	2. 3×103	kN•m

b. 基準地震動 S s に対する評価

円筒型タンクに対し、基準地震動Ssによる地震力にて発生する応力等を算出し許容値と比較することにより、タンクの貯水機能維持について評価を実施した。評価の結果、基準地震動による地震力に対して発生する応力等は許容値よりも小さく、機能が維持されることを確認した(表-16)。

表-16 円筒型タンクの基準地震動Ssに対する評価結果

機器名称	評価部位	評価 項目	算出値	許容値	単位
	側板	膜応力	246	360	MPa
RO 処理水貯槽	19,170	座屈	0.66	1	-
RO 濃縮水貯槽 蒸発濃縮処理水貯槽	接続ボルト (水平方向)	引張	355	525	MPa
※ 光 仮 州 火 生 小 則 1管	接続ボルト (鉛直方向)	引張	506	525	MPa

1.2.9. 地下貯水槽

(1) 構造強度評価

設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、社団法人 雨水貯留浸透技術協会「プラスチック製地下貯留浸透施設技術指針」に準じたプラス チック製枠材及び日本遮水工協会により製品認定を受けている遮水シートを使用する ことで、高い信頼性を確保する。

(2) 耐震性評価

(2)-1.1. 評価の項目・目的

地下貯水槽の耐震性評価は次の2項目について実施する。

- ① 地下貯水槽の地震発生時の止水シートの強度(止水性)の確認
- ② 地下貯水槽に地震が作用した場合の貯水槽内部の貯水枠材の強度の確認
 - a) 地表面載荷荷重として 10kN/m² を考慮した場合
 - b) 地下貯水槽の上盤に車両が載った場合

表-17に、それぞれの評価項目の目的及び内容についてまとめたものを示す。このうち、最も重要なのは①にあげた地震発生時の止水性の確認であり、貯水枠材の強度に関しては、仮に貯水枠材が破壊に至っても不具合事象としては上盤の陥没等が発生する程度と想定され、最も重要な貯水槽の性能である止水性に悪影響はないと考えられる。

表-17 評価項目毎の目的・内容

評価項目	目的・内容	想定不具合事象
①止水シート強度	○ 地震力が作用した場合の止水	○ 止水シートが破断すると,
	シートの発生ひずみ量を解析	地中に貯水が漏えい拡散す
	し,シートが破断しないか,即	るリスクが生じる。
	ち漏えい事象が発生しないか	
	を確認する。	
②貯水枠材強度	○ 貯水枠材に地震力が作用した	○ 貯水枠材が破壊すると、枠
a) 地表面載荷荷重	場合の貯水枠材応力度を検討	材が崩れて貯水槽の上盤が
$10\mathrm{kN/m^2}$	して枠材の強度を確認する。	陥没する。それにより、上
②貯水枠材強度	○ 貯水槽の上盤に車両が載った	盤に敷設している PE シート
b) 車両荷重	場合(自動車荷重を考慮した場	が破断する可能性がある
	合)の貯水枠材の強度を確認す	が、このシートは雨水混入
	る。	防止用のものであり、漏え
		いには直接関係ない。

(2)-1.2. 計算条件

各評価項目の作用荷重等の与条件の概要を表-18に示す。

表-18 評価項目毎の与条件

評価項目	作用震度	作用荷重
①止水シート強度	B クラス: 水平震度 0.3	各自重
	Sクラス:水平震度 0.6	
②貯水枠材強度	B クラス: 水平震度 0.3	地表載荷荷重
a) 地表面載荷荷重	Sクラス:水平震度 0.6	覆土荷重
$10\mathrm{kN/m^2}$	鉛直震度 0.3	貯水枠材荷重
		地震時水平土圧
②貯水枠材強度	鉛直震度 0.3	自動車荷重(T-25)
b) 車両荷重		覆土荷重

(2)-1.3. 照査結果

照査結果を表-19に示す。また各項目の検討の詳細は表-19に示す別添資料に示す。

表-19 評価項目毎の照査結果

評価項目	照査対象	作用震度	計算結果	許容値	詳細
①止水シート強度	止水シートの	Bクラス	0. 148%	560%	別添-2
	ひずみ量	Sクラス	0. 206%	560%	73.1 14/1 2
②貯水枠材強度 a) 地表面載荷荷重	貯水枠材の	Bクラス	水平:23.0kN/m²	$30.0 \mathrm{kN/m^2}$	
10kN/m ²	水平・鉛直	Sクラス	水平:46.8kN/m²	$52.5 \mathrm{kN/m^2}$	別添一3
TOTAL VI	強度	3977	垂直:33.7kN/m²	$102.~1\mathrm{kN/m^2}$	
②貯水枠材強度	貯水枠材の		77. 3kN/m²	102. 1kN/m²	別添-4
b) 車両荷重	鉛直強度	_	(1. 5KN/ M ⁻	102.1KN/M	月 別称一 4

(3) スロッシングに対する評価

地下貯水槽の場合,プラスチック製枠材で構築される水室の中で最も大きなものの 寸法は幅 25cm 以下と小規模であり、スロッシングのような長周期問題は顕在化しない と考えられる。なお、検討の詳細については別添-5 に示す。

(4)地下貯水槽を設置する地盤の評価

地下貯水槽は地盤を掘削して設置するため、掘削完了時の地盤は加圧密状態となっている。また設置するプラスチック製枠材と貯留する水の重量は、掘削した土砂(地盤)よりも小さいことから、地下貯水槽が掘削完了後の地盤上に設置されても、地盤が強度破壊等の不具合を発生することはないと考えられる。しかしながら、念のため、表層 0.5m の部分にはセメント系改良材による地盤改良を施し、地盤を補強する。

1.2.10. ポンプ

(1) 構造強度評価

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。従って、ポンプは必要な構造強度を有すると評価した。

なお、海外製の一部ポンプを除き、JIS 規格に準用したポンプを使用している。

1.2.11. 配管等

(1) 構造強度評価

 $t = \frac{PDo}{2S \ n + 0.8P}$

a. 配管(鋼製)

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。従って、配管は必要な構造強度を有すると評価した。

また、配管の主要仕様から設計・建設規格に基づき板厚評価を実施した。評価に用いた数値を表-20-1に示す。評価の結果、最高使用圧力に耐えられることを確認した(表-20-2)。

t : 管の計算上必要な厚さ

D₀ : 管の外径

P : 最高使用圧力[MPa]

S : 最高使用温度における

.

材料の許容引張応力[MPa]

η : 長手継手の効率

87

表-20-1 配管構造強度評価の計算根拠

衣 20 1 配目悟起照及計画の可昇低拠											
評価 機器	口径	Sch.	材質	P [MPa]	温度 [℃]	Do [mm]	S [MPa]	η	[t [mm]	
配管①	100A	80	STPG370 STPT370	1. 37	66	114. 3	93	1.00	0.837	\rightarrow	0.84
配管②	200A	80	STPG370 STPT370	1. 37	66	216. 3	93	1.00	1. 584	\rightarrow	1.6
配管③	50A	40	SUS316L	1. 37	66	60.5	108	1.00	0.382	\rightarrow	0.39
配管④	80A	40	SUS316L	1. 37	66	89. 1	108	1.00	0.562	\rightarrow	0.57
配管⑤	50A	20S	SUS316L	0.3	50	60. 5	110	0.60	0. 137	\rightarrow	0.14
配管⑥	80A	20S	SUS316L	0.3	50	89. 1	110	0.60	0. 202	\rightarrow	0.21
配管⑦	100A	20S	SUS316L	0.3	50	114. 3	110	0.60	0. 259	\rightarrow	0. 26
配管⑧	150A	20S	SUS316L	0.3	50	165. 2	110	0.60	0.375	\rightarrow	0.38
配管⑨	200A	20S	SUS316L	0.3	50	216. 3	110	0.60	0. 491	\rightarrow	0.50
配管⑩	50A	80	STPG370 STPT370	1. 37	66	60. 5	93	1.00	0. 443	\rightarrow	0. 45
配管⑪	80A	80	STPG370 STPT370	1. 37	66	89. 1	93	1.00	0. 652	\rightarrow	0.66
配管⑫	150A	80	STPG370 STPT370	1. 37	66	165. 2	93	1.00	1. 210	\rightarrow	1. 3
配管(3)	25A	80	STPG370	0.5	66	34. 0	93	1.00	0.091	\rightarrow	0.10
配管⑭	50A	80	STPG370	0.5	66	60. 5	93	1.00	0. 162	\rightarrow	0.17
配管(15)	80A	80	STPG370	0.5	66	89. 1	93	1.00	0. 239	\rightarrow	0. 24
配管16	100A	80	STPG370	0.5	66	114. 3	93	1.00	0.307	\rightarrow	0.31
配管①	50A	40	SUS316L	0.97	66	60. 5	108	1.00	0. 271	\rightarrow	0. 28
配管®	80A	40	SUS316L	0.97	66	89. 1	108	1.00	0.399	\rightarrow	0.40
配管(19	50A	40	SUS316L	1. 37	66	60. 5	108	0.60	0.634	\rightarrow	0.64
配管20	80A	40	SUS316L	1. 37	66	89. 1	108	0.60	0. 934	\rightarrow	0.94

表-20-2 配管構造強度評価結果

	- /7	2.1	1.1.55	最高使用	最高使用	必要肉厚	4E()	
評価機器	口径	Sch.	材質	圧力 (MPa)	温度 (℃)	(mm)	肉厚(mm)	
配管①	1004	00	STPG370	1 97	CC	0.04	9.6	
配售①	100A	80	STPT370	1. 37	66	0.84	8. 6	
配管②	200A	80	STPG370	1. 37	66	1.6	12. 7	
	20011	00	STPT370	1.01	00	1.0	12. 1	
配管③	50A	40	SUS316L	1. 37	66	0.39	3. 9	
配管④	80A	40	SUS316L	1. 37	66	0. 57	5. 5	
配管⑤	50A	20S	SUS316L	0.3	50	0.14	3.5	
配管⑥	80A	20S	SUS316L	0.3	50	0.21	4.0	
配管⑦	100A	20S	SUS316L	0.3	50	0. 26	4.0	
配管⑧	150A	20S	SUS316L	0.3	50	0.38	5.0	
配管⑨	200A	20S	SUS316L	0.3	50	0.50	6. 5	
配管⑩	50A	80	STPG370	1. 37	66	0. 45	5. 5	
HL E W	JUA	80	STPT370	1. 37	00	0.40	3. 3	
配管①	80A	80	STPG370	1. 37	66	0.66	7. 6	
HL E W	0011	00	STPT370	1.57	00	0.00	7.0	
配管①	150A	80	STPG370	1. 37	66	1.3	11. 0	
	130/1	00	STPT370	1.51	00	1.0	11.0	
配管①	25A	80	STPG370	0.5	66	0.10	4. 5	
配管⑭	50A	80	STPG370	0. 5	66	0. 17	5. 5	
配管①	80A	80	STPG370	0.5	66	0. 24	7. 6	
配管(16)	100A	80	STPG370	0.5	66	0.31	8.6	
配管①	50A	40	SUS316L	0.97	66	0. 28	3. 9	
配管(18)	80A	40	SUS316L	0.97	66	0.40	5. 5	
配管(19	50A	40	SUS316L	1. 37	66	0.64	3. 9	
配管20	80A	40	SUS316L	1. 37	66	0.94	5. 5	

b. 耐圧ホース (樹脂製)

設計・建設規格上のクラス 3 機器に対する規定を満足する材料ではないが、系統の 温度、圧力を考慮して仕様を選定した上で、漏えい試験等を行い、漏えい、運転状態 に異常がないことを確認する。従って、耐圧ホースは、必要な構造強度を有している と評価した。

c. ポリエチレン管

設計・建設規格上のクラス 3 機器に対する規定を満足する材料ではないが、系統の 温度、圧力を考慮して仕様を選定している。また、ポリエチレン管は、一般に耐食性、 電気特性(耐電気腐食)、耐薬品性を有しており、鋼管と同等の信頼性を有している。 また、以下により高い信頼性を確保している。

- ・ 日本水道協会規格に適合したポリエチレン管を採用。
- ・ 継手は可能な限り融着構造とする。
- ・ 敷設時に漏えい試験等を行い、運転状態に異常がないことを確認している。 以上のことから、ポリエチレン管は、必要な構造強度を有するものと評価した。

1.2.12. ろ過水タンク

(1) 構造強度評価

ろ過水タンクは,本来ろ過水を貯留するため,設計・建設規格に準拠して設計されて いない。

今回,逆浸透膜装置の廃水を貯留することから,設計・建設規格に準拠し,板厚評価を実施した。評価に用いた数値を表-21-1に示す。評価の結果,水頭圧に耐えられることを確認した(表-21-2)。

t: 胴の計算上必要な厚さ

Di : 胴の内径

H: 水頭

 $t = \frac{DiH \rho}{0.204S \eta}$ ρ : 液体の比重 S : 最高使用温

S: 最高使用温度における 材料の許容引張応力

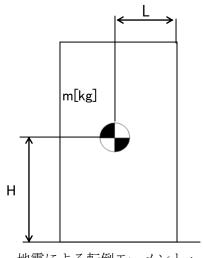
η: 長手継手の効率

ただし、t の値は炭素鋼、低合金鋼の場合はt=3[mm]以上、その他の金属の場合はt=1.5[mm]以上とする。また、内径の区分に応じた必要厚さを考慮する。

表-21-1 No.1 ろ過水タンク板厚評価の数値根拠

機器名称			Н	ρ	材料	温度 S		η	t
	[m]	Lm]			[℃]	[MPa]		[mm]	
	最下段	24.8	9.6	1	SM400C	常温	100	0. 70	16.7
No.1 ろ過水タンク	70.1 17.			_	SM1000	113 1	200		$\rightarrow 17$
	■		0.6	1	CC 400	常温	100	0.70	1.04
	1.74.0.4.校日	24.8	0.6	1	SS400	市 価.	100	0.70	$\rightarrow 6^{\frac{1}{2}}$

※1 : 内径 16[m]以上のため、内径区分により 6[mm]となる。


表-21-2 No.1 ろ過水タンク 板厚評価結果

評価部位	必要肉厚[mm]	実厚[mm]		
板厚 (最下段)	17	18		
板厚(下から4段目)	6	8		

(2) 耐震性評価

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を実施した。評価に用いた数値を表-22-1に示す。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さいことから、転倒しないことを確認した(表-22-2)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²)

w : 機器重量 (m×g)

H: 据付面からの重心までの距離

L: 転倒支点から機器重心までの距離

C₁: 水平方向設計震度 (0.36)

各記号の下付文字は、下記を意味する。

t ・タンク. r ・屋根.

w:保有水

地震による転倒モーメント:

 $M_1[N \cdot m] = m \times g \times C_H \times H = g \times C_H \times (m_t \times H_t + m_r \times H_r + m_w \times H_w)$

自重による安定モーメント:

 $M_2[N \cdot m] = m \times g \times L$ = $(m_t \times L_t + m_r \times L_r + m_w \times L_w) \times g$

表-22-1 No.1 ろ過水タンクの転倒評価計算根拠

機器名称	W[kN]		ŀ	H[m]		L[m]	$M_1[kN \cdot m]$	M ₂ [kN·m]
	$m_{\rm t}$		$\mathrm{H_{t}}$		$L_{\rm t}$		02 224 ->	612 165 ->
No.1 ろ過水タンク	$m_{\rm r}$		$H_{\rm r}$		$L_{\rm r}$		$93, 324 \rightarrow$ $9. 4 \times 10^4$	$613, 165 \rightarrow 6.1 \times 10^{5}$
う風水グマク	$m_{\rm w}$		$H_{\rm w}$		$L_{\rm w}$		9.4 ^ 10	0.1 \ 10

表-22-2 No.1 ろ過水タンク 転倒評価結果

水平震度	転倒モーメント M ₁ [kN·m]	安定モーメント M ₂ [kN·m]
0. 36	9. 4×10^4	6. 1×10^5

b. スロッシング評価

容器構造設計指針(日本建築学会)を参考にスロッシング波高の評価を行った結果, スロッシング時のタンク内の液位はろ過水タンク高さ以下であることを確認した(表-23)。

$$\eta_s = 0.802 \cdot Z_s \cdot I \cdot S_{v1} \sqrt{(D/g) \tanh(3.682 \cdot H_1/D)}$$

η s : スロッシング波高

Z。: 地域係数 (1)

I : 用途係数 (1.2)

 S_{v1} : 設計応答スペクトル値 (2.11 m/s)

D : 貯槽内径 (24.8 m)

g : 重力加速度 (9.80665 m/s²)

H₁ : 液高さ (9.6 m)

 $\eta_{s} = 3.05$

 \rightarrow 3.1 m

表-23 No.1 ろ過水タンク スロッシング評価

スロッシング波高 [m]	スロッシング時液位 [m]	タンク高さ [m]
3. 1	12. 7 [*] 1	18. 1

※1 4600m³ 貯留時の液位 9.6m にスロッシング波高を加えたもの

1.2.13. モバイル式処理装置

(1) 構造強度評価

設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい 試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認する。

また、吸着塔の円筒形容器については、設計・建設規格に準拠し、板厚評価を実施した。評価の結果、内圧に耐えられることを確認した(表-24)。

t : 胴の計算上必要な厚さ

Di : 胴の内径 (mm)

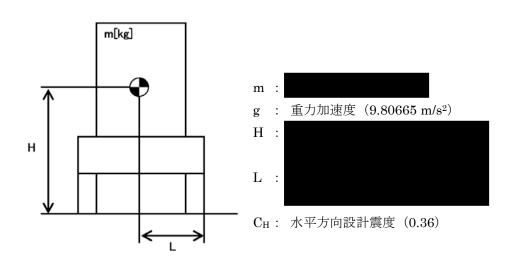
= <u>PDi</u> P: 最高使用圧力 (0.98 MPa)

S : 最高使用温度における

材料の許容引張応力 (111 MPa)

η: 長手継手の効率 (0.70)

ただし、t の値は炭素鋼、低合金鋼の場合はt=3[mm]以上、その他の金属の場合はt=1.5[mm]以上とする。


表-24 モバイル式処理装置構造強度結果

機器名称	評価部位	必要肉厚[mm]	実厚[mm]
モバイル式処理装置 吸着塔	板厚	6. 35→6. 4	10.0
てハイル以処理表直 ツ有塔	似净	6. 67→6. 7	10.0

(2)耐震性評価

a. モバイル式処理装置(吸着塔,トレーラー)の転倒評価

モバイル式処理装置,及びそれを搭載しているトレーラーについて,地震による転倒モーメントと自重による安定モーメントを算出し,それらを比較することで転倒評価を行った。評価の結果,地震による転倒モーメントは自重による安定モーメントより小さいことから,転倒しないことを確認した(表-25)。

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H = 250,323 \text{ N·m} \rightarrow 251 \text{ kN·m}$ 自重による安定モーメント: $M_2[N \cdot m] = m \times g \times L = 624,953 \text{ N·m} \rightarrow 624 \text{ kN·m}$

表-25 モバイル処理装置耐震評価結果

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
モバイル式処理装置	本体	本二	0.26	951	624	1-M - m
(吸着塔,トレーラー)	本 体	転倒	0. 36	251	624	kN•m

1.2.14. モバイル式処理装置(配管等)

(1) 構造強度評価

a. 配管(鋼製)

設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい 試験等を行い、有意な変形や漏えい、運転状態に異常がないことにより、必要な構 造強度を有していることを確認する。

また、配管の主要仕様から設計・建設規格に基づき板厚評価を実施した。評価に用いた数値を表-26-1に示す。評価の結果、最高使用圧力に耐えられることを確認した(表-26-2)。

t : 管の計算上必要な厚さ

D₀ : 管の外径

P : 最高使用圧力[MPa]

S : 最高使用温度における

材料の許容引張応力[MPa]

η : 長手継手の効率

表-26-1 モバイル式処理装置の配管構造強度評価の計算根拠

評価 機器	口径	Sch.	材質	P [MPa]	温度 [℃]	Do [mm]	S [MPa]	η	t [mm]
配管①	50A	40	STPG370	0.98	40	60.5	93	1.00	$0.317 \rightarrow 0.32$
配管②	50A	80	STPG370	0.98	40	60.5	93	1.00	$0.317 \rightarrow 0.32$
配管③	80A	80	STPG370	0.98	40	89. 1	93	1.00	$0.468 \rightarrow 0.47$
配管④	50A	40	SUS316L	0. 98	40	60.5	111	1.00	$0.266 \rightarrow 0.27$

表-26-2 配管構造強度評価結果

評価機器	口径	Sch.	材質	最高使用 圧力(MPa)	最高使用 温度(℃)	必要肉厚 (mm)	肉厚 (mm)
配管①	50A	40	STPG370	0. 98	40	0.32	3. 9
配管②	50A	80	STPG370	0. 98	40	0. 32	5. 5
配管③	80A	80	STPG370	0. 98	40	0. 47	7. 6
配管④	50A	40	SUS316L	0. 98	40	0. 27	3. 9

b. 配管 (ポリエチレン管)

設計・建設規格上のクラス3機器に関する規格にはない材料であるが、系統の温度、 圧力を考慮して仕様を選定している。また、ポリエチレン管は、一般に耐食性、電気 特性(耐電気腐食)、耐薬品性を有しているとともに以下により信頼性を確保している。

- ・ 日本水道協会規格等に適合したポリエチレン管を採用する。
- ・ 継手は可能な限り融着構造とする。
- ・ 敷設時に漏えい試験等を行い、運転状態に異常がないことを確認する。 以上のことから、ポリエチレン管は、必要な構造強度を有するものと評価した。

c. 配管 (耐圧ホース)

設計・建設規格上のクラス3機器に関する規格にはない材料であるが,系統の温度・ 圧力を考慮して仕様を選定すると共に,以下により信頼性を確保する。

- ・チガヤによる耐圧ホースの貫通を防止するため、チガヤが生息する箇所において は鉄板敷き等の対策を施す。
- ・通水等による漏えい確認を行う。

1.2.15. 第二セシウム吸着装置 同時吸着塔

(1) 構造強度評価

同時吸着塔の円筒形容器については、設計・建設規格に準拠し、板厚評価を実施し た (表 -27-1, 表 -27-2)。評価の結果、内圧または外圧に耐えられることを 確認した (表-27-3)。

<内面に圧力を受ける円筒形の胴の場合>

t: 胴の計算上必要な厚さ

Di: 胴の内径 $t = \frac{PDi}{2S \ n - 1.2P}$ P : 最高使用圧力

S: 最高使用温度における材料の許容引張応力

η: 長手継手の効率

ただし、tの値は炭素鋼、低合金鋼の場合はt=3[mm]以上、その他の金属の場合は t=1.5[mm]以上とする。

表-27-1 同時吸着塔 構造強度評価数値根拠(その1)

機器名称		Di [mm]	P [MPa]			S [MPa]	η	t [mm]
	TYPE-A		1. 37	SUS316L	66	108	0.60	9.53 $\rightarrow 9.6$
同時吸着塔	TYPE-B		1. 37	ASME SA240 TYPE316L	66	115	0.70	8. 08 → 8. 1

<外面に圧力を受ける円筒形の胴の場合>

 $t = \frac{3PD_o}{4B}$

t : 胴の計算上必要な厚さ

Do: 胴の外径

P : 最高使用圧力

B : 設計·建設規格 付録材料図表 Part7

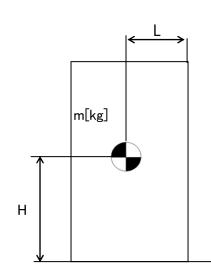
図1から図20までにより求めた値

ただし、tの値は炭素鋼、低合金鋼の場合はt=3[mm]以上、その他の金属の場合は t=1.5[mm]以上とする。

表-27-2 同時吸着塔 構造強度評価数値根拠(その2)

機器名称		D _o	P [MPa]	材料	温度 [℃]	В	t [mm]
同時吸着塔	TYPE-B		1. 37	ASME SA312 TYPE316L	66	50. 4	7.25 $\rightarrow 7.3$

表-27-3 同時吸着塔 構造強度評価結果


機器名称	TYPE	評価部位	必要肉厚[mm]	実厚[mm]
	TYPE-A	板厚	9. 6	12
同時吸着塔	TYPE-B	板厚(外筒胴)	8. 1	12. 7
	TYPE-B	板厚(内筒胴)	7. 3	12. 7

(2) 耐震性評価

同時吸着塔(第二セシウム吸着装置)の耐震性評価は、機器質量及び据付面からの重心までの距離が大きい TYPE-B により評価する。

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を実施した。評価に用いた数値を表-28-1に示す。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さいことから、転倒しないことを確認した(表-28-3)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²)

H: 据付面からの重心までの距離

L: 転倒支点から機器重心までの距離

C_H: 水平方向設計震度

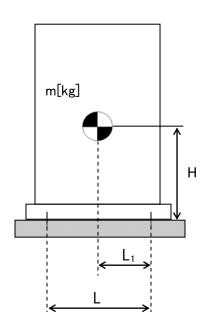

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m] = m \times g \times L$

表-28-1 同時吸着塔 転倒評価数値根拠

機器名称	m [kg]	H [m]	L [m]	C _H	M_1 [N•m]	$egin{array}{c} ext{M}_2 \ ext{[N} \cdot ext{m]} \end{array}$
同時吸着塔				0.36	169,035 → 170 kN·m	195, 223
				0. 41	192,512 → 193 kN·m	→ 195 kN·m

b. 基礎ボルトの強度評価

耐震設計技術規程の強度評価方法に準拠して評価を実施した。評価に用いた数値を表-28-2に示す。評価の結果、基礎ボルトの強度が確保されることを確認した(表-28-3)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²) H : 据付面からの重心までの距離

L : 基礎ボルト間の水平方向距離

L1: 重心と基礎ボルト間の水平方向距離

nf: 引張力の作用する基礎ボルトの評価本数

n : 基礎ボルトの本数

Ab: 基礎ボルトの軸断面積

C_H: 水平方向設計震度

C_V: 鉛直方向設計震度 (0)

基礎ボルトに作用する引張力: $F_b = \frac{1}{L} \Big(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \Big)$

基礎ボルトの引張応力: $\sigma_b = \frac{F_b}{n_f \times A_b}$

基礎ボルトのせん断応力: $\tau_b = \frac{m \times g \times C_H}{n \times A_b}$

また, 許容応力は, 以下の式で設定した。

基礎ボルトの許容せん断応力: $f_{sb}=1.5rac{F}{1.5\sqrt{3}}$

基礎ボルトの許容引張応力 : $f_{ts} = \min \left(1.4 f_{to} - 1.6 \tau_b, f_{to} \right)$

ここで、F は設計・建設規格 付録材料図表 Part 5 表 8 及び表 9 より、SS400 の設計温度 50 C における Sy 値、Su 値を線形補間した値を用い、下記式にて設定した。

F = min (Sy, 0.7Su)

・Sy:表8より 40℃:235 MPa, 75℃:222 MPa

 $Sy = 222 + (235 - 222) \times (75-50)/(75-40) = 231 \text{ MPa}$

・Su:表9より 40℃:400 MPa, 75℃:381 MPa

 $Su = 381 + (400 - 381) \times (75-50)/(75-40) = 394 \text{ MPa}$

従って, F = min (Sy, 0.7Su) = min (231, 0.7 \times 394) = 231 MPa

基礎ボルトの許容引張応力(C_H=0.55)は以下の通りとなる。

 $f_{to} = F/2 \times 1.5 = 173 \text{ MPa}$

 $f_{ts} = min(1.4 \times 173 - 1.6 \times 62, 173) = min(143, 173) = 143 \text{ MPa}$

基礎ボルトの許容せん断応力は以下の通りとなる。

$$f_{sb} = 1.5 \frac{F}{1.5\sqrt{3}} = 133 \text{ MPa}$$

表-28-2 同時吸着塔 基礎ボルト強度評価数値根拠

機器	m	Н	L	L_1	n _f	n	A _b	C	$F_{\rm b}$	σ_b	$ au_{ m b}$
名称	[kg]	[mm]	[mm]	[mm]	[本]	[本]	[mm ²]	C_{H}	[N]	[MPa]	[MPa]
同時								0.36	-14, 411	<0	40. 4 →41
吸着塔					•			0. 55	52, 465	55. 7 →56	61. 8 →62

表-28-3:同時吸着塔 耐震評価結果

機器名称	評価部位	評価項目	水平震度	算出值	許容値	単位
	本体	転倒	0.36	170	195	kN•m
	本件	中公内	0.41	193	190	KINTIII
同時吸着塔		北八胜	0.36	41	133	MPa
凹吋火有增	基礎ボルト	せん断 -	0. 55	62	155	MPa
		引張	0. 36	<0	_	MPa
		り版	0. 55	56	143	

1.2.16. 第二セシウム吸着装置 同時吸着塔 (配管 (鋼製))

(1) 構造強度評価

a. 配管(鋼製)

設計・建設規格に基づき板厚評価を実施した。評価に用いた数値を表-29-1に示す。評価の結果、最高使用圧力に耐えられることを確認した(表-29-2)。

t : 管の計算上必要な厚さ

D₀ : 管の外径

 $=\frac{PDo}{2C_{1}+0.0R}$ P : 最高使用圧力[MPa]

S : 最高使用温度における

材料の許容引張応力[MPa]

η : 長手継手の効率

表-29-1 同時吸着塔 配管構造強度評価計算根拠

評価 機器	口径	Sch.	材質	P [MPa]	温度 [℃]	Do [mm]	S [MPa]	η	t [mm]	
配管①	50A	40	SUS316L	1. 37	66	60.5	108	1.00	$0.382 \rightarrow 0.3$	39
配管②	80A	40	SUS316L	1. 37	66	89. 1	108	1.00	$0.562 \rightarrow 0.5$	57

表-29-2 同時吸着塔 配管構造強度評価結果

評価機器	口径	Sch.	材質	最高使用 圧力(MPa)	最高使用 温度(℃)	必要肉厚 (mm)	肉厚 (mm)
配管①	50A	40	SUS316L	1. 37	66	0.39	3. 9
配管②	80A	40	SUS316L	1. 37	66	0. 57	5. 5

- 2. 使用済セシウム吸着塔保管施設及び廃スラッジ貯蔵施設
- 2.1. 基本方針
- 2.1.1. 構造強度評価の基本方針
- a. 震災以降緊急対応的に設置又は既に(平成25年8月14日より前に)設計に着手した機器等

使用済セシウム吸着塔保管施設及び廃スラッジ貯蔵施設を構成する機器は、震災以降緊急対応的に設置してきたもので、「発電用原子力設備に関する技術基準を定める省令」において、廃棄物処理設備に相当するクラス 3 機器に準ずるものと位置付けられる。クラス 3 機器の適用規格は、「JSME S NC-1 発電用原子力設備規格 設計・建設規格」(以下、「JSME 規格」という。)で規定される。

しかしながら震災以降緊急対応的にこれまで設置してきた機器等は、必ずしも JSME 規格に従って設計・製作・検査をされたものではなく、日本工業規格 (JIS) 等規格適合品または製品の試験データ等を踏まえ、福島第一原子力発電所構内の作業環境、機器等の設置環境や緊急時対応の時間的裕度を勘案した中で設計・製作・検査を行ってきている。

廃スラッジ貯蔵施設を構成する機器は、高濃度の汚染水を内包するため、バウンダリ機能の健全性を確認する観点から、設計された肉厚が十分であることを確認している。また、溶接部については、耐圧・漏えい試験等を行い、有意な変形や漏えい等のないことを確認している。

なお、使用済セシウム吸着塔保管施設を構成するコンクリート製ボックスカルバートは遮へい物として吸着塔等の周囲に配置するものであり、JSME 規格で定める機器には該当しない。

b. 今後(平成25年8月14日以降)設計する機器等

使用済セシウム吸着塔一時保管施設は必要に応じて増設することとしており、地下水等の流入により増加する汚染水の処理に伴う二次廃棄物への対応上、短期間での施設の設置が必要である。このため今後設計する機器等については、日本工業規格(JIS)等規格に適合した工業用品の採用、或いは JIS 等の技術的妥当性を有する規格での設計・製作・検査を行う。

2.1.2. 耐震性評価の基本方針

使用済セシウム吸着塔保管施設、廃スラッジ貯蔵施設を構成する機器は、「発電用原子炉施設に関する耐震設計審査指針」のBクラス相当の設備と位置づけられる。

使用済セシウム吸着塔保管施設,廃スラッジ貯蔵施設の耐震性に関する評価にあたっては,「JEAC4601 原子力発電所耐震設計技術規程」に準拠することを基本とするが,必要に応じて現実的な評価を行う。

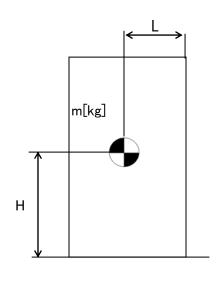
また、配管に関しては、変位による破壊を防止するため、定ピッチスパン法による 配管サポート間隔の設定や、可撓性のある材料を使用する。

なお、廃スラッジ一時保管施設等は、高濃度の放射性物質を貯蔵することから参考 としてSクラス相当の評価を行う。

2.2. 評価結果

2.2.1. 使用済セシウム吸着塔仮保管施設

(1) 構造強度評価


材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。また、吸着塔の主要仕様から必要肉厚を評価し十分な肉厚を有していることを確認した。

以上のことから、吸着塔は必要な構造強度を有すると評価した。

(2) 耐震性評価

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を行った。評価に使用した数値を表-30-1に示す。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さくなることから、転倒しないことを確認した(表-30-2)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²)

w : 機器重量 $(m \times g)$

H: 据付面からの重心までの距離

L: 転倒支点から機器重心までの距離

C_H: 水平方向設計震度

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m] = m \times g \times L$

表-30-1 使用済セシウム吸着塔仮保管施設の転倒評価数値根拠

機器名称	5	m / w	H[m]	L[m]	C_{H}	$M_1[kN \cdot m]$	M ₂ [kN·m]
ボックス					0.30	136 →	298 →
カルバー	١	[kN]			0.30	1.4×10^{2}	2.9×10^{2}
セシウム吸着	装置				0. 36	81.1 →	124 →
吸着塔		[kN]			0.30	8. 2×10^{1}	1.2×10^2
	吸着塔				0. 36	180.3 →	
第二セシウム	ツタイプ	[t]			0.30	1.9×10^{2}	421 →
吸着装置吸着塔	架台				0. 60	300.1 →	4. 2×10^2
	木 口	[t]			0.00	3.1×10^2	
モバイル式処	理装置				0. 36	50.8 →	107. 2 →
(吸着塔 1:	塔)	[kg]			0.30	5.1×10	1.0×10^2
モバイル型スト	ロンチウ						
ム除去装				0.36	87. 3 →	196. 9 →	
(フィルタ1塔,	吸着塔1	[kg]			0.00	8.8×10	1.9×10^2
塔及び架台	1)						

b. 滑動評価

地震時の水平荷重によるすべり力と接地面の摩擦力を比較することにより、滑動評価を実施した。評価の結果、地震時の水平荷重によるすべり力は接地面の摩擦力より小さいことから、滑動しないことを確認した(表-30-2)。

地震時の水平荷重によるすべり力 : $F_L = C_H \times m \times g \rightarrow F_L / (m \times g) = C_H$ 接地面の摩擦力 : $F_\mu = \mu \times m \times g \rightarrow F_\mu / (m \times g) = \mu$

 m
 : 機器質量

 g
 : 重力加速度

C_H: 水平方向設計震度 (0.30, 0.36, 0.52, 0.60)

 μ : 摩擦係数 (コンクリート/鉄:0.40, 鉄/鉄:0.52)

表-30-2 使用済セシウム吸着塔仮保管施設耐震評価結果

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
ボックス	本体	転倒	0.30	1.4×10^{2}	2.9×10^{2}	kN•m
カルバート	4 4	滑動	0.30	0.30	0.40	_
セシウム吸着装置	* /*	転倒	0.36	8. 2×10^{1}	1.2×10^2	kN•m
吸着塔	本体	滑動	0.36	0.36	0. 52	_
		転倒	0.36	1.9×10^{2}	4.2×10^{2}	kN•m
第二セシウム 吸着装置吸着塔	本体	料料	0.60	3. 1×10^2	4.2 ^ 10	WIN - III
	4 4	滑動	0.36	0.36	0. 52	
		(月野)	0. 52			
モバイル式処理装 置	本体	転倒	0. 36	5. 1×10	1.0×10^{2}	kN•m
(吸着塔 1 塔)	平平	滑動	0. 36	0.36	0.40	_
モバイル型ストロ		転倒	0. 36	8.8×10	1. 9×10^2	kN•m
ンチウム除去装置 (フィルタ 1 塔, 吸	本体					
着塔1塔及び架台)		滑動	0. 36	0. 36	0. 40	_

2.2.2. 使用済セシウム吸着塔一時保管施設

(1) 構造強度評価

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。また、吸着塔の主要仕様から必要肉厚を評価し十分な肉厚を有していることを確認した。

以上のことから、吸着塔は必要な構造強度を有すると評価した。

なお高性能容器(タイプ 1)および高性能容器(タイプ 2)(いずれも補強体付き)に関する評価は「II 2.16 放射性液体廃棄物処理施設及び関連施設」に記す。

(2) 耐震性評価

a. 使用済セシウム吸着塔一時保管施設(第三施設)の連結ボルト強度評価について

ボックスカルバートは、連結ボルトで相互に連結して転倒し難い構造としている。連結ボルトのうち、最も負荷条件の厳しいものについて引抜力を評価した結果、ボルトの許容引張力(許容値)以下となることを確認した。なお、本施設は B クラス相当の設備と位置づけられるが、参考評価として、水平震度を 0.60 まで拡張して健全性が維持されることを確認した(表-31-1)。

b. 吊上げシャフトの耐震性評価

吊上げシャフトについては、HICの吊下げ、保管をすることはないものの、HICをボックスカルバート内に収納する際に通過させることから、耐震評価(Bクラス相当)を実施した。評価の結果、吊上げシャフト架台のアンカーボルトのうち、最も負荷条件が厳しいボルトについても許容値を下回ることを確認した(表 - 31 - 2)。

また、吊上げシャフト内の緩衝器カバーについても、地震による転倒モーメントと自 重による安定モーメントを比較した結果、地震による転倒モーメントは、自重による安 定モーメントより小さくなることから転倒しないことを確認した。なお、参考評価とし て水平震度を 0.6 まで拡張した場合においても問題ないことを確認した(表-31-3)。

c. クレーンの耐震評価

第三施設クレーンに対し、地震による転倒モーメントと自重による安定モーメントを 算出し、それらを比較することにより転倒評価を行った。評価の結果、地震による転倒 モーメントは、自重による安定モーメントより小さくなることから、転倒しないことを 確認した。なお、参考評価として、耐震 S クラス相当の水平震度 (0.6) に対して健全性 が確認されることを確認した(表-31-4)。

108

表-31-1 連結ボルトの強度評価 (1/3)

					壬)		壬)	
					重心		重心	
	h ih	荷重 V	水平	水平慣性力	鉛直	転倒モーメン	水平	抵抗モーメン
	名称	(kN/個)	震度	H (kN)	距離	ト M (kN ⋅ m)	距離	⊦ Mr(kN • m)
					h1 (m)		h2 (m)	
ボックス	下段ボックス			60. 37		109. 03		148. 57
カルバート	上段ボックス		0.36	54. 72		328. 32		132. 54
1基	蓋+転落防止架台		0.30	17. 25		138. 13		57. 03
工座	高性能容器3段積			72. 38		269. 04		241. 24
	計			204. 72		844. 52		579. 38

表-31-1 連結ボルトの強度評価(2/3)

表 61 1 EMAN, 1 少点及前面(2) 6)									
						重心		重心	
	友 \$hr	:	荷重 V	水平	水平慣性力	鉛直	転倒モーメン	水平	抵抗モーメン
	名称	((kN/個)	震度	H(kN)	距離	ト M (kN ⋅ m)	距離	ト Mr (kN・m)
						h1 (m)		h2(m)	
ギッカフ	下段ボックス				100. 62		181. 72		148. 57
ボックスカルバート	上段ボックス			0.60	91. 20		547. 20		132. 54
1基	蓋+転落防止架台			0.60	28. 74		230. 13		57. 03
上左	高性能容器3段積				120. 63		448. 39		241. 24
	計				341. 19		1407. 44		579. 38

転倒に対する最大引抜力 P1=Ms/Z (Z:連結ボルトの断面係数 24.161m・本)

通路側ボックスの滑動抵抗力 $Hr = \mu V$ ($\mu : \neg \nu \rightarrow \neg \nu$) リート/コンクリートの摩擦係数)

不足活動抵抗力 Hs=H-Hr

滑動に対する最大引抜力 P2=Hs/n (n:連結ボルトの本数8本)

転倒と滑動による最大引抜力(算出値)P=P1+P2

表-31-1 連結ボルトの強度評価 (3/3)

名称	評価項目	水平震度	算出値	許容値	単位	
ボックスカルバート 連結ボルト	引抜力	0.36	11	184	1.21	
	グログノノ	0.60	49	104	kN	

許容値=使用鋼材の許容荷重×鋼材断面積(許容荷重:235N/mm², 断面積 787mm²)

表-31-2 吊上げシャフト架台アンカーボルトの評価結果

名称	評価項目	水平震度	算出值	許容値	単位	
吊上げシャフト架台 アンカーボルト	引抜力	0. 36	3, 182	31, 790	N	
	ラゴ 双刀	0.60	9, 888	31, 790	N	

【算出値】アンカーボルトの引抜力 Rb={Fh・Hg-(g・W-Fv) ・Lg}/ {L・Nt}

質量:W= kg

機器転倒を考えた場合の引張りを受ける片側のアンカーボルト総本数:Nt=4本

据え付け面より機器重心までの高さ:Hg= cm

検討する方向から見たボルトスパン: L= cm

検討する方向から見たボルト中心から機器重心までの距離:Lg= cm

重力加速度 g=9.80665 m/s2

設計用水平震度:Kh

設計用垂直震度: Kv=Kh/2

設計用水平地震力:Fh=g×Kh×W 設計用鉛直地震力:Fv=g×Kv×W

【許容値】接着系アンカー1本当たりの許容引張耐力(Ta)a = min[(Ta1)a, (Ta2)a, (Ta3)a]

(Tal)a: アンカー筋の降伏により決まる場合のアンカー1 本当りの許容引張耐力

(Ta2)a: 定着したコンクリート躯体のコーン状破壊により決まる場合のアンカー1 本当 りの許容引張耐力

(Ta3)a:接着系アンカーの付着力により決まる場合のアンカー1本当りの許容引張耐力

Ta1: 鋼材の耐力(降伏)により決まる場合のアンカー1本当りの引張耐力(N)

Ta2: 定着したコンクリート躯体のコーン状破壊により決まる場合のアンカー 1 本当りの引張耐力 (N)

Ta3:接着系アンカーの付着力により決まる場合のアンカー1本当りの引張耐力(N)

 $(Ta1)a = \phi 1 \cdot (Ta1)$

 $(Ta2)a = \phi 2 \cdot (Ta2)$

 $(Ta3)a = \phi 3 \cdot (Ta3)$

 $Ta1 = \sigma y \cdot sae (N)$

Ta2 = 0.23 $\sqrt{(\sigma B)} \cdot Ac$ (N)

Ta3 = $\tau a \cdot \pi \cdot da \cdot 1e$ (N)

 $Ac = \pi \cdot 1e \cdot (1e + da) \pmod{2}$

 τ a = 10 · $\sqrt{}$ ($\sigma_{\rm B}$ / 21) (N)

記号:

sae : 鋼材(アンカー筋)の有効断面積 (mm2)

(又は,公称断面積)

σy: アンカー筋の規格降伏点強度 235 (N/mm2)

(又は, 0.2%耐力)

σ_R: 既存コンクリートの設計基準強度 40 (N/mm2)

τa: 接着系アンカーの付着強度 13.9 (N/mm2)

da: アンカー筋の径 (mm) le: 有効埋込み長さ (mm)

Ac: コンクリートのコーン状破壊面の有効水平投影面積 (mm2)

φn 低減係数:

荷重種別 φ1 φ2 φ3長期荷重用 2/3 0.4 0.4短期荷重用 1.0 0.6 0.6

表-31-3 吊上げシャフト内緩衝器カバーの評価結果

名称	評価項目	水平震度	算出値	許容値	単位
吊上げシャフト内	転倒	0. 36	36	71	kN • m
緩衝器カバー	料公刊	0.60	60	11	

【算出値】回転モーメント: M1=m*L(重心高さ)*Kh 【許容値】抵抗モーメント: Mr=1/2*L(奥行)*m*g

m: kg

L(重心高さ):

L(奥行): m

 $g: 9.80665 m/s^2$

Kh:設計用水平震度

表-31-4 第三施設クレーンの評価結果

名称	評価項目	水平震度	算出値	許容値	単位
第三施設クレーン	転倒	0.36	7. 05×10^5	1.85×10^6	1
	松田	0.60	1.17×10^6	1.00 \ 10	kg•m

【算出値】回転モーメント: $M1=\sum m*L1*Kh$ 【許容値】抵抗モーメント: $Mr=\sum m*L2$

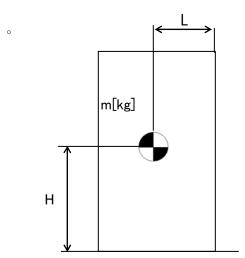
m: 第三施設クレーン各部位の重量(kg)

L1:据付面からの重心までの距離(m)

L2:転倒支点から機器重心までの距離(m)

Kh:設計用水平震度

クレーン各部位


- ・トロリ自重 (m, L1) =(
- ・ガーダー自重+歩道自重+横行給電自重 (m, L1) =(
- ・上部タラップ自重 (m, L1) =(
- 中間デッキ自重 (m, L1) =(
- ・剛脚自重 (m, L1) =(
- ・下部タラップ自重 (m, L1) =(
- ・ケーブル巻取器自重 (m, L1) =(
- ・トラニオン自重 (m,L1) =(
- ・揺脚自重 (m, L1) =(
- ・ガーダー自重+歩道自重+横行給電自重 (m, L2) =(
- トロリ自重 (m, L2) =(

d. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を行った。なお、セシウム吸着装置吸着塔はそれを格納するボックスカルバートと合わせて吸着塔 32 塔と蓋付ボックスカルバート 16 基での評価、第二セシウム吸着装置吸着塔及び高性能多核種除去設備吸着塔はそれを格納する架台と合わせて吸着塔 10 塔と架台 2 台(一組)での評価、多核種除去設備高性能容器(第三施設)はそれを格納するボックスカルバートと合わせて高性能容器 96 基とボックスカルバート 36 基での評価を実施した。また、モバイル式処理装置は吸着塔の評価、モバイル型ストロンチウム除去装置はフィルタ、吸着塔及び架台の評価、サブドレン他浄化装置、高性能多核種除去設備検証試験装置については、吸着塔及び架台の評価を実施した。

評価に用いた数値を表-31-5に示す。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さくなることから、転倒しないことを確認した(表-31-6)。

なお高性能容器(タイプ 1)および高性能容器(タイプ 2)(いずれも補強体付き)に関する評価は「II 2.16 放射性液体廃棄物処理施設及び関連施設」に記す。

m : 機器質量

g : 重力加速度 (9.80665 m/s²)

w : 機器重量 (m×g)

H: 据付面からの重心までの距離

L: 転倒支点から機器重心までの距離

C_H: 水平方向設計震度

各記号の下付文字は, 下記を意味する。

v:吸着塔,高性能容器

b:ボックスカルバート,架台

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H$

= $g \times C_H \times (m_v \times H_v + m_b \times H_b)$

自重による安定モーメント: M₂[N·m] = m×g×L

 $= (m_v \times L_v + m_b \times L_b) \times g$

表-31-5 使用済セシウム吸着塔一時保管施設の耐震評価数値根拠(1/3)

機器名称		数量	m / w	H [m]	L [m]	水平震度	\mathbf{M}_{1} [kN·m]	M ₂ [kN·m]
	吸着塔	32	[kN]	[III]	LIII	及及		
セシウム吸着装置 (吸着塔 32 塔及び ボックルカルバート 16 基)	ボックス カルバート	16	[kN]			0.36	$7,864 \rightarrow$ $7.9 \times 10^3 \times 2$	18, 120 →
	ボックス カルバート蓋	16	[kN]			0.60	$13, 107 \rightarrow 1.4 \times 10^4 \times 2$	1.8×10 ⁴ ** ³
	遮へい	2	[kN]				1.4 \ 10	
モバイル式処理	モバイル式処理装置		[kg]			0.36	$50. 8 \rightarrow$ $5. 1 \times 10$	107. 2 →
(吸着塔15	答)	1	[Kg]			0.60	$84. 7 \rightarrow 8.5 \times 10$	1.0×10^{2}
モバイル型ストロンチウム除去装置 (フィルタ1 塔,吸着塔1塔及び架台)			F1 7			0. 36	$87. 3 \rightarrow 8. 8 \times 10$	196. 9 →
		1	[kg]			0.60	$145.4 \rightarrow$ 1.5×10^{2}	1.9×10^2

※1:ボックスカルバートへの荷重作用高さ

※2:吸着塔の水平荷重の半分がボックスカルバートに作用するとして評価

※3:ボックスカルバート及び遮へい(吸着塔を含まず)の評価

表-31-5 使用済セシウム吸着塔一時保管施設の耐震評価数値根拠(2/3)

₩ EP な 私		*/- 目.	. /	Н	L	水平	M_{1}	M_2
機器名称		数量	m / w	[m]	[m]	震度	[kN·m]	[kN·m]
						0. 36	95. 9 →	
サブドレン他浄	化装置	1	[kg]		0.60	0.30	9. 6×10	191.3 →
(吸着塔 2 塔及で	が架台)	1	LV81			0.60	159.8 →	1.9×10^{2}
						0.00	1.6×10^2	
宣州北久拉廷()	高性能多核種除去設備検					0. 36	48.01 →	
而任 能 多 核 性 原 艺 証 試 験 装 置		1	[kg]			0.30	4.9×10	137. 4 →
(吸着塔 6 塔及で						0.60	80.01 →	1.3×10^{2}
(效有增 0 增及 0	(木口)						8.1×10	
	吸着塔	96	[kN]				97 174 →	
<i>⁄⁄⁄</i> — +/- =n.	ボックス	2.0	[1 N]			0.36	$27, 174 \rightarrow$ $2. 8 \times 10^4$	
第三施設	カルバート	36	[kN]				2. 8 \(10^{3} \)	$74,407 \rightarrow$
(HIC96 基とボックスカ ルバート 36 基)	ボックス	20	[1 N]				4F 000	7.4×10^4
	カルバート蓋	32	[kN]			0.60	$45,290 \rightarrow$	
	遮へい土砂	4	[kN]				4.6×10^4	

表-31-5 使用済セシウム吸着塔一時保管施設の耐震評価数値根拠(3/3)

146 00 to the		松. 目	/	Н	L	水平	M_1	M_2
機器名称		数量	m / w	[m]	[m]	震度	[kN·m]	[kN·m]
第二セシウム吸着装置 (吸着塔 10 塔及び架台 2 台)	吸着塔	10	[kg]			0.36	$1,685 \rightarrow 1.7 \times 10^3$	3, 775 →
	架台	2	[kg]			0.60	2,808 →	3.7×10^3
高性能多核種除去設備	吸着塔	10	[kg]		0.36	2.9×10^{3} $1,940 \rightarrow$		
(吸着塔 10 塔及び架台		10				0.30	2.0×10^{3} $3,234 \rightarrow$	$4,334 \rightarrow 4.3 \times 10^{3}$
2台)	架台 	2	[kg]			0.60	3.3×10^3	
吸着塔+架台 (RO 濃縮水処理設備 吸着塔 10 本と架台 2 台)	吸着塔	10	[kg]			0.36	$1,940 \rightarrow 2.0 \times 10^3$	4, 334 →
	架台	2	[kg]			0.60	$3,234 \rightarrow 3.3 \times 10^3$	4.3×10^3

e. 滑動評価

セシウム吸着装置吸着塔,モバイル式処理装置吸着塔,サブドレン他浄化装置吸着塔,高性能多核種除去設備検証試験装置吸着塔,モバイル型ストロンチウム除去装置フィルタ・吸着塔,多核種除去設備高性能容器(第三施設)については、ボックスカルバートとあわせ地震時の水平荷重によるすべり力と接地面の摩擦力を比較することにより、滑動評価を実施した。評価の結果、地震時の水平荷重によるすべり力は接地面の摩擦力より小さいことから、滑動しないことを確認した(表-32)。なお、水平震度を0.60まで拡張した評価では、地震時の水平荷重によるすべり力が設置面の摩擦力より大きくなり、滑動する結果となったことから、別途すべり量の評価を実施した。

地震時の水平荷重によるすべり力 : $F_L = C_H \times m \times g \rightarrow F_L / (m \times g) = C_H$ 接地面の摩擦力 : $F_u = \mu \times m \times g \rightarrow F_u / (m \times g) = \mu$

m : 機器質量

g : 重力加速度

C_H: 水平方向設計震度 (0.36, 0.60)

 μ : 摩擦係数 (コンクリート/鉄: 0.40, 鉄/鉄: 0.52)

第二セシウム吸着装置吸着塔及び高性能多核種除去設備吸着塔については,基礎ボルトにて固定していることから基礎ボルトに作用するせん断荷重と許容せん断荷重を比較することより滑動評価を実施した。基礎ボルトの許容せん断荷重は「日本建築学会:各種合成構造設計指針・同解説,鉄骨鉄筋コンクリート構造計算基準・同解説」に基づき次式を用いた。評価の結果,基礎ボルトの破断による滑動が生じないことを確認した(表-31-6)。

$$q = mg(C_H - \alpha) \div n$$

$$= g(m_v + m_b)(C_H - \alpha) \div n$$

$$q_a = 0.75 \cdot \phi_{S3} \left(0.5 \cdot_{SC} a \cdot \sqrt{F_c \cdot E_c}\right)$$

q : アンカーボルトー本に作用するせん断荷重

q。: アンカーボルトー本当たりの許容せん断荷重

C_H: 水平方向設計震度 (0.36, 0.60)

m : 機器重量 (吸着塔 mv: kg, 架台 mb: kg)

g : 重力加速度 (9.80665 m/s²) α : 機器と床版の摩擦係数 (0.4)

n : 機器あたりのアンカーボルト本数 (本)

φ_{S3}: 短期荷重に対する低減係数 (0.6)

sca: アンカーボルトの定着部の断面積 (mm²)

F_c : コンクリート設計基準強度 (N/mm²)

 E_c : コンクリートのヤング率 (N/mm^2)

 C_H =0.36 の場合 q = -1.6 kN \rightarrow せん断荷重は発生しない。

 C_H =0.60 の場合 $q = 7.9 \text{ kN} \rightarrow 8 \text{ kN}$

 $qa = 77.4 \text{ kN} \rightarrow 77 \text{ kN}$

なお高性能容器(タイプ 1)および高性能容器(タイプ 2)(いずれも補強体付き)に関する評価は「 Π 2.16 放射性液体廃棄物処理施設及び関連施設」に記す。

f. すべり量評価

すべり量は、吸着塔とボックスカルバートの設置床に対する累積変位量として、地震応答加速度時刻歴をもとに算出した。評価の結果すべり量がボックスカルバート間の許容値を超えないことを確認した(表-32)。

表-31-6 使用済セシウム吸着塔一時保管施設耐震評価結果(1/2)

機器名称	評価項目	水平震度	算出値	許容値	単位
セシウム吸着装置	転倒	0. 36	7. 9×10^3	1.8×10^{4}	kN•m
(吸着塔 32 塔及び	44円	0.60	1.4×10^4	1.0 × 10	KINTIII
* * * * * * * * * * * * * * * * * * *	滑動	0.36	0. 36	0.40	
小 ///////// 10 室/	(月野)	0.60	0.60	0.40	_
	転倒	0.36	5. 1×10	1.0×10^{2}	lrN a m
モバイル式処理装置	#公(刊	0.60	8. 5×10	1.0 \ 10	kN•m
(吸着塔1塔)	滑動	0.36	0.36	0.40	
	(月里)	0.60	0.60	0.40	
モバイル型ストロンチウ	転倒	0.36	8.8×10	1.9×10^{2}	lrN . m
ム除去装置	#公[刊	0.60	1.5×10^{2}	1.9 ^ 10	kN•m
(フィルタ1 塔,吸着塔	滑動	0.36	0. 36	0.40	
1 塔及び架台)	(月野)	0.60	0.60	0.40	
	転倒	0.36	9.6×10	1.9×10^{2}	kN•m
サブドレン他浄化装置		0.60	1.6×10^{2}	1.9 \ 10	KIN III
(吸着塔2 塔及び架台)	滑動	0.36	0. 36	0.40	
	(月野)	0.60	0.60	0.40	

表-31-6 使用済セシウム吸着塔一時保管施設耐震評価結果(2/2)

機器名称	評価項目	水平震度	算出値	許容値	単位	
高性能多核種除去設備検	転倒	0.36	4.9×10	1.3×10^{2}	kN•m	
前性能多核性除去設備快 証試験装置	料用	0.60	8.1×10	1.3×10	KINTIII	
(吸着塔 6 塔及び架台)	滑動	0.36	0.36	0. 40	_	
(次有品 0 名及 0 不口)	1月 要月	0.60	0.60	0.40		
第三施設	転倒	0.36	2.8×10^4	7. 4×10^4	kN•m	
第一心政 (HIC96 基とボックスカ	料用	0.60	4.6×10^4	7.4/10	KIN-III	
ルバート 36 基)	滑動	0.36	0.36	0.40	_	
/ / / [1. 30 巫)	(月野)	0.60	0.60	0.40		
第二セシウム吸着装置 (吸着塔 10 塔及び架台	転倒	0.36	1. 7×10^3	3.7×10^3	kN•m	
	拉田	0.60	2.9×10^3	5.7 × 10	171.4 111	
2 台)	滑動	0.36	<0	77	kN	
2 日)	(ボルトせん断)	0.60	8	11	KIV	
高性能多核種除去設備	転倒	0.36	2. 0×10^3	4.3×10^3	kN•m	
(吸着塔 10 塔及び架台	料用	0.60	3. 3×10^3	4.3 \ 10	KINTIII	
2台)	滑動	0.36	<0	77	kN	
2 [])	(ボルトせん断)	0.60	10	11	KIV	
四美快工加力	転倒	0.36	2.0×103	4.3×10^3	kN•m	
吸着塔+架台 (RO 濃縮水処理設備 -	节用	0.6	3.3×103	4.3 \ 10	KIN-III	
吸着塔 10 本と架台 2 台)	滑動 (ボルトせん断)	0. 36	<0	77	kN	

表-32 使用済セシウム吸着塔一時保管施設すべり量評価結果

機器名称	評価項目	水平震度	算出値	許容値	単位
・セシウム吸着装置 ・モバイル式処理装置吸着塔 ・モバイル型ストロンチウム 除去装置 ・サブドレン他浄化装置 ・高性能多核種除去設備検証	すべり量	0.60	93. 3	494	mm
試験装置					
ボックスカルバート	すべり量	0.60	57. 5	400	mm

2.2.3. 廃スラッジー時保管施設

 $t = \frac{DiH \,\rho}{0.204 \mathrm{S} \,\eta}$

= 0.86

 $\rightarrow 0.9$

(1) 構造強度評価

スラッジ貯槽について,設計・建設規格に準拠し,板厚評価を実施した(表-33)。

t : 胴の計算上必要な厚さ

Di : 胴の内径 (_____mm)

ρ:液体の比重 (1.2)

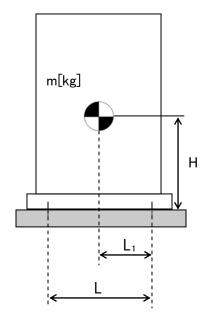
H : 水頭 (mm)

S : 最高使用温度 (50℃) における

材料 (SS400) の許容引張応力 (100 MPa)

 η : 長手継手の効率 (0.7)

ただし、tの値は炭素鋼、低合金鋼の場合はt=3[mm]以上、その他の金属の場合はt=1.5[mm]以上とする。また、内径の区分に応じた必要厚さを考慮する。


表-33 スラッジ貯槽板厚評価結果

機器名	称		評価部位	必要肉厚[mm]	実厚[mm]
ス	ラッジ貯槽	円筒型(横置き)	タンク板厚	3. 0	25.0

(2) 耐震性評価

a. 基礎ボルトの強度評価

耐震設計技術規程に準拠して評価を行った結果,基礎ボルトの強度が確保されることを確認した(表-34)。

m : 機器質量

g : 重力加速度 $(9.80665~m/s^2)$ H : 据付面からの重心までの距離

L : 基礎ボルト間の水平方向距離

L₁: 重心と基礎ボルト間の水平方向距離

n_f: 引張力の作用する基礎ボルトの評価本数

n : 基礎ボルトの本数

A_b: 基礎ボルトの軸断面積

C_H: 水平方向設計震度

C_v: 鉛直方向設計震度 (0)

基礎ボルトに作用する引張力:
$$F_b = \frac{1}{L} \Big(m \times g \times C_H \times H - m \times g \times (1 - C_V) \times L_1 \Big)$$

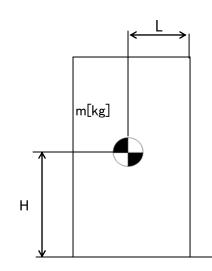
基礎ボルトの引張応力:
$$\sigma_b = \frac{F_b}{n_f \times A_b}$$

基礎ボルトのせん断応力:
$$\tau_b = \frac{m \times g \times C_H}{n \times A_b}$$

表-34 スラッジ貯槽の基礎ボルトの強度評価結果

機器名称	評価部位	評価項目	水平震度	算出値	許容値	単位
	基礎ボルト	引張	0.36	11	439	MPa
スラッジ貯槽			0. 94	131	439	
		せん断	0.36	42	337	MPa
			0. 94	122		

2.2.4. 第二セシウム吸着装置 同時吸着塔 (使用済セシウム吸着塔一時保管施設)


(1) 耐震性評価

同時吸着塔(使用済セシウム吸着塔一時保管施設)の耐震性評価は、機器質量及び据付面からの重心までの距離が大きい TYPE-B により評価する。

a. 転倒評価

地震による転倒モーメントと自重による安定モーメントを算出し、それらを比較することにより転倒評価を実施した。なお、同時吸着塔 10 塔と同時吸着塔を格納する架台 2台(一組)で評価を実施した。

評価に用いた数値を表-35-1に示す。評価の結果、地震による転倒モーメントは自重による安定モーメントより小さいことから、転倒しないことを確認した(表-35-2)。

m : 機器質量

g : 重力加速度 (9.80665 m/s²) H : 据付面からの重心までの距離

L: 転倒支点から機器重心までの距離

C_H: 水平方向設計震度

地震による転倒モーメント: $M_1[N \cdot m] = m \times g \times C_H \times H$ 自重による安定モーメント: $M_2[N \cdot m] = m \times g \times L$

表-35-1 同時吸着塔(使用済セシウム吸着塔一時保管施設)転倒評価結果数値根拠

機器名	活 称	数量	m [kg] (単体)	H [m]	L [m]	C_{H}	M_1 [N•m]	M_2 [N·m]
同時吸着塔	同時 吸着塔	10				0.36	1, 969, 428 \rightarrow 2. 0×10 ³ kN·m	4, 333, 559
十架台	架台	2				0. 60	3, 282, 380 →3. 3×10 ³ kN•m	$\rightarrow 4.3 \times 10^{3}$ $kN \cdot m$

b. 滑動評価

同時吸着塔を格納する架台は、基礎ボルトにて固定していることから基礎ボルトに作用するせん断荷重と許容せん断荷重を比較することより滑動評価を実施した。基礎ボルトの許容せん断荷重は「日本建築学会:各種合成構造設計指針・同解説、鉄骨鉄筋コンクリート構造計算規準・同解説」に基づき次式を用いた。評価の結果、基礎ボルトの破断による滑動が生じないことを確認した(表 - 35-2)。

$$q = mg(C_H - \alpha) \div n$$

$$= g(m_v + m_b)(C_H - \alpha) \div n$$

$$q_a = 0.75 \cdot \phi_{S3} \left(0.5 \cdot_{SC} a \cdot \sqrt{F_c \cdot E_c}\right)$$

q : アンカーボルトー本に作用するせん断荷重

qa: アンカーボルトー本当たりの許容せん断荷重

C_H: 水平方向設計震度 (0.36, 0.60)

m : 機器重量 (同時吸着塔 mv: kg, 架台 mb: kg)

g : 重力加速度 (9.80665 m/s^2)

α : 機器と床版の摩擦係数 (0.4)

n : 機器あたりのアンカーボルト本数 (本)

φ_{s3}: 短期荷重に対する低減係数 (0.6)

sca: アンカーボルトの定着部の断面積 (mm²)

 F_c : コンクリート設計基準強度 (N/mm²)

 E_c : コンクリートのヤング率 (N/mm^2)

 $C_H=0.36$ の場合 q=-1.81 kN \rightarrow せん断荷重は発生しない。

 C_H =0.60 の場合 $q = 9.03 \text{ kN} \rightarrow 10 \text{ kN}$

 $qa = 77.4 \text{ kN} \rightarrow 77 \text{ kN}$

表-35-2 同時吸着塔(使用済セシウム吸着塔一時保管施設)耐震評価結果

機器名称	評価項目	水平震度	算出値	許容値	単位
	転倒	0. 36	2. 0×10^3	4.3×10^{3}	kN•m
同時吸着塔+架台	料田	0.60	3. 3×10^3	4.5 10	KIV-III
(同時吸着塔 10 塔, 架台 2 台)	滑動	0.36	<0	I	kN
	(ボルトせん断)	0.60	10	77	

2.2.5. 配管等

(1) 構造強度評価

a. 配管 (鋼製)

材料証明書がなく、設計・建設規格におけるクラス 3 機器の要求を満足するものではないが、漏えい試験等を行い、有意な変形や漏えい、運転状態に異常がないことを確認した。従って、配管は必要な構造強度を有すると評価した。

また、配管の主要仕様から設計・建設規格に基づき板厚評価を実施した。評価に用いた数値を表-36-1に示す。評価の結果、最高使用圧力に耐えられることを確認した(表-36-2)。

t: 管の計算上必要な厚さ

D₀ : 管の外径

 $=\frac{PDO}{2C_{0.0}}$ P:最高使用圧力[MPa]

S: 最高使用温度における

材料の許容引張応力[MPa]

η : 長手継手の効率

表-36-1 配管構造強度評価の計算根拠

評価 機器	口径	Sch.	材質	温度 [℃]	P [MPa]	Do [mm]	S ^{**} [MPa]	η	t [mm]
配管①	50A	20S	SUS316L	50	0.3	60.5	110	1.00	$0.082 \rightarrow 0.09$
配管②	80A	20S	SUS316L	50	0.3	89. 1	110	1.00	$0.121 \rightarrow 0.13$
配管③	50A	20S	SUS316L	50	0.98	60.5	110	1.00	$0.269 \rightarrow 0.27$
配管④	80A	20S	SUS316L	50	0.98	89. 1	110	1.00	$0.395 \rightarrow 0.40$
配管⑤	50A	40	SUS316L	50	0.98	60.5	110	1.00	$0.269 \rightarrow 0.27$
配管⑥	80A	40	SUS316L	50	0. 98	89. 1	110	1.00	$0.395 \rightarrow 0.40$
配管⑦	80A	40	SUS329J4L	50	0. 98	89. 1	110	1.00	$0.395 \rightarrow 0.40$
配管⑧	100A	40	SUS329J4L	50	0. 98	114. 3	110	1.00	$0.507 \rightarrow 0.51$
配管⑨	125A	40	SUS329J4L	50	0. 98	139.8	110	1.00	$0.621 \rightarrow 0.63$
配管⑩	100A	40	SUS316L	50	0. 98	114. 3	110	1.00	$0.507 \rightarrow 0.51$

※: SUS329J4Lの許容引張応力は設計・建設規格にて定められていないため、保守的に SUS316Lの値を使用。

表-36-2 配管構造強度評価結果

評価機器	口径	Sch.	材質	最高使用 圧力(MPa)	最高使用 温度(℃)	必要肉厚 (mm)	肉厚 (mm)
配管①	50A	20S	SUS316L	0.3	50	0.09	3. 5
配管②	80A	20S	SUS316L	0.3	50	0. 13	4.0
配管③	50A	20S	SUS316L	0. 98	50	0. 27	3. 5
配管④	80A	20S	SUS316L	0. 98	50	0.40	4.0
配管⑤	50A	40	SUS316L	0. 98	50	0. 27	3. 9
配管⑥	80A	40	SUS316L	0. 98	50	0.40	5. 5
配管⑦	80A	40	SUS329J4L	0. 98	50	0.40	5. 5
配管⑧	100A	40	SUS329J4L	0.98	50	0. 51	6. 0
配管⑨	125A	40	SUS329J4L	0. 98	50	0.63	6. 6
配管⑩	100A	40	SUS316L	0.98	50	0.51	6. 0

b. 耐圧ホース (樹脂製)

設計・建設規格上のクラス 3 機器に対する規定を満足する材料ではないが、系統の 温度、圧力を考慮して仕様を選定した上で、漏えい試験等を行い、漏えい、運転状態 に異常がないことを確認する。従って、耐圧ホースは、必要な構造強度を有している と評価した。

以上

Ⅱ 2.5 汚染水処理設備等の寸法許容範囲について

- 1. 設備仕様
- 1.1 中低濃度タンク (円筒型)
- (1) RO 濃縮水貯槽

G7エリア

	主要寸法[mm]	寸法許容範囲
内径	8, 100	
胴板厚さ	16	
底板厚さ	25	
高さ	14, 730	
管台厚さ(100A)	8.6	
管台厚さ(200A)	12. 7	
管台厚さ(600A)	16.0	

*1:主要寸法の最大値ならびに最小値(±0.5%)

Dエリア

	主要寸法[mm]	寸法許容範囲
内径	10,000	
胴板厚さ	15	
底板厚さ	25	
高さ	14, 565	
管台厚さ(100A)	8.6	
管台厚さ(200A)	12. 7	
管台厚さ(600A)	16. 0	

*2:主要寸法の最大値ならびに最小値(±0.5%)

(2) 濃縮廃液貯槽

Dエリア

	主要寸法[mm]	寸法許容範囲
内径	10,000	
胴板厚さ	15	
底板厚さ	25	
高さ	14, 565	
管台厚さ(100A)	8.6	
管台厚さ(200A)	12. 7	
管台厚さ(600A)	16. 0	

*2:主要寸法の最大値ならびに最小値(±0.5%)

(3) 多核種処理水貯槽

J5 エリア

	主要寸法[mm]	寸法許容範囲
内径	11, 000	
胴板厚さ	12	
底板厚さ	12	
高さ	13, 000	
管台厚さ(100A)	6. 0	
管台厚さ(200A)	8. 2	
管台厚さ(650A)	12. 0	

*3:最大内径と最小内径との差が当該断面の呼び内径の1%以下

J2,3エリア

	主要寸法[mm]	寸法許容範囲
内径	16, 200	
胴板厚さ	18.8	
底板厚さ	12	
底板 (アニュラ板)	16	
高さ	13, 200	
管台厚さ(100A)	8.6	
管台厚さ(200A)	12.7	
管台厚さ(600A)	12. 0	

J4 エリア

	T	
	主要寸法[mm]	寸法許容範囲
内径	16, 920	
胴板厚さ	15	
底板厚さ	12	
高さ	12, 900	
管台厚さ(100A)	6.0	
管台厚さ(200A)	8. 2	
管台厚さ(650A)	12. 0	

*4:最大内径と最小内径との差は、当該断面の呼び内径の1%以下

J6 エリア

	主要寸法[mm]	寸法許容範囲
内径	12, 000	
胴板厚さ	12	
底板厚さ	12	
高さ	12, 012	
管台厚さ(100A)	6. 0	
管台厚さ(200A)	8. 2	
管台厚さ(600A)	9. 5	

*5:最大内径と最小内径との差が当該断面の呼び内径の1%以下

H1 エリア

	主要寸法[mm]	寸法許容範囲
内径	12, 000	
胴板厚さ	12	
底板厚さ	12	
高さ	11, 622	
管台厚さ(100A)	6. 0	
管台厚さ(200A)	8. 2	
管台厚さ(600A)	12. 0	

J7 エリア

	主要寸法[mm]	寸法許容範囲
内径	12, 000	
胴板厚さ	12	
底板厚さ	12	
高さ	12, 012	
管台厚さ(100A)	6.0	
管台厚さ(200A)	8.2	
管台厚さ(600A)	9. 5	

*6:最大内径と最小内径との差が当該断面の呼び内径の1%以下

(4) Sr 処理水貯槽

K1 北エリア

	主要寸法[mm]	寸法許容範囲
内径	12, 000	
胴板厚さ	12	
底板厚さ	12	
高さ	12, 012	
管台厚さ(100A)	6. 0	
管台厚さ(200A)	8. 2	
管台厚さ(600A)	9. 5	

*6:最大内径と最小内径との差が当該断面の呼び内径の1%以下

K2 エリア

	主要寸法[mm]	寸法許容範囲
内径	10,000	
胴板厚さ	15	
底板厚さ	25	
高さ	14, 565	
管台厚さ(100A)	8.6	
管台厚さ(200A)	12. 7	
管台厚さ(600A)	16. 0	

*7:主要寸法の最大値ならびに最小値(±0.5%)

K1 南エリア

	主要寸法[mm]	寸法許容範囲
内径	11,000	
胴板厚さ	12	
底板厚さ	12	
高さ	13, 000	
管台厚さ(100A)	6.0	
管台厚さ(200A)	8. 2	
管台厚さ(650A)	12. 0	

*8:最大内径と最小内径との差が当該断面の呼び内径の1%以下

以上